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Abstract

Drugs with similar side-effect profiles may share similar therapeutic properties through related mechanisms of action. In this
study, a drug-drug network was constructed based on the similarities between their clinical side effects. The indications of a
drug may be inferred by the enriched FDA-approved functions of its neighbouring drugs in the network. We systematically
screened new indications for 1234 drugs with more than 2 network neighbours, 36.87% of the drugs achieved a
performance score of Normalized Discounted Cumulative Gain in the top 5 positions (NDCG@5)$0.7, which means most of
the known FDA-approved indications were well predicted at the top 5 positions. In particular, drugs for diabetes, obesity,
laxatives and antimycobacterials had extremely high performance with more than 80% of them achieving NDCG@5$0.7.
Additionally, by manually checking the predicted 1858 drug-indication pairs with Expression Analysis Systematic Explorer
(EASE) score#1025 (EASE score is a rigorously modified Fisher exact test p value), we found that 80.73% of such pairs could
be verified by preclinical/clinical studies or scientific literature. Furthermore, our method could be extended to predict drugs
not covered in the network. We took 98 external drugs not covered in the network as the test sample set. Based on our
similarity criteria using side effects, we identified 41 drugs with significant similarities to other drugs in the network. Among
them, 36.59% of the drugs achieved NDCG@5$0.7. In all of the 106 drug-indication pairs with an EASE score#0.05, 50.94%
of them are supported by FDA approval or preclinical/clinical studies. In summary, our method which is based on the
indications enriched by network neighbors may provide new clues for drug repositioning using side effects.
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Introduction

The inefficiency of pharmaceutical drug development with high

expenditure but low productivity has been widely discussed

[1,2,3,4]. Drug repositioning is considered to be a promising

strategy to revitalize the slowing drug discovery pipeline due to

shorter development timelines and lower risk of unexpected

toxicity [5,6,7]. Traditionally, most of the successful examples

mainly relied on serendipity or ‘happy accidents’ (eg, Viagra,

Dapoxetine, Duloxetine) [6,8], which made repositioning very

unpredictable. In 2006, Lamb et al [9] proposed the connectivity

map based on the gene expression profiles of drugs for

repositioning, which is the first computational method in this

field. Then a group of investigators utilized structural features of

compounds/proteins to predict new targets of drugs, such as

molecular docking [10,11], QSAR modelling [12]. In addition, the

association between diseases/drugs in genetic activity was

suggested to facilitate repositioning, such as genome-wide associ-

ation [13], pathway profiles [14,15], and transcriptional responses

[16]. Furthermore, several integrative methods which combined

chemical or genetic features were proposed to predict the drug

targets or indications, for example, PREDICT [17], TMFS [11].

Obviously, most of these methods focus on the molecular

mechanism of action (MOA) from a genotypic perspective.

Nevertheless, the pre-clinical outcomes based on MOA often do

not correlate well with therapeutic efficacy in drug development. It

is estimated that of all the compounds effective in cell assays, only

30% of them could work in animals. Even worse, only 5% of them

could work in humans [18].

The gap between MOA and the physiological responses of

drugs may limit the usefulness of the methods mentioned above.

Side effects are generated when the drugs bind to off-targets,

which perturb unexpected metabolic or signaling pathways [19].

Therefore, side effects from clinical patients may be seen as

valuable read-outs of drug effects on human bodies, which may

also serve as a promising perspective for drug repositioning. Up to

now, only a few of the repositioning efforts focus on physiological

responses. Most of them are developed using the side effect data in

SIDER [20], which was constructed by the Bork’ group in 2010.

The latest version of SIDER contains 996 drugs and 4192 side

effects. Lun proposed DRoSEf [21],where the basic hypothesis is

that if the side effects associated with a drug are also induced by

many drugs treating a disease, then this drug should be evaluated

as a candidate to treat that disease. Initially, they constructed side

effect profiles of diseases based on drug-indication data and drug-

side effect data. The QSAR models were trained to build

associations between structures and side effects. Then indications

of the drug could be predicted by combining the side effect profiles

of diseases with structure and side effect associations. Lun’s work

pioneered an approach to drug repositioning using side effects and

achieved good performance. Up to now, side effects are still the
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best data available to reflect disease characteristics even if they are

not equivalent to pathological symptoms of diseases (for example,

side effects may be generated by off-targets, which are not the

accompanying disorders of the disease). In addition, the limited

quantities of drugs in SIDER may impact the QSAR training

processes in DRoSEF, which has only worked well in 145 diseases.

