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Abstract
This paper describes self-reinforced antibacterial and oil-resistant properties that were suc-

cessfully prepared by surface selective dissolution of filter paper in a NaOH/Urea/ZnO

(weight ratio of 8:12:0.25) aqueous solution. The effect of the processing time on the

mechanical properties of this paper was evaluated at -12°C. The paper morphologies were

characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier

Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS).

The oil-resistance and antibacterial properties of the produced paper were also investi-

gated. Excellent mechanical properties were observed for an optimized handling time. The

tensile and burst strengths of the modified paper were in excess of 100% of the original.

Meanwhile, the treated paper was completely oil-resistant within 24 h and demonstrated

good antibacterial properties when exposed to Staphylococcus aureus. The traces of resid-

ual zinc oxide were found to be safe for food.

Introduction
Many efforts have been undertaken to obtain sustainable, biodegradable material to replace
glass, plastic and metal in packaging due to increasing environmental issues. Cellulose-based
paper is considered to be an environmental friendly and cost-effective alternative packaging
material because of its easy manufacturing and excellent mechanical and surface properties [1].
However, regular paper cannot prevent oil permeation and bacterial invasion due to the pres-
ence of hydroxyl groups on the fibre surfaces, which limits their usage in the packaging of fatty
foods.

Cellulose oil resistance can be improved by beating the pulp, which has been extensively
used in the manufacture of oil-resistance paper. However, increasing the degree of beating gen-
erally leads to dewatering, pressing and drying problems [2]. Surface coatings using synthetic
polymers or natural polysaccharides are another way to enhance the oil-resistance of the sur-
faces of cellulose materials [3]. However, synthetic polymers are non-biodegradable and toxic
due to the presence of volatile monomers in the food packaging. Due to increasing concerns
regarding the environment and food safety, a decline in synthetic polymer utilization in food
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packaging is inevitable. The high cost of some natural polysaccharides, such as chitosan and
sodium alginate, and so on, limit their application in food packing. Some proteins, including
isolated soy protein (ISP), whey protein isolate (WPI) and wheat gluten can also be coated on
the surface of paper to protect against oil permeation. However, poor mechanical properties
are observed for paper coated by ISP and WPI and are not suitable for packaging. In addition,
oil proof paper may be fabricated by laminating with aluminium foil. Unfortunately, this type
of laminated paper exhibited issues, including difficult recovery and high cost. In addition to
beating, coating, calendaring and laminating, surface modification by chemicals is another
approach to increase the oil resistance. Theoretically, a cell wall of cellulose fibre is formed by
several layers, with the outer layers being less ordered and poorly oriented, making it easy to
dissolve them in some solvents. The dissolved fibers can fill in paper pores and cover un-dis-
solved core fibers, minimizing voids to prevent the permeation of oil [4–7].

Cellulose is regarded as an amphiphilic macromolecule [8–10]. Many researchers have
noted that excellent cellulose solvents should be able to dissolve hydrogen bonds and generate
hydrophobic interactions between the cellulose molecules [11,12]. Currently, several solvents
are available for dissolving cellulose: lithium chloride/N, N-dimethylacetamide (LiCl/DMAc),
N2O4-dimethylformamide (DMF), N-methylmorpholine-N-oxide monohydrate (NMMO)
and ionic liquids, which had been reported. However, these processes are limited to laboratory
scale applications due to their volatility, toxicity, and high cost. Recently, NaOH/urea systems
for cotton linter dissolution have been successfully developed. Using this compound is consid-
ered to be a promising method of dissolving cellulose due its cost-effective nature and environ-
mental friendly raw materials [13]. Some additives, such as thiourea and ZnO, can enhance the
dissolution power of the system for cellulose. ZnO exists as Zn(OH)4

2- in an alkali solution,
which can form stronger hydrogen bonds with cellulose than NaOH hydrate[14]. Therefore,
NaOH/urea/ZnO may be a promising solvent for cellulose. However, high viscosity-molecular
weight (Mη) (Mη>14×104) or high crystallinity pulp cannot be completely dissolved in this
solution.

