
Generating High-Quality Lymph Node Clinical Target Volumes 
for Head and Neck Cancer Radiation Therapy Using a Fully 
Automated Deep Learning-Based Approach

Carlos E. Cardenas, PhD*, Beth M. Beadle, MD, PhD†, Adam S. Garden, MD‡, Heath D. 
Skinner, MD, PhD§, Jinzhong Yang, PhD*, Dong Joo Rhee, MS*, Rachel E. McCarroll, PhD║, 
Tucker J. Netherton, DMP*, Skylar S. Gay, BS*, Lifei Zhang, PhD*, Laurence E. Court, PhD*

*Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, 
Texas

†Department of Radiation Oncology, Stanford University, Palo Alto, California

‡Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, 
Texas

§Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania

║Department of Radiation Oncology, University of Maryland Medical System, Baltimore, 
Maryland

Abstract

Purpose: To develop a deep learning model that generates consistent, high-quality lymph node 

clinical target volumes (CTV) contours for head and neck cancer (HNC) patients, as an integral 

part of a fully automated radiation treatment planning workflow.

Methods and Materials: Computed tomography (CT) scans from 71 HNC patients were 

retrospectively collected and split into training (n = 51), cross-validation (n = 10), and test (n = 10) 

data sets. All had target volume delineations covering lymph node levels Ia through V (Ia-V), Ib 

through V (Ib-V), II through IV (II-IV), and retropharyngeal (RP) nodes, which were previously 

approved by a radiation oncologist specializing in HNC. Volumes of interest (VOIs) about nodal 

levels were automatically identified using computer vision techniques. The VOI (cropped CT 

image) and approved contours were used to train a U-Net autosegmentation model. Each lymph 

node level was trained independently, with model parameters optimized by assessing performance 

on the cross-validation data set. Once optimal model parameters were identified, overlap and 

distance metrics were calculated between ground truth and autosegmentations on the test set. 

Lastly, this final model was used on 32 additional patient scans (not included in original 71 cases) 

and autosegmentations visually rated by 3 radiation oncologists as being “clinically acceptable 

without requiring edits,” “requiring minor edits,” or “requiring major edits.”
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Results: When comparing ground truths to autosegmentations on the test data set, median Dice 

Similarity Coefficients were 0.90, 0.90, 0.89, and 0.81, and median mean surface distance values 

were 1.0 mm, 1.0 mm, 1.1 mm, and 1.3 mm for node levels Ia-V, Ib-V, II-IV, and RP nodes, 

respectively. Qualitative scoring varied among physicians. Overall, 99% of autosegmented target 

volumes were either scored as being clinically acceptable or requiring minor edits (ie, stylistic 

recommendations, <2 minutes).

Conclusions: We developed a fully automated artificial intelligence approach to autodelineate 

nodal CTVs for patients with intact HNC. Most autosegmentations were found to be clinically 

acceptable after qualitative review when considering recommended stylistic edits. This promising 

work automatically delineates nodal CTVs in a robust and consistent manner; this approach can be 

implemented in ongoing efforts for fully automated radiation treatment planning.

Introduction

The use of intensity modulated radiation therapy (IMRT) techniques provides the ability 

to conform radiation dose distributions to the targets while sparing nearby normal tissues. 

Since clinical implementation, IMRT has required practitioners to manually define clinical 

target volumes (CTVs) and normal tissue organs at risk (OARs); these are both necessary 

to optimize dose distributions. This manual process is time-consuming and subject to 

significant inter- and intraobserver variabilities1,2 with reports suggesting that head and neck 

cancers (HNC) target delineation is both the most time-consuming anatomic site (taking 

physicians up to 2–3 hours) and subject to the largest variabilities.3–5 Several consensus 

delineation guidelines have emerged to reduce this variability6–8; yet significant variability 

persists, especially when delineating the head and neck lymph node levels and low-risk 

target volumes.

Automatic segmentation of HNC CTVs has been proposed as a solution for expediting the 

delineation process, promising improved efficiency and consistency in target delineations. 