With expanded coverage of the drugs, DRoSEF could achieve

more promising performance.

In this study, we intend to propose a network based method for

drug repositioning by exploring the entire existing catalog of side

effect data. Instead of directly building the relationship between

side effects and diseases, we would like to construct drug-drug

relationships through side effect similarities. Our basic hypothesis

is that drugs with similar side-effect profiles may also share similar

therapeutic properties [22]. A drug network could be constructed

based on the similarities of side effects. In this way, the indications

of a drug may be predicted by the functional distribution of its

neighbouring drugs. Since we have already investigated chemical

structures [23] and pathway profiles [14,15] for drug reposition-

ing, side effect based repositioning could enhance our computa-

tional repositioning platform and provide complementary evi-

dence.

Materials and Methods

Drug side effects
In this study, side effects were extracted from Meyler’s Side Effects

of Drugs 15th edition [24]. Additional drug sides effects, especially for

the drugs launched after 2006, were collected from Side Effects of

Drugs Annuals (2007–2012) [25] and the FDA drug approval

package (see Table 1). Specifically, each electronic book was

converted from PDF to text format by Acrobat professional v10.1.

Then, a Java program was implemented to parse the drug

information and side effects. Considering the side effects in Meyler’s

Side Effects of Drugs 15th edition and Side Effects of Drugs Annuals (2007–

2012) were organised using MedDRA vocabularies version 15.1,

the preferred items (PT level) in MedDRA were utilized as the

standard side effect vocabulary. The side effect data from other

resources were mapped to MedDRA preferred items, avoiding the

semantic redundancy. For example ‘‘respiratory diseases’’ and

‘‘respiration diseases’’ were identified as two different side effects in

the raw data, and both of them were mapped to the same preferred

item ‘‘respiratory disease’’ in MedDRA.

External test samples
As described in Table 1, SIDER is a frequently cited resource

for drug side effects. Herein, 98 drugs in SIDER version 2 which

were not covered by the drug network were used as external test

samples (see the 98 drugs in Table S1). Also, the side effects in

SIDER were mapped to preferred items in MedDRA version 15.1.

Drug indication
FDA-approved indications were obtained from Citeline Pipeline,

Thomson Reuters Partnering and GeneGo (see details in Table 2). Next,

each indication was modified to a MeSH heading. Finally, we

obtained 2183 drugs with 6495 clinical side effects and 994 4th

level MeSH items.

Drug network construction with side effects (see Figure 1)
Step 1: Build the side effect fingerprint. Herein, each side

effect was treated as a feature vector. If a drug displays side effect i,

then it would be tagged ‘‘1’’ in the element i, otherwise, it would

be marked ‘‘0’’. After that a 0-1 binary vector was defined as the

side effect fingerprint for the drug. For the 2183 drugs with

recorded clinical side effect data, each would be assigned a 6495-

dimension vector.

Step 2: Calculate the similarity between drugs. The

Jaccard index was used to evaluate the similarities of side effect

fingerprints. In a given drug pair (labelled A and B), the Jaccard

index for the binary vectors could be calculated as the formula I.

J drugA,drugBð Þ~ c

azb{c
ðIÞ

In this formula, a, b represent the number of side effects for

drugs A and B, respectively. c represents the number of side effects

shared by drug A and B.

Step 3: Evaluate the side effect similarities between

drugs. The difference in the quantity of side effects associated

with drugs may lead to similarity bias. It’s necessary to evaluate

whether the similarities between two drugs are randomly

generated. As shown in Figure 1, the random side effect

fingerprint sets of drug A were generated by randomly selecting

the same number of side effects from the side effects pool 10000

times. For each random side effect fingerprint of drug A, the

J(random A, drug B) similarity was calculated according to formula I.

Then, the random Jaccard index set S(drug A, drug B) = {J(random A

1,drug B), J(random A 2,drug B),… J(random A 10000, drug B) between

drug A and drug B was obtained. The Z score calculated by formula

II was used to test whether the similarities between drug A and

drug B were significantly larger than the random distribution. (Z

score$2.576 was set as the threshold)

Table 1. Drug side effects resources.