Taking advantage of the limited dissolution capacity, a cellulose solvent (8%NaOH/12%
urea/0.25%ZnO by weight) was used to dissolve the surface layer of filter paper possessing less-
order and poor orientation. Though compression and drying, the dissolved fibres are absorbed
and covered on the highly oriented un-dissolved fibres, which is a key for the high mechanical
performance of the paper. During regeneration, a significant number of hydrogen bonds were
regenerated. High quality interfacial bonds were formed between the dissolved and un-dis-
solved fibres, which permitted good stress-transfer. Interfacial bonding using the same compo-
nents can overcome the disadvantages associated with interfacial incompatibility that exist
between the matrix and a reinforcement material composed of a different component in com-
posites. The dissolved fibres provide oil-resistance and mechanical reinforcement. Recently,
the preparation of all-cellulose composites using selectively dissolved cellulose fibre was
reported using a matrix reinforced with core cellulose. The tensile strength of the all-cellulose
composite was 211 MPa, which is higher than for a conventional glass-fiber-material rein-
forced composite[15–17].

Some residual ZnO would provide the paper with an antibacterial property due to the effi-
cient antibacterial properties of ZnO and would also provide strong thermal stability and dura-
bility for packaging. Organic antibacterial agents have been used to prepare antibacterial
papers, but some are volatile and exhibit poor thermal stability. Additionally, some monomers
emit when used for long periods of time, which limit their use in food packaging. Researchers
have modified cellulose fibres with metallic salts or using surface graft polymerization to yield
antibacterial papers. However, this method is not cost-effective or environment friendly
[18,19]. In this study, ZnO is stably coated on the surface fibres and cell lumen and yield

Preparation of Functional Paper by One-Step

PLOS ONE | DOI:10.1371/journal.pone.0140603 October 14, 2015 2 / 16

31570576) during revision such as the expenditures
of TEM and Language editing.

Competing Interests: The authors have declared
that no competing interests exist.



treated paper with an antibacterial property. Therefore, fibre paper treated using 8%NaOH/
12%urea/0.25%ZnO exhibits multiple-functions, including high strength performance, oil
resistance and antibacterial properties. The key objective of this work is the development an
environmentally friendly technology for the production of paper with oil resistance, antibacte-
rial properties and improved mechanical strength. The schematic diagram for preparation of
functional sample can be seen in Fig 1.

Materials and Methods

Materials
Filter paper with a base weight of 103 g/m2 and a diameter of 18.5 cm was purchased from
Fisher Scientific International, Inc. (Pittsburgh, UK). The paper was made from cellulose fibres
with a degree of polymerization (DP) of approximately 830. Sodium hydroxide, urea and zinc
oxide were purchased from Nan Jing chemical reagent Co. LTD. (Nan Jing, China). All of the
chemicals were used as received.

Sample production
The NaOH/urea/ZnO/water solution was prepared with a ratio of 8:12:0.25:79.75 (by weight).
After the solution was pre-cooled to -12°C, the filter paper was impregnated into the solution for
30 seconds at 25°C to ensure good saturation. Then, the treated paper was taken out and cooled
to -12°C for 30 to 180 minutes. Subsequently, the treated paper was compressed between two
clear plastic sheets at 5.0 KPa for 3 minutes and rinsed several times using ultrapure water to
ensure the complete removal of the NaOH and urea. Finally, the treated paper was dried in a vac-
uum at 100°C and 0.1 MPa for 10 minutes. All of the treated papers were kept at 25°C and 50%
relative humidity for 24 h. The effects of the treating time at -12°C on the mechanical properties
and morphology of the treated paper were then systematically investigated.

Measurements
Mechanical properties. The tensile strength was measured in accordance with the TAPPI

method T 494 om-01 using a tensile tester (WZL-300, Instrument Development Co., Hang

Fig 1. Schematic diagram of the procedure for preparing self-reinforced antibacterial and oil-resistance paper.

doi:10.1371/journal.pone.0140603.g001
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Zhou, China) at room temperature. Burst strength testing was performed in accordance with
the TAPPI method T 403 om-02 using a bursting tester (YQ-Z23A, light industrial instrument
plant, Hang Zhou, China). The average value and standard deviation of the tensile and burst
indexes were calculated for at least five sets of samples.

Oil-resistance test. The oil resistance was measured according to the modified TAPPI
method T-507 cm-99, the procedure of schematic diagram is shown in Fig 2. In this study, veg-
etable oil was applied for sample testing. The area of the blotters stained with oil was deter-
mined by a point–counting method. The results were calculated as the average of five
measurements.