Researchers have studied atlas-based autosegmentation, which takes advantage of 

deformable image registration to map well-defined delineations on 1 atlas to a new patient’s 

image for autosegmentation.9–14 A challenge with atlas-based autosegmentation is that 

it relies on the algorithm’s ability to accurately register different patients’ anatomies 

(a single atlas to a new patient), which can result in inaccuracies due to variable 

anatomy and low contrast of lymph node regions on computed tomography (CT) scans. 

To address these inaccuracies, authors proposed that multiatlas-based autosegmentation 

captures a wider range of anatomic variations resulting in an improvement in the resulting 

segmentations.11,12,15–18 Multiatlas-based autosegmentation typically uses 8 to 14 patients 

(atlases) with consensus or peer-reviewed manual contours. A limitation to the number of 

atlases is that each must be registered to the new patient, resulting in a computationally 

expensive process. In addition, whereas multiatlas-based autosegmentation provides more 

reference patient scans than single-atlas autosegmentation algorithms do, it only captures 

anatomic differences for a small sample of patients (atlases).

Deep learning-based autosegmentation algorithms have achieved impressive success in 

medical imaging segmentation tasks, with convolutional neural networks (CNNs) being the 
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most popular algorithms used in deep learning.19,20 Researchers have used these networks 

to autosegment many anatomic sites using computed tomography, magnetic resonance 

imaging, positron emission tomography, x-rays, and ultrasound images resulting in rapid 

development and quick translation to the field of radiation oncology. Several studies have 

focused on normal tissue21–36 and CTV37–40 autosegmentation for HNC radiation therapy. 

In previous deep learning-based CTV autosegmentation work, researchers developed 

algorithms to autodelineate targets based on their risk (high-risk37,38 or low-risk37,39,40 

CTVs) but lacked the ability to autodelineate individual lymph node levels. Therefore, in 

the present study, we developed a deep learning model to automatically segment targets 

based on lymph node level combinations commonly used in HNC radiation therapy. Our 

model’s architecture uses an ensemble of models and test-time augmentations to improve 

its generalizability for new patients. To the best of our knowledge, this is the first deep 

learning-based autosegmentation model for use with individual lymph node level target 

volumes for radiation treatment planning for HNCs. Unique to this work is that the resulting 

automatic segmentations can be implemented to administer radiation therapy for HNC at a 

large majority of subsites. Our hypothesis is that a vast majority of autosegmented lymph 

node target volumes can be used for radiation therapy treatment planning without user edits.

Methods and Materials

Patient data

Radiation therapy simulation CT scans and clinically approved contours for 71 patients with 

HNC previously treated at The University of Texas MD Anderson Cancer Center were used 

in this study under an institutional review board-approved protocol. Each patient had lymph 

node level Ia-V, Ib-V, and II-IV and retropharyngeal (RP) node level target volume contours 

(CTV_LN_II_IV, CTV_LN_Ia_V, CTV_LN_Ib_V, and CTV_LN_RP, respectively). These 

lymph node levels were previously contoured manually or autosegmented using an in-house 

multiatlas-based algorithm, visually inspected, and approved (as “clinically acceptable 

without requiring edits”) by a radiation oncologist specializing in HNC. This patient cohort 

included a variety of HNC disease scenarios, including different primary sites, lymph node 

statuses (negative vs positive), and lymph node locations (none vs ipsilateral vs bilateral).