Source Description

Meyler’s Side Effects of Drugs (15th edition) The International Encyclopaedia of Adverse Drug Reactions, a publication for a history spanning more than 60
years. It has been published every four years since 1980. It is the most comprehensive and authoritative resource
of drug side effects, which contains.3,400 drugs and.12,600 side effects.

Side Effects of Drugs Annuals(2007–2012) The Side Effects of Drugs Annual was first published in 1977. It has been continually published since then as a
yearly update to the encyclopaedia Meyler’s Side Effects of Drugs.

Drugs@FDA Database Drugs@FDA includes most of the drug products approved by the FDA since 1939. Most patient information,
labels, approval letters, reviews, approval packages and other information for drug products approved since 1998
are available.

SIDER Contains information on 996 marketed drugs and corresponding 4192 recorded adverse drug reactions. The
information is extracted from public documents and package inserts.

doi:10.1371/journal.pone.0087864.t001
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Zscore~
J drugA,drugBð Þ{mean S drugA,drugBð Þð Þ

std S drugA,drugBð Þð Þ ðIIÞ

Step 4: Cutoff optimization. Cutoff optimization is an

important process which could directly influence the specificity of

the drug network. In this network, drugs sharing similar side effects

were expected to be clustered together. Two criteria were

considered when optimizing the threshold. First, the selected

drug-drug pairs should cover as many drugs as possible. Second,

the percentage of drug-drug pairs that share the same indication

should be as high as possible. Usually, the two instances are

contradictory to each other. When the cutoff is set at Jaccard

index = 0, all of the drugs would be covered. A non-sense drug-

drug network would be built with lots of totally unrelated drug-

drug pairs. On the other hand, if the cutoff is set at Jaccard

index = 1, then only a few drug-drug pairs would be selected.

MeSH hierarchy and drug indication prediction
MeSH contains plentiful hierarchically arranged disease infor-

mation, which makes it convenient to investigate drug indications.

In this study, the potential indications of a drug could be predicted

according to the MeSH hierarchy distribution of its neighbours

(the 4th level of MeSH hierarchy item could well represent an

indication).

EASE score [26] is offered as a conservative adjustment to the

Fisher exact probability, which was defined in DAVID [27] to

evaluate gene-enrichment in pathways. The smaller the EASE

Score, the higher the enrichment of genes in the pathways (see

details in http://david.abcc.ncifcrf.gov/content.jsp?file = functional_

annotation.html#fisher).

Herein, we used the EASE score to evaluate drug indication

enrichment in the network. Taking drug A and indication i as an

example, we built a 262 contingency table (See Table 3). Sorting

the EASE score in descending order, we could generate the rank

positions of indications for drug A.

Herein, the network represents the connected component which

contains drug A. The connected component is defined as a sub-

network in which any two drugs are connected to each other by

paths.

Performance evaluation
Normalized discounted cumulative gain (NDCG)[28] was

originally used to evaluate web search engine algorithms in the

field of information retrieval. It can measure the usefulness of a

document based on its position in the result list.

Here we used NDCG to measure the effectiveness of ranking

performance for each drug’s predicted results (see formula III).

NDCG@p~Z
Xp

i~1

2reli {1

log2 (iz1)
ðIIIÞ

Z is the normalization constant.

i is the rank position of indication m.

reli is the relevance value of indication m. If indication m is the FDA

approved indication of drug A, reli is set to 1, otherwise, reli is set to 0.

p is the maximum position.

For example if the FDA approved indications of drug A are

ranked at 2, 3 & 8, respectively, while the ideal rank position of

drug A’s FDA-approved indications should be 1, 2& 3,then:

Z~
1P3

i~1
1

log2 (iz1)

~0:4693

In the top 5 results,

NDCG@5~Z
1

log2 2z1ð Þz
1

log2 3z1ð Þ

� �
~0:5307

Results

Cutoff selection criteria and drug-drug network
construction

As mentioned in Methods, we investigated variation trends in

the percentage of covered drugs and co-indicated drug-drug pairs

according to different Jaccard indexes. As shown in Figure 2, the

percentage of co-indicated drug-drug pairs is positively correlated

with the Jaccard index at four MeSH hierarchy levels. This

evidence also suits our hypothesis that drugs with similar side

effects would display similar functions. From Figure 2, it is

obvious that the percentage of co-indicated pairs dramatically

increases from 26.27% to 62.35% in the inflection area at the

Jaccard index [0.2, 0.35] at the fourth level of MeSH hierarchy.