Scanning electron microscopy and mercury intrusion porosimetry. The surface and
cross-sections of the treated paper were observed using scanning electron microscopy (JSM-
7600F, JEOL, Japan) operated at 10 kW. The surfaces of the samples were sputter coated with
gold prior to observation.

The porosity of the treated paper was measured in accordance with ISO 15901–1:2005 using
a mercury intrusion porosimetry (AutoporeⅣ 9500Ⅵ.06, micromeritics, USA)

Fourier transform infrared spectrum. FT-IR spectra were measured with a FT-IR 360
spectrometer (Thermo Nicolet Corporation, USA) using the ATR-IR method. The IR spectra
(4000–400 cm-1) were recorded at a resolution of 0.5 cm-1 and 40 scans per sample.

X-ray diffraction. X-ray diffraction tests were performed at ambient temperature on an
X-ray diffractometer (UI tima IV, Japan) using Cu kα radiation at 40 kV and 30 mA. All of the
scans were in the range 5°�2θ�40°at a step size of 0.05°. The crystallinity was evaluated by
Segal’s crystallinity index (CrI), which was calculated using the following equation (Eq 1):

CrI ¼ I � I’
I

ð1Þ

where I is the diffraction intensity assigned to the (002) plane of cellulose Iβ and I’ is the inten-
sity measured at 2θ = 18°, which is the maximum in the diffractogram for non-crystalline cellu-
lose [20].

Antibacterial assessment of the samples. The inhibition effects of samples with ZnO
were measured using the disk diffusion method. Escherichia coli (one Gram-negative

Fig 2. Oil permeability test assembly (TAPPI standards T-507).

doi:10.1371/journal.pone.0140603.g002
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bacterium) and Staphylococcus aureus (one Gram-positive bacterium) were used in the experi-
mentation. The culture medium for microorganisms was a mixture of 15 g of beef extract, 5 g of
peptone, 5 g of sodium chloride and 17 g of agar in 1000 ml of water. The pH was regulated to
8.0 by 1 MHCl and 1 MNaOH. A volume of 0.1 ml of bacterial suspension (approximately 108

CFU/ml) was plated and spread on the agar plates before a roundish sheet sample (with a diame-
ter of 15 mm) was placed on the surface of the agar. Then, the dishes were placed an incubator at
37°C for 20 h under light and dark conditions. The antibacterial activity was evaluated by measur-
ing the diameter of the inhibition zones. This process was repeated three times for each sample.

To investigate the morphologic changes of S.aureus and E. coli after 24h of treatment using
Samples at 37°C, Transmission Electron Microscopy (TEM) (JEM-140) was used. The suspen-
sion of S. aureus and E. coli were diluted to approximately 1×108CFU/ml before measurement.

Analysis of stability and chemical bonding state of the zinc. To examine the release
behaviour of the Zn2+ ions from the treated paper, the corresponding samples were weighed.
Paper samples (1 cm×1 cm) were immersed in vials with 5 ml of distilled water and treated for

Fig 3. Effect of treat time onmechanical properties of treated paper.

doi:10.1371/journal.pone.0140603.g003
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up to 1 month at 37°C in an orbital shaker at 160 rpm. Then, the samples were removed and
the solutions were analysed using flame atomic absorption spectrometry (FAAS) with HCl-
HNO3 digestion. The content of the ZnO remaining in the treated paper was also evaluated.
The sample was burned to ash, and digested with HCl-HNO3, and then measured by FAAS.

The chemical bonding states of the ZnO were identified by X-ray photoelectron spectros-
copy (XPS) using an AXIS Ultra DLD system (UK). All of the binding energies were referenced
to the C 1s peak at 284.6 eV.