Generation of ground-truth contours

In a previous study,17 a multiatlas-based autosegmentation tool was developed by our group 

using 2 separate atlases that independently autosegmented structures in the left and right 

lymph node levels. A radiation oncologist (B.M.B.) with more than 10 years of experience 

treating HNC manually delineated each individual lymph node level target volume on 

20 patients’ radiation therapy simulation CT scans. In this previous analysis, manually 

delineated target volumes consisted of a combination of lymph node levels, except for 

the retropharyngeal node target volumes, which were delineated according to our clinical 

practice. These atlases were then used to autosegment the target volumes for 115 HNC 

patients who subsequently presented to our institution for radiation therapy. The resulting 

autosegmentations were scored by the same radiation oncologist on a 5-point scale (5: 

perfect, indistinguishable from physician-drawn contours for dose-volume histogram-based 

planning; 4: within acceptable interphysician variation for planning purposes; 3: good, needs 
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minor edits to be used for planning purposes; 2: fair, needs significant edits to be used 

for planning purposes; and 1: poor, large areas need minor or major edits, is unusable for 

planning purposes). For the present study, 51 of the 115 cases with scores of 4 or 5 for all 

autosegmented target volumes were collected and combined with the 20 manually contoured 

cases scored by a radiation oncologist as clinically acceptable without requiring edits to 

generate a well-curated high-quality ground truth contour data set.

The 71 cases were randomly placed in 3 groups: training (51), cross-validation (10), and 

final test (10) sets. The training and cross-validation sets were used for training and optimal 

hyperparameter selection as well as identifying the most favorable postprocessing strategy. 

Postprocessing strategy was defined by using the trained model and predicting on cross-

validation set cases to determine postprocessing steps, including morphology operations 

such as erosion/dilation with varying filter sizes and dimensionality (ie, 2D vs 3D). The final 

test set was held until the best model parameters and strategies were identified.

Deep learning-based autosegmentation

Due to the limited number of well-curated training cases available for this study, a model 

was designed that could predict lymph node target volumes regardless of neck laterality, 

essentially doubling our training data. Our approach to autosegment HNC lymph node target 

volumes is described in detail in the following subsections.

Data preparation

Our model’s input generation is depicted in Figure 1. Similar to our previous work,39 the 

CT scan field of view was reduced in the craniocaudal direction by identifying (1) the 

most caudal extent of the fusion of the sphenoid bone and basilar part of the occipital bone 

as the CT scan’s field of view’s most cranial CT slice and (2) the most cranial extent of 

the sternum as the field of view’s most caudal CT slice. Normalizing the field of view 

across patients is performed automatically by training the Xception model in Keras using a 

TensorFlow backend to classify individual CT slices. This is described in more detail in our 

previous work.23

Once the craniocaudal field of view is identified, the body contour is defined automatically 

using previously developed in-house software.41 The body contour is then used to reduce 

the input volume by identifying a bounding box about the most cranial slice to extract the 

CT image’s input volumes for both the left and right lymph node regions. The resulting CT 

image volume of interest (VOI) and its corresponding target volume masks are resized using 

bilinear interpolation to a predefined volume size (64 × 128 × 64) for use as inputs in our 

deep learning model. Lastly, image intensities were transformed using our clinic’s head and 

neck CT window/level settings (−350, 350 Hounsfield Units) to have values from 0 to 1 (ie, 

−350 = 0 and 350 = 1) as was done in our previous work.39

Architecture and training parameters

A hyperparameter search was performed to identify the optimal parameters (eg, resolution 

steps, kernel size) on a modified 3D U-Net architecture.39 Our U-Net model uses a 

residual function (short-connections) similar to that described by Milletari et al42 and uses 
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batch normalization43 after each 3D convolutional layer. The same architecture is used to 

train 5 separate model weights (random initialization of weights) focused on identifying 

patterns to autosegment each individual target volume (CTV_LN_II_IV, CTV_LN_Ia_V, 

CTV_LN_Ib_V, and CTV_LN_RP) using the same input volume (preprocessed CT scan as 

previously described in the Data Preparation section). These models are used in an ensemble 

approach to further improve the confidence in the resulting segmentation.