Herein, Jaccard index = 0.275 was defined as the cutoff threshold.

Then a drug-drug network based on side effect similarities was

constructed, which contains 17400 drug-drug pairs, covering 1647

drugs. 1234 drugs with no less than 2 neighbors were used as our

test samples. These drugs can be mapped to 81 ATC therapeutic

categories including 5337 FDA approved drug-indication pairs,

covering 584 indications. On average, 36.87% of the drugs

achieved NDCG@5$0.7, which means the known FDA-

approved indications were well predicted. For details, the top 10

categories with NDCG@5$0.7 were listed in Table 4 (see full list

Table 2. Drug indication resources.

Source Description

Pipeline Developed by Citeline. Reputed to have collected information on drugs developed for any disease anywhere in
the world since 1980, including their approval dates, companies and related clinical trials.

Thomson Reuters Partnering The database was formally called IDdb and acquired by Thomson Reuters. The drug pipeline information is
integrated from a variety of sources, such as company websites, and over 200 global conferences.

GeneGO GeneGO is a comprehensive biological database, covering a wide range of data, including pathways, drug
information, biomarkers etc. Each drug indication is mapped to a MeSH item.

doi:10.1371/journal.pone.0087864.t002
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in Table S2). The drugs for diabetes, obesity, laxatives and

antimycobacterials were best predicted with more than 80% of

them achieving NDCG@5$0.7. The drugs for cardiovascular

disease (diuretics and agents acting on the renin-angiotensin

system) were also well predicted with more than 70% of them

achieving NDCG@5$0.7

Besides that, we also investigated the prediction performance in

a different indication range (number of drugs approved for the

indication) (see Table 5). Totally, 32.77% FDA approved drug-

indication pairs could be predicted in the top 5 results, covering

202 (34.59%) indications. It seems that the indications with more

drug approvals are likely to be predicted in the top 5 results. Good

Figure 1. Construction of drug network using side effects.
doi:10.1371/journal.pone.0087864.g001

Table 3. The 262 contingency table of drug A and indication i.

Drug A’s neighbours
The background
network

Indication i n -1 r

Other indications N-n d-r

n: The number of drug A’s neighbors which are approved for indication i (n$2);
N: The number of drug A’s neighbors;
r: the number of drugs in the network which are approved for indication i;
d: The number of drugs in the network.
doi:10.1371/journal.pone.0087864.t003

Figure 2. The trends of covered drugs and drug-drug pairs that share the same terms in the MeSH hierarchy.
doi:10.1371/journal.pone.0087864.g002

Table 4. Top 10 ATC therapeutic categories with NDCG@5$0.7.

ATC code Therapeutic category NO. drugs
Percentage of drugs with
NDCG@5$0.7

A10 Drugs used in diabetes 33 84.85%

A08 Antiobesity preparations, excluding
diet products

12 83.33%

A06 Laxatives 6 83.33%

J04 Antimycobacterials 6 83.33%

G02 Other gynecologicals 11 72.73%

C09 Agents acting on the
renin-angiotensin system

43 72.09%

J05 Antivirals for systemic use 37 70.27%

C03 Diuretics 38 68.42%

B05 Blood substitutes and perfusion solutions 3 66.67%

R07 Other respiratory system products 3 66.67%

doi:10.1371/journal.pone.0087864.t004
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performance was generated in the indications with 30,40 and

46,55 approved drugs. The top 5 drug indication pairs in these

groups achieved 40.69% and 61.33% of the corresponding FDA

approved drug indication pairs respectively. In addition, for

indications with 15 or more FDA drug approvals, more than

62.75% of them were ranked with at least one drug-indication pair

at the top 5 positions.