Results and Discussion

Mechanical properties
It has been reported that cellulose can be dissolved rapidly in a 7–10 wt.% NaOH/ 12 wt.% urea
aqueous solution pre-cooled to -12°C. It cannot be dissolved in the same solvent without prior

Fig 4. Oil resistance of treated paper-120min compared with filter paper.

doi:10.1371/journal.pone.0140603.g004
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cooling because the exothermic dissolution reactions of cellulose in alkali solutions prefer a
lower temperature. Surface layers of cellulose fibres can be continually dissolved with increas-
ing time at -12°C [21–23]. First, loose amorphous cellulose from the paper sheet were swelled,
and hydrogen bonds of amorphous celluloses were destroyed to form dissolved fibres. With
continuous swelling, partial crystalline cellulose was also dissolved. After regeneration in water,
large numbers of hydrogen bonds were rearranged between the dissolved cellulose and un-dis-
solved fibres. The well-formed interface bonds allowed for a greater interfacial transfer when
the treated paper was mechanically stressed. As shown in Fig 3, the tensile index of the treated
paper for 120 min was two times higher than that of the filter paper (the control), and the burst
index was 150% higher compared to the control sample. However, more crystalline cellulose
were dissolved with continuous penetration, resulting in a reduction in the mechanical proper-
ties [24,25].

Evaluation of oil-resistance
Compared to the original filter paper, the treated paper demonstrated a better oil resistance, as
shown in Fig 4. The control sample exhibited a 100% strained area at 60°C for 4 h. However, the
treated paper only exhibited a 5% strained area, even at 60° for 32 h, resulting in an excellent abil-
ity to prevent oil permeation. The oil-resistance of the treated paper-120 min meets the require-
ments for fast food packaging. The oil-resistance arises from the relative absence of pores in the
paper network, which is primarily determined by the largest pore size in the paper. The density
structure can resist oil permeation through capillaries [26]. The larger pore size, the more easily
oil passes though the network of paper. There was no strained area on treated paper-120 min
over 24 h, and the treated paper-120 min shows excellent oil resistance property.

Morphology and characterization of the paper
To investigate the reasons for the enhancement of the mechanical properties and oil-resistance
for the treated paper-120 min, scanning electron microscopy (SEM) and mercury intrusion

Fig 5. SEM images of filter paper and treated paper-120min (A-1, A-2 are images of the surface and
cross-section for treated paper-120min; B-1, B-2 are images of the surface and cross-section for the
filter paper.

doi:10.1371/journal.pone.0140603.g005
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porosimetry (MIP) were used to evaluate the changes in the paper structure and porosity. A
fine web-like and high porous network structure was observed in Fig 5A-1 and 5A-2. The
treated paper-120 min surface exhibited less porosity and a high level of homogeneity in Fig
5B-1. Additionally, the treated paper-120 min exhibited a compact cross-section, as shown in
Fig 5B-2. These results implied a loose amorphous and partially crystalline region of the paper
cellulose were dissolved in the NaOH/urea/ZnO aqueous solution and then filled into the
pores and covered the un-dissolved fibres. Subsequently, more hydrogen bonds were formed
during regeneration in water. The partially dissolved fibres acted as a glue to join the un-dis-
solved fibres and formed a high quality interface with the same cellulose, reducing the

Fig 6. FT-IR spectra of treated paper-120min compared with filter paper.

doi:10.1371/journal.pone.0140603.g006
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appearance of interfacial tension between the two different components. It also allowed more
stress transfer from fibre to fibre, leading to greater strength and less porosity. These results
were confirmed by MIP analysis, as shown in Fig 5. The porosity of the filter paper decreases
from 61.0% to 15.4%, leading to the excellent oil-resistance and high mechanical properties of
the treated paper-120 min.

The structural changes in the treated paper-120 min compared to the filter paper were also
characterized. As shown in Fig 6, the treated paper-120 min and filter paper exhibited charac-
teristic peaks at approximately 3400 cm-1, which were assigned to–OH stretching intra-molec-
ular hydrogen bonds. In addition, the peak at 3400 cm-1 from the treated paper-120 min was
obviously broadened and shifted to a lower wavelength, suggesting an increase in the inter-
molecular hydrogen bonding with the cellulose [27]. During the cellulose dissolution process,

Fig 7. X-ray diffraction (X-RD) patterns of treated paper compared with filter paper.