The model was trained using the Adam optimizer with a learning rate of 0.001 and early 

stopping regularization to avoid overfitting of the models. Typical data augmentations (eg, 

translation, rotation) were used during training. Herein a new overlap loss is introduced that 

incorporates the Dice similarity coefficient (DSC) loss and false-negative Dice (FND) loss 

to penalize missed target volumes during training. The generalized “DSC + FND” loss is 

defined as

DSC + FND loss = 1
C ∑

c = 0

C 2∑i = 0
N pigi

∑i = 0
N pi2 + ∑i = 0

N gi2

+w 1
C − 1 ∑

c = 1

C 2∑i = 0
N pi′gi

∑i = 0
N pi2 + ∑i = 0

N gi2

in which the first term is the multiclass (C) DSC loss described by Milletari et al,42 and 

the second term is the multiclass FND component introduced herein. For the DSC loss, the 

sums run over N voxels of the predicted probabilities pi ∈ P  and the ground truth binary 

volume gi ∈ G for all classes, whereas for the FND loss, the numerator calculates the sums 

over N voxels between the complement (P ′ = 1 − P) of the predicted probabilities pi′ ∈ P ′
and the ground truth binary volume gi ∈ G are only calculated for nonbackground classes 

(here, background is defined by C = 0). The rationale for introducing this loss function is 

that the DSC loss leads to systematic underestimation of the predicted volumes compared 

with the cross-validation ground-truth volumes.

Postprocessing and ensemble approach

When generating a prediction on a new patient, an ensemble approach and test-time 

augmentations are used to further improve the resulting segmentations. Our ensemble 

approach uses the 5 trained model weights for each region of interest and applies random 

shifts (total, 13) about the center of the input image to generate 13 probability maps 

for each trained model. These shifts ranged from ±3, ±10, and ±5 for the z-, y-, and 

x-directions, respectively. The probability maps for all models and their corresponding test-

time augmentations (total, 65) are then shifted back to the original input space and averaged 

on a per-voxel basis. The resulting averaged probability map for the target volume is then 

converted into a binary mask by thresholding individual voxels’ probabilities to have a value 

greater than or equal to 0.5. The resulting binary mask then goes through a postprocessing 

step to ensure the removal of holes and/or keep the largest autosegmented volume.
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Quantitative and qualitative evaluation

During our quantitative evaluation of our model’s autosegmentations, the ground-truth 

contours are compared with the autosegmented target volumes using overlap and distance 

metrics, as overlap metrics alone can be less sensitive to larger volumes. These metrics 

include the DSC, FND, false-positive Dice, volumetric similarity (VS), mean surface 

distance (MSD), and Hausdorff distance (HD), which are defined in Equations 2 to 7:

DSC = 2 ∗ TP
2 ∗ TP + FN + FP (2)

FND = 2 ∗ FN
2 ∗ TP + FN + FP (3)

FPD = 2 ∗ FP
2 ∗ TP + FN + FP (4)

V S = 2 ∗ (FN − FP )
2TP + FP + FN (5)

MSD = 1
2 dAuto, Trutℎ + dTrutℎ, Auto (6)

HD = max dDNN, G ∪ dG, DNN (7)

in which TP, FN, and FP are the numbers of true-positive, false-negative, and false-positive 

voxels, respectively; Auto and Truth represent the autosegmentation and ground-truth 

contours, respectively, and da,b is a vector with all the minimum Euclidean distances from 

each surface point in volume “a” to volume “b.” The FND and FPD are good metrics 

that help quantify potential near misses and overtreatment, respectively. Because the target 

volumes used to train the model were generated as a combination of lymph node levels, our 

quantitative analysis focuses on the target volume as a whole and not explicitly on individual 

lymph node levels.

To confirm our quantitative analysis results, we conducted a multi-institutional qualitative 

review of the proposed model’s autosegmentations using a separate set of HNC patient 

scans (32 new cases) from the 71 cases used to train, cross-validate, and test our models. In 

this analysis, 3 radiation oncologists (BMB, ASG, and HDS, ordered alphabetically) each 

with more than 10 years of experience treating HNC visually inspected each target volume 

on a slice-by-slice basis for each patient. Each individual target volume was scored using 

a 3-point scale (clinically acceptable without requiring edits, requiring minor edits, and 

requiring major edits). Acceptable autosegmentations are those that do not require any edits 

and can be used “as is.” Autosegmentations requiring minor edits are contours that can be 

manually edited and corrected quicker than 2 minutes and/or are acceptable for clinical use 
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if a CTV-to-planning target volume margin of 5 mm is used suggesting that the edits are 

stylistic in nature. Autosegmentations requiring major edits are those that are not acceptable 

for clinical use and are believed to clinically affect the likelihood of cure, adverse events, or 

locoregional control.