Herein, only the FDA approved drug-indication pairs are

considered a positive set. The prediction performance may be

underestimated due to the fact that drug-indications have not yet

been approved though they may well be capable of treating

disease. For example, the drug-indications being tested in the

clinical studies through phase I, II and III, were also classified as

false positive. We manually checked the 1858 drug-indication pairs

with an EASE score#1025 (see details in Table S3). We found that

80.73% of them could be verified by preclinical/clinical studies or

scientific literature (see Table 6). We further investigated three

drugs to understand their predicted results.

Dynastat
Dynastat (also called Parecoxib) is a COX-2 selective inhibitor

developed by Pfizer. It was initially approved for pain manage-

ment by the European Union in 2002. Dynastat relieves pain

through modulating prostaglandins levels. It exerts the effect by

inhibiting COX-2, which is responsible for converting arachidonic

acid to prostaglandin G2 and prostaglandin H2. Prostaglandins

also play an important role in the pathogenesis of rheumatoid

arthritis (RA) [29]. Prostaglandins were found at elevated levels in

rheumatoid synovial fluid, and the bone-resorption activity

produced by rheumatoid synovial tissues was shown to be mediated

in part by prostaglandin E2 [30], which is one of the downstream

products of prostaglandin H2 in the arachidonic acid metabolism

pathway. In our predicted results, the neighbours of Dynastat are

significantly enriched in pain relief (EASE score = 1.76610214) and

rheumatoid arthritis (EASE score = 1.03610221) management. As

shown in Figure 3, Dynastat displays a similar side effect profile to

33 RA drugs in addition to the pain drugs. Up to now, a group of

COX-2 inhibitors were verified as promising drugs in the treatment

of RA. For example, Celecoxib, Rofecoxib and Valdecoxib have

already been approved in RA treatment. Considering that

Parecoxib is a water-soluble prodrug that can be rapidly hydrolyzed

into Valdecoxib [31], it may also be effective in the treatment of RA.

Tasmar
Tolcapone (brand name Tasmar) developed by Roche, was

approved as an effective adjunctive treatment with Levodopa for

Parkinson’s disease in 1997 [32]. As a catechol-o-methyltransfer-

ase (COMT) inhibitor, Tasmar could improve the pharmacoki-

netic profile of Levodopa in two ways. First, it could directly

inhibit the metabolic path from Levodopa to 3-O-methyldopa,

which may finally increase the Levodopa half-life. Second, it may

facilitate the transport of Levodopa to the brain by reducing 3-O-

methyldopa, which may compete with Levodopa in brain barrier

penetration [33]. The mechanism of actions also may explain why

Tolcapone shares similar side effects with only 4 drugs for

Parkinson therapy (EASE score = 0.39). We found that the

indication of Tolcapone’s neighbours was significantly enriched

in anti-depression functions (15 drugs were approved for

depression treatment, EASE score = 5.0961028. See Figure 4).

A group of pharmaco-genetics studies showed that COMT

variations are correlated with the effective management of

depression [34,35,36,37,38,39]. Besides that, Elin et al’s study

[40] proved that the Met-variants of COMT Val158Met are risk

Table 5. Prediction performance of the 1234 drugs in different indication range (number of network drugs approved for an
indication).

NO. drugs per indication
NO. indications
approved by FDA

Top 5 covered indications
(percentage)

NO. drug-indication pairs
approved by FDA

Top 5 covered drug-
indication pairs (percentage)

less than 5 196 11 (5.61%) 430 18 (4.19%)

6,10 130 26 (20.00%) 556 66 (11.87%)

11,15 66 27 (40.91%) 508 92 (18.11%)

16,20 66 32 (62.75%) 560 87 (15.54%)

21,25 38 26 (68.42%) 566 124 (21.91%)

26,30 20 16 (80.00%) 389 99 (25.45%)

31,35 19 17 (89.47%) 412 185 (44.90%)

36,40 14 13 (92.86%) 376 153 (40.69%)

41,45 8 7 (87.50%) 224 58 (25.89%)

46,50 5 5 (100.00%) 163 106 (65.03%)

51,55 8 8 (100.00%) 297 183 (61.62%)

56,60 4 4 (100.00%) 150 92 (61.33%)

more than 60 10 10 (100.00%) 706 486 (68.84%)

Total 584 202 (34.59%) 5337 1749 (32.77%)

doi:10.1371/journal.pone.0087864.t005

Table 6. Predicted results with evidence supported at an
EASE score#1025.