doi:10.1371/journal.pone.0140603.g007
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the amorphous and partially crystalline regions were dissolved, and their intra- and inter-
molecular hydrogen bonds were broken. After regeneration in distilled water, more hydrogen
bonds were uniformly rearranged [28]. Furthermore, several characteristic bands were obvi-
ously shifted at the peak maximum or the absorbance changed. After treatment with 8%
NaOH/12%urea/0.25%ZnO, the bands of cellulose at 1430, 1111 and 895 cm-1 were shifted to
1420, 1007 and 893 cm-1, respectively. These are typical changes relating to cellulose crystalline
transformation (Ⅰ to Ⅱ). Shifting to 1420 cm-1 suggested the formation of new inter- and intra-
molecular hydrogen bonds and a change for the CH2OH at C-6 from the tg to the gt form. The
content of the cellulose Ⅱ is more significant, and the band at 1420 cm-1 will be widened [29].
The absorbing peak at 1111 cm-1 shifted to 1007 cm-1 and was assigned to ring asymmetric
stretching. The absorption band at 895 cm-1 shifted to 893 cm-1 and was assigned to C-O-C
stretching at the β-(1–4)-glycosidic linkage and corroborated the near total absence of crystal-
line cellulose Ⅰ. The absorbances at 1430, 1111 and 895 cm-1 are sensitive to the ratio of crystal-
line to amorphous structure in the cellulose, and the broadening of these bands indicates a
more disordered structure [30,31]. Therefore, the analysis of the FT-IR spectrum indicated that
the amount of crystalline region decreased and the amount of amorphous region was increased.
Subsequently, more inter-molecular hydrogen bonds were formed.

Fig 7 shows the XRD patterns of the treated paper-120 min and the filter paper. The filter
paper exhibited characteristic absorptions for cellulose Ⅰ at 2θ = 14.7° for the (101) plane, 2θ =
16.6° for the (10–1) plane, and 2θ = 22.7° for the (002) plane. The peaks of the prepared sam-
ples at 2θ = 12.3°, 20.3°and 22.0° were characteristic diffractions of cellulose Ⅱ crystals and the
(1–10), (110) and (200) planes, implying the transformation of cellulose crystals from Ⅰ to Ⅱ
[32]. The amount of CrI (0.80) in the filter paper dropped to 0.53 after treatment, which

Fig 8. The antibacterial properties of treated paper for E.coli and S. aureus (A -filter paper, B-filter paper treated with 8wt%NaOH/12wt%urea
aqueous solution in -12°C 120min, C- treated paper-120min).

doi:10.1371/journal.pone.0140603.g008
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suggested that partial crystalline cellulose dissolved in 8%NaOH/12%urea/0.25%ZnO system.
This is consistent with the FT-IR results.

Antibacterial properties
Zinc oxide (ZnO) existed as Zn(OH)4

2- when added to the NaOH/urea aqueous solution. Zn
(OH)4

2- was converted to ZnO again during the rinsing and drying processes and remained in
the paper sheet. ZnO is an efficient antimicrobial agent for a broad range of bacteria targets. It
can effectively kill Gram positive and Gram negative bacteria at an appropriate dosage [33,34].
As shown in Fig 8, there was a similar zone of inhibition against S. aureus around the treated
paper sample for both light and dark conditions. However, there was no apparent inhibition
zone around the E. coli sample. Ameer Azam reported that Gram-negative bacterial strains of
E. coli possessed inhibition-zone sizes smaller than Gram-positive bacterial strains of S. aureus

Fig 9. TEM images of S. aureus and E. coli. A-1 S. aureus untreated cells. A-2: S. aureus treated by samples containing ZnO. B-1: E. coli untreated cells. B-
2: S. aureus treated by samples containing ZnO.

doi:10.1371/journal.pone.0140603.g009
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for ZnO nanoparticles [35]. This indicated that the E. coli strain exhibited a higher resistance/
tolerance against ZnO than the S. aureus strain. Aqueous suspensions containing 4.45×10−5–
1.25×10−3 M ZnO particles exhibit a strong antibacterial activity against E. coli in dark condi-
tions [36]. In this study, there was no apparent inhibition-zone for the E. coli strain, which was
ascribed to less residual ZnO in the paper and S. aureus being less resistance than E. coli
because of different cell wall components. Fig 9 shows the apparent morphologic changes of S.
aureus after treatment of Samples. The shape size of S. aureus decreased from 0.8um to 0.02um
or less. However the morphology of E.coli didn’t show obvious changes. These are in accor-
dance with results of inhibition zone.