Results

Quantitative evaluation

Quantitative results for our ensemble model segmentations are shown in Figure 2 and are 

summarized in Table 1. The mean (± standard deviation [SD]) DSC values between the 

final segmentations and the ground truth were 0.843 ± 0.030, 0.907 ± 0.013, 0.909 ± 0.013, 

and 0.897 ± 0.014 for CTV_LN_RP, CTV_LN_II_IV, CTV_LN_Ib_V, and CTV_LN_Ia_V, 

respectively. The mean FND/FPD values for these 4 volumes were 0.234/0.099, 0.063/0.123, 

0.062/0.120, and 0.053/0.154, respectively. The mean VS values were 0.135, −0.060, 

−0.057, and −0.101, respectively. The mean (±SD) MSD and HD values were 1.0 ± 0.2 

mm and 5.5 ± 1.3 mm, 1.1 ± 0.2 mm and 8.4 ± 3.7 mm, 1.1 ± 0.2 mm and 8.1 ± 3.1 mm, 

and 1.3 ± 0.2 mm and 8.6 ± 3.1 mm, respectively. When comparing the ensemble model 

results with each individual model’s segmentations (ensemble - others), we noticed a mean 

(± SD) improvement of 0.01 ± 0.01 for the DSC. We observed similar slight improvements 

as demonstrated by mean (± SD) reductions in the MSD and HD across all volumes of −0.1 

± 0.2 mm and −0.7 ± 2.8 mm, respectively. A visual comparison of the ground-truth and 

autosegmented target volumes is shown in Figure 3.

The model generated all regions of interest with a mean (± SD) time of 6.0 ± 0.6 

minutes using an NVIDIA RTX 2080 graphics processing unit and 32 cores. This time 

was significantly reduced when a user decided to only include both RP nodes and unique 

target combinations for both neck sides (mean [± SD] time of 3.2 ± 0.4 minutes when 

autosegmenting both RP nodes and targets for levels Ia-V and Ib-V for the right and left 

neck lymph nodes, respectively).

Qualitative evaluation

Physician slice-by-slice review and scoring of the autosegmentations are listed in Table 

2. The 3 physicians reviewed 256 target volumes each (8 target volumes for each of 

the 32 cases). Seven (22%) of these patients previously underwent neck surgery, which 

included unilateral or bilateral dissection. Of the 768 target volumes reviewed, 438 (57%) 

were scored as acceptable as is, 323 (42%) were scored as requiring minor edits (ie, 

stylistic recommendations, <2 minutes), and 7 (1%) required major edits. When considering 

individual reviewer scores, reviewer 1 scored 96%, 4%, and 0% of autodelineated target 

volumes as acceptable, minor, and major, respectively, reviewer 2 scored 63%, 38%, and 0% 

of autodelineated target volumes as acceptable, minor, and major, respectively, and reviewer 

3 scored 12%, 85%, and 3% of autodelineated target volumes as acceptable, minor, and 

major, respectively.
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Discussion

In this study, we developed an ensemble model to automatically delineate nodal CTVs 

for patients with HNC undergoing radiation treatment planning using a novel deep 

learning-based approach. The metrics (DSC and HD) and clinical acceptability (based 

on clinician review of the lymph node target volume autosegmentations) demonstrated 

excellent performance and are promising for clinical usability, with greater than 99% of the 

autosegmentations scored as acceptable or requiring only stylistic edits. The resulting model 

can autosegment multiple CTV level options, allowing radiation oncologists to choose 

patient-specific target volumes based on lymph node level involvement and clinical history 

(Fig. 4).