Drug-indication pairs Number Percentage

FDA-approved 1336 71.91%

Clinical 132 7.10%

Preclinical 32 1.72%

Unknown 358 19.27%

doi:10.1371/journal.pone.0087864.t006
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variants for depression in the Swedish population. All of the

available evidence indicates that COMT inhibitors may have an

effect on depression. In fact, the application of COMT inhibitors

in depression treatment was approved for a US patent in 2005 (US

20050137162 A1). In animal studies, an increase of SAMe in the

central nervous system was detected after the administration of

Tolcapone [41]. SAMe is a naturally occurring compound with

putative antidepressant properties [42]. This effect, coupled with

antidepressant properties exhibited in the rat model of chronic

mild stress-induced anhedonia [43], suggests that Tolcapone may

have significant antidepressant properties. Moreover, in an open

study on 21 adults with major depressive disorders, the group

treated with Tolcapone showed significant improvement over the

placebo group (17-item Hamilton Rating Scale for Depression

19.4+/22.9 vs 10.7+/25.5; Clinical Global Impressions Severity

3.9+/20.6 vs 2.4+/21.1; Beck Depression Inventory 21.6+/28.1

vs 12.3+/28.6) [44]. The preliminary results suggest that

Tolcapone may be a promising anti-depressant.

Adamon
Tramadol hydrochloride (brand name Adamon) is a centrally

acting synthetic analgesic used to treat moderately severe pain,

which was first approved in 1977 as a product of the German

pharmaceutical company Grünenthal GmbH. It is supposed to

have an analgesic effect on pain based on two complementary

mechanisms of action derived from its affinity for the mu opioid

receptor and its blockade of norepinephrine and serotonin

reuptake [45,46]. Herein, two systems involved in pain relief are

activated by Tramadol; namely, the opioid and the descending

monoaminergic pain modulating pathways. In our predicted

results, it shares similar side effect profiles with 22 pain

management drugs (general pain: EASE score = 0.021; postoper-

ative pain: EASE score = 0.0063). As shown in Figure 5, Tramadol

is also connected to 13 anti-depression drugs (EASE score =

9.0661025). Desmeules’s study [47] suggested that the analgesic

action of Tramadol is mainly related to the central monoaminergic

mechanism rather than opioid receptor pathways. Antidepressants

usually act by inhibiting norepinephrine-serotonin reuptake, which

is similar to Tramadol’s effect of blocking monoaminergic

reuptake [48]. In addition, opioid systems are also influenced in

the pathophysiology of depression [49]. All the evidence suggests

Figure 3. Sub-network of Dynastat. Each node represents a drug. Drugs approved for pain management are marked in yellow. Drugs approved
for rheumatoid arthritis therapy are marked in purple.
doi:10.1371/journal.pone.0087864.g003

Figure 4. Sub-network of Tasmar. Each node represents a drug.
Drugs approved for the treatment of Parkinson’s disease are marked in
orange. Drugs approved for rheumatoid arthritis therapy are marked in
blue.
doi:10.1371/journal.pone.0087864.g004
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that Tramadol may have an effect on depression. In fact, a group

of preclinical studies based on several depressive mice models

showed the efficacy of Tramadol in depression management, such

as the forced swimming test and the tail suspension test [48,50,51].

In 2008, the application of Tramadol in depression treatment was

patented by European Union (EP20080011241). More promis-

ingly, according to the pipeline of e-Therapeutics, the indication of

Tramadol on depression has already been moved to Phase IIb

clinical studies http://www.etherapeutics.co.uk/Information/

pipeline.html.

External data evaluation
After we tested the predicted results of all drugs in the network,

external drugs with side effect data were also tested. 98 drugs

exclusively covered in SIDER were used as inputs to our system to

calculate similarities with the drugs in the network one by one.