There are three main mechanisms reported by researchers: (1) ZnO damages the structure
of the microbial cell membrane and the internal components of cell, causing cytoplasm leakage
and the death of bacterial cells [33,37,38], (2) Zinc ion release leads to the inhibition of multiple
activities in the bacteria, such as glycolysis transmembrane proton translocation and acid toler-
ance [39], (3)and the generation of reactive oxygen species (ROS) by photolytic or non-photo-
lytic, which causes fatal damage to cellular constituents [39–42]. The amount of zinc released
from the treated paper and its residual content in the paper were evaluated. AAS spectra did
not show any absorption of ZnO, implying that ZnO or Zn2+ released from the treated paper is
not significant or escapes the detection limit of this analysis. ZnO was stably fixed on the
treated paper, and Zn2+ did not contribute to any antibacterial effect. Many studies have indi-
cated that the formation of ROS is the main antibacterial mechanism of ZnO [43–46]. Many
studies have clearly indicated that ZnO nanoparticle or powders can produce ROS such as
hydroxyl radical, superoxide anion and hydrogen peroxide [47,48]. Electron-hole pairs would
be generated when ZnO is activated by light. Subsequently, the electron-hole may combine
with H2O to produce OH- and H+. Oxygen molecules absorbed electrons released from ZnO
and turned them into superoxide radical anions (•O2

-), which in turn reacted with H+ to gener-
ate HO2• radicals. Finally HO2• combined with hydrogen ions and electrons to produce H2O2

[49]. H2O2 can penetrate into bacteria cells and cause death. Without photocatalysis, ZnO can
react with H2O to produce HO• before producing H2O2 by the combination of two HO•.
Therefore, ZnO can exhibit antibacterial property under light or in dark [50]. Dutta et al.

Fig 10. XPS spectrum of the filter paper (a), the filter paper treated by NaOH/urea/ZnO solution (b).

doi:10.1371/journal.pone.0140603.g010
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reported that production of ROS is the key phenomenon for antibacterial effect of ZnO nano-
particles. The generated ROS in the culture media was capable to cause oxidation of lip mem-
brane in the cell wall [44]. Lakshmi et al. studied the mechanism of antibacterial activity of
ZnO. They also found the mechanism of antibacterial activity of ZnO is attributed mainly to
ROS even in the dark [46]. Some other researchers find the same results about the mechanism
of antibacterial activity of ZnO [51–53]. ROS plays an important role in antibacterial activity of
ZnO.

XPS analysis was performed to identify the presence of ZnO. In comparison with Fig 10(A),
in Fig 10(B) there are not only C1s and O1s peaks, peaks corresponding to Zn 2p, Zn 3s, Zn 3p
and Zn 3d also emerged in the XPS spectra of the paper treated by 8 wt. % NaOH/12 wt. %
urea/0.25 wt. % ZnO solution, indicating the modified paper was mainly composed of zinc,
oxygen and carbon. The binding energies of Zn 2p3 and Zn 2p1 was determined to be 1022.3
and 1045.4 eV, and the peak separation between them was 23.1 eV. According to the results,
the zinc ions were mainly in the form of ZnO [54–56].

The ZnO remaining in the treated paper-120 min was 4.63 μg per 1 g of cellulose, as was
determined from FAAS analysis. This is a small amount, which is in the testing range for the
FT-IR and XRD, as shown in Fig 6 and Fig 7. There was no characteristic peak for ZnO.
COLIPA reported that the oral half lethal dose of ZnO for a mouse is greater than 2000 mg/kg
[57]. The ZnO retained in the treated paper is much less than half the lethal dose. Therefore,
treated paper is safe for use as a package material and other functional substrate.

Conclusions
A new self-reinforced antibacterial paper with oil resistance was successfully prepared using a
NaOH/Urea/ZnO system. The surfaces of the cellulose were dissolved, and pores were filled
between fibres and coated on un-dissolved highly oriented fibre cores, which effectively
reduced the porosity of the paper. This assembly imparted an effective reinforcement effect to
the paper. During the 120-min treatment, interfacial adhesion between the dissolved and un-
dissolved cellulose allowed more stress transfer capabilities in this treated paper. Mechanical
testing showed that the tensile and burst indexes were approximately three times higher com-
pared to the filter paper. In addition, the treated paper exhibited total oil-resistance abilities
with reducing the porosity for 24 h. The trace fixed ZnO in the treated paper gave the modified
paper an excellent antibacterial property for S. aureus. The functional paper is capable of being
utilized in packaging and other fields due to its outstanding properties.
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