Manual delineation of CTVs for HNC radiation therapy remains a challenging and time-

consuming task for radiation oncologists. Researchers have proposed several atlas-based 

methods for head and neck lymph node autosegmentation.9,10,13,16,17,44 Teguh et al44 

developed a multiatlas-based approach that resulted in a mean DSC of 0.67 for lymph node 

levels. Similarly, Yang et al17 reported a median DSC value of 0.778 using a multiatlas-

based approach that used the Simultaneous Truth and Performance Level Estimation 

algorithm. More recently, investigators have developed deep learning models to autosegment 

lymph node CTVs.37,40,45 Also, Men et al37 developed an end-to-end deep 2-dimensional 

deconvolutional neural network trained with 184 nasopharyngeal cancer patients who 

resulted in a mean DSC value of 0.826 for the low-risk CTV. Our group39 reported similar 

results (mean DSC value, 0.816 for 75 test cases) using a 3-dimensional fully convolutional 

neural network trained with 210 oropharyngeal cancer patients. More recently, Wong et al40 

reported a mean DSC value of 0.72 for neck CTVs using a commercial system (Limbus 

Contour) with a U-Net—based model. Our approach is different from previous work in that 

we developed a model that can provide a variety of target volumes for the same patient (ie, 

the radiation oncologist can choose lymph node level coverage). This makes comparison 

of our results with those of previously published studies of lymph node target volume 

autosegmentation difficult to interpret. Furthermore, the greatest benefit of our ensemble 

approach was a systematic reduction of the number of slices (mode of 1 slice vs 2 slices 

from the ground truth) in the caudal edges of the target volumes. We expect the caudal 

extent to exhibit the largest variability in our input data, so it is natural to expect for 

individual models to be more sensitive to larger deviations in these regions. Using this 

ensemble approach, our model can define this caudal edge with more confidence than single 

model autosegmentations, which leads to better generalization compared with ground truth 

contours.

Although our autosegmentations and ground-truth volumes agreed well in most cases, we 

noticed that the deep learning model failed to produce acceptable target volumes for the 

patients who had prior neck surgery. Figure 5 shows CT images from 3 patients who 

underwent neck dissection. In these cases, physician review suggested minor or major 

edits at lymph node level II/III where the right neck contours failed to provide appropriate 

coverage posteriorly in all 3 cases (only CTV_LN_Ib_V autosegmentation is shown in 

the figure, but we observed similar results for CTV_LN_Ia_V and CTV_LN_II_IV). After 

noticing consistent undercontouring in these regions during qualitative analysis, we reviewed 
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the cases used to train our models and found that none presented with large resections 

as observed in these 3 cases. Clearly, when a patient underwent neck dissection, the 

deep learning-based algorithm lacks the prior knowledge to confidently produce acceptable 

delineations. Whether similar anatomic scenarios (ie, prior parotidectomy, glossectomy, oral 

cavity resection) can have similar effects on the model’s ability to produce reliable target 

volumes remains unknown, and further testing may be warranted to identify additional 

failure modes in autosegmentations. Inclusion of outlier cases, such as those with prior 

surgeries, during training of the model could help overcome deficiencies in these scenarios, 

but this remains to be evaluated.

Qualitative evaluation showed that 99% of autosegmented target volumes were within 

acceptable ranges by board-certified head and neck cancer radiation oncologists with either 

no edits or only stylistic edits. Overall, this demonstrates the use (and safety) of these 

autosegmented volumes; fundamentally, 99% of them could be used without risk by the 

treating physicians. However, it also points out, again, that individual physicians have their 

own contouring styles. Overall, reviewer 1 scored the autosegmentations more favorably 

than reviewers 2 and 3. Because reviewer 1 generated the manual contours used to train 

the autosegmentation model, it is not surprising that the autosegmentations were more 

consistent with reviewer 1’s delineation style. Reviewers 2 and 3 scored the large majority 

of volumes as “minor edits;” these were described as safe, acceptable in a typical peer 

review QA of target volumes, and stylistic in nature. When asked for detailed feedback, 