As described in the Methods, we calculated similarities

between 98 SIDER drugs with the background 2183 drugs. As

shown in Table 7, 84.69% of SIDER drugs showed similarities to

the network drugs with Jaccard index#0.275. Herein, the Jaccard

index = 0.225 in the inflection area [0.2, 0.35] was set as the

threshold. Next, 61 drugs with more than 2 neighbours were

inputted to evaluate the method. Finally, the indications of 41

drugs could be predicted since they have more than 2

neighbouring drugs approved for the same indication. Among

the top 5 predicted results, 36.59% of the drugs reached a

performance score NDCG@5$0.7. In addition, by selecting the

Figure 5. Sub-network of Adamon. Each node represents a drug. Drugs approved for the treatment of Parkinson ’s disease are marked in orange.
Drugs approved for pain treatment are marked in blue.
doi:10.1371/journal.pone.0087864.g005

Table 7. The similarity of 98 SIDER drugs in test sample set
with the drugs in the network.

Similarity (Jaccard index)
Drugs with more than 2
neighbours (Percentage)

[0,0.15) 5 (5.10%)

[0.15,0.2) 21 (21.43.%)

[0.2,0.225) 11 (11.22%)

[0.225,0.25) 25 (25.51%)

[0.25,0.275) 21 (21.43%)

More than 0.275 15 (15.31%)

doi:10.1371/journal.pone.0087864.t007

Table 8. Predicted drug-indication pairs of SIDER drugs.

Drug-indication pairs Number Percentage

FDA-approved 37 34.91%

Clinical 10 9.43%

Preclinical 7 6.60%

Unknown 52 49.06%

doi:10.1371/journal.pone.0087864.t008
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top 5 predicted results of 41 drugs with an EASE score#0.05, 106

drug- indication pairs were generated (See details in Table S4).

During the manual check, we found that 50.94% of them were

FDA approved or could be verified by clinical trials or scientific

literature (See Table 8).

Discussion

In this study, we integrated drug side effect data from several

different resources. With these data, we built a drug network and

screened new indications of drugs based on their network

neighbours. Our method performed well at predicting their FDA

approved indications in the top 5 positions. In addition to

screening new indications of FDA approved drugs, our method

could also be extended to candidate drugs with clinical side effect

data. Since approved drugs sharing similar side effect profiles with

query candidates could be identified, the indications of candidates

could be inferred by its neighbours. Especially for drugs which

failed in the late clinical stages, the comprehensive side effect data

should have been generated in early clinical studies. These side

effects can be used as inputs to our repositioning platform so that

new indications for these drugs can be predicted.

Our drug repositioning platform has its own limitations. Due to

the differences between side effect data resources, during an

external data test using 98 drugs exclusively covered by SIDER,

we found 58.16% of these SIDER drugs have low side effect

similarities with the drugs in the network. Our method is not

applicable to these SIDER drugs. Since very few side effect

databases are available, many efforts are still needed to build or

integrate these resources. For example, clinical case reports or

other adverse event reporting systems may supply additional

information on drug side effects. Up to now, only the direct

neighbours in our network were considered to evaluate the

indications in the study. We could quantify the influences of each

neighbouring drug in the indication enrichment process according

to their side effect similarities. Besides that, considering the fact

that side effects vary in severity and frequency of occurrence, the

current Jaccard index may not correctly mimic side effect

similarities between the drugs. For example, the severity of a

given side effect might be tagged as ‘‘serious’’ or ‘‘mild’’, while its

frequency of occurrence might be described as ‘‘common’’ or

‘‘rare’’. Actually, these two side effect parameters are also related

to the number of clinical patient samples and drug doses in

treatment. Further meta-analysis should be carried out to modify

the side effect data in order to take account of information

regarding the severity and frequency of these side effects. This

could certainly improve the accuracy of the predictions.

Drug repositioning is a complicated process. It is impossible that

any one computational method alone would be accurate enough

to provide promising results. A package of methods from different

perspectives could be integrated to make predictions more precise.

In our study, we also compared our results to Lun’s [21] predicted

results. In his study, 14040 drug-indication pairs are proposed.

14.57% of them overlapped with our results (747 drug-indications

with EASE score#0.05, see details in Table S5). In particular,

five of the drugs (Ziprasidone, Quetiapine, Oxcarbazepine,

Clozapine, Sildenafil) mentioned in Lun’s paper were able to be

used in the treatment of obsessive-compulsive disorder. The

associations were also predicted by our method with a low EASE

score#6.3561023. The overlapping results from different meth-

ods, which may integrate comprehensive features in drug

repositioning at the chemical levels, the MOA levels, and the

phenotypic levels could provide promising predictions as well as

cross validations.
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