reviewers 2 and 3 considered the autodelineated target volumes to be slightly generous 

toward the posterior digastric muscle, scalene muscle, sternocleidomastoid muscle, and/or, 

occasionally, adjacent parotid. The retropharyngeal node target volumes were scored as 

having the most “acceptable” scores (72%) among the 3 reviewers; examples of “minor 

edits” from reviewers 2 and 3 included deleting contours on the most caudal slice or 

edits to the posterior border (<3 mm in size) of the volumes for some slices. Only 1 

reviewer provided recommendations for “major” edits to some of the autosegmented target 

volumes of 3 cases. Two of these patients had previously received neck dissections (both 

shown in Fig. 5). For these cases, each individual reviewer provided different scores for the 

target volumes (ie, these received scores of “acceptable,” “minor,” and “major”). The third 

case’s contours that received “major edits” scores were scored as “acceptable” by the other 

reviewers. This qualitative evaluation does highlight the stylistic preferences of different 

treating physicians, which will be a significant challenge for any automated system.

Automating the delineation of target volumes in HNC radiation therapy has several potential 

benefits. First, if automatically generated target volume delineations are consistent and 

accurate, it could lead to the standardization of target volume delineations, which are 

among the largest sources of uncertainty in radiation treatment planning. Second, consistent, 

systematic target volume delineations using automated models could lead to increased 

quality of clinical data. Authors have reported that noncompliant target volume delineations 

in clinical trials can significantly affect patient outcomes and the quality of clinical trial data. 

Third, if an autosegmentation model is clinically implemented and validated by positive 

patient outcomes, it could be scaled to provide low-resource clinics around the world 

with high-quality delineations. Several ongoing efforts are increasing access to high-quality 

radiation therapy in low- and middle-income countries through automation. For example, the 
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Radiation Planning Assistant (RPA, https://rpa.mdanderson.org) is being developed at The 

University of Texas MD Anderson Cancer Center to fully automate the radiation treatment 

planning process with no or minimal user interventions.45–48 For such a system to be 

effective in reducing the workload at busy clinics with limited resources, including radiation 

oncologists, high-quality automatic contouring is essential.23 The present study showed that 

deep learning can achieve this, and we are integrating these tools to autosegment normal 

tissue and target volumes into the RAP system. Specifically, the RPA workflow is currently 

designed so that the radiation oncologist first identifies which lymph node levels should 

be contoured. After they are automatically contoured, the radiation oncologist contours 

the gross tumor volumes and reviews and, if necessary, edits the nodal level contours. 

The RPA then automatically generates a volume-modulated arc therapy plan. This is only 

reasonable with access to a very robust automated contouring solution such as that described 

herein. The target volume delineation model in the present work could be integrated into 

such systems to reliably and consistently generate high-quality lymph node clinical target 

volumes for HNC radiation therapy in the vast majority of cases.

Our study had a few limitations. First, a single radiation oncologist manually contoured 

the target volume delineations used to train our model. This individual is subspecialized in 

HNCs, with more than 10 years of clinical experience; however, practice pattern variations 

in target volume delineation may not be appreciated. Second, all cases evaluated (both 

quantitatively and qualitatively) were HNC patients previously given treatment at a single 

institution. Thus, our patients may not sufficiently represent the large variability in anatomic 

presentations for HNC observed across different populations. Another limitation is that the 

model was trained to autosegment target volumes that were a combination of lymph node 

levels (typically treated in head and neck cancers) and did not allow for individual lymph 

node level autosegmentation.

Conclusion

We developed a fully automated artificial intelligence approach to autodelineating nodal 

CTVs for patients with intact HNC. The vast majority of autosegmentations were clinically 

acceptable after qualitative review when considering recommended stylistic edits. This work 

is promising in that it automatically delineates high-quality CTVs in a robust and reliable 

manner. This approach can be implemented in ongoing efforts for fully automated radiation 

treatment planning for HNC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Computed tomography scans of patients with head and neck cancer are normalized in 

the craniocaudal extent by automatically cropping out slices below and above predefined 

anatomic markers. (B) Identification of the left and right neck lymph node regions using 

computer vision techniques. Here the training data were doubled by performing a horizontal 

flip of the resulting input data. (C) Our deep learning model is trained using the unilateral 

input data to automatically segment individual lymph node target volumes.
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Fig. 2. 
Box plot of the distributions of overlap and distance metrics in a comparison of the ground-

truth and autosegmented volumes for each neck lymph node target volume. The boxplots are 

representative of individual metric’s interquartile range, whereas the whiskers denote values 

within 1.5 interquartile range, and the outliers (circles) are values that are found outside of 

this range. Abbreviations: DSC = dice similarity coefficient; FND = false negative dice; FPD 

= false positive dice; HD = hausdorff distance; MSD = mean Surface distance; VS = volume 

similarity.
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Fig. 3. 
Visual comparison of the ground-truth and auto-segmented neck lymph node (LN) target 

volumes.
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Fig. 4. 
Example results from a randomly selected case from our test set. Twenty axial slices from a 

computed tomography scan of a 57-year-old male patient with base of tongue cancer show 

the auto-segmented lymph node target volumes. The axial slices are evenly sampled and 

distributed from the cranial extent of the retropharyngeal lymph nodes to the caudal extent 

of the level IV lymph node.
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Fig. 5. 
Computed tomography images of 3 patients with auto-segmentations requiring minor edits. 

All 3 patients (1 per row) had their neck dissection before radiation therapy. In these cases, 

the auto-segmented volumes were undercontoured between lymph node levels II and III as 

shown in columns 2 and 3. Whereas target volumes for neck lymph node levels Ib-V are 

shown in this figure, auto-segmentations for levels II-IV and Ia-V were subject to similar 

undercontouring in these regions. RP node target volumes were unaffected in this clinical 

presentation.
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Table 2

Qualitative scores for 32 cases separated by postoperative status

Nonpostoperative (n = 25) Postoperative (n = 7)

Scores Scores

1 2 3 1 2 3

Reviewer 1

 Ia-V right 25 0 0 4 3 0

 Ia-V left 25 0 0 7 0 0

 Ib-V right 25 0 0 4 3 0

 Ib-V left 25 0 0 7 0 0

 II-IV right 25 0 0 4 3 0

 II-IV left 25 0 0 7 0 0

 RP right 25 0 0 7 0 0

 RP left 25 0 0 7 0 0

Reviewer 2

 Ia-V right 14 11 0 4 3 0

 Ia-V left 14 11 0 4 3 0

 Ib-V right 14 11 0 4 3 0

 Ib-V left 14 11 0 4 3 0

 II-IV right 14 11 0 4 3 0

 II-IV left 14 11 0 4 3 0

 RP right 21 4 0 5 2 0

 RP left 21 4 0 5 2 0

Reviewer 3

 Ia-V right 0 25 0 0 5 2

 Ia-V left 0 24 1 0 7 0

 Ib-V right 0 25 0 0 5 2

 Ib-V left 1 23 1 0 7 0

 II-IV right 2 23 0 0 6 1

 II-IV left 4 21 0 1 6 0

 RP right 9 16 0 1 6 0

 RP left 11 14 0 2 5 0

Individual cases were reviewed on a slice-by-slice basis by 3 radiation oncologists each having more than 10 years of HNC experience.

Auto-segmentation scores: 1 = clinically acceptable without requiring edits; 2 = requiring minor edits (ie, stylistic recommendations, <2 minutes); 3 
= requiring major edits.

Abbreviation: HNC = head and neck cancer.

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2022 September 14.


	Abstract
	Introduction
	Methods and Materials
	Patient data
	Generation of ground-truth contours
	Deep learning-based autosegmentation
	Data preparation
	Architecture and training parameters
	Postprocessing and ensemble approach
	Quantitative and qualitative evaluation

	Results
	Quantitative evaluation
	Qualitative evaluation

	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1
	Table 2

