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Abstract

The formation of liver metastases in colorectal cancer patients is the primary cause of patient death. Current therapies
directed at liver metastasis from colorectal cancer have had minimal impact on patient outcomes. Therefore, the
development of alternative treatment strategies for liver metastasis is needed. In the present study, we demonstrated that
recombinant human apolipoprotein(a) kringle V, also known as rhLK8, induced the apoptotic turnover of endothelial cells
in vitro through the mitochondrial apoptosis pathway. The interaction of rhLK8 with glucose-regulated protein 78 (GRP78)
may be involved in the induction of apoptosis because the inhibition of GRP78 by GRP78-specific antibodies or siRNA
knockdown inhibited the rhLK8-mediated apoptosis of human umbilical vein endothelial cells in vitro. Next, to evaluate the
effects of rhLK8 on angiogenesis and metastasis, an experimental model of liver metastasis was established by injecting a
human colorectal cancer cell line, LS174T, into the spleens of BALB/c nude mice. The systemic administration of rhLK8
significantly suppressed liver metastasis from human colorectal cancer cells and improved host survival compared with
controls. The combination of rhLK8 and 5-fluorouracil substantially increased these survival benefits compared with either
therapy alone. Histological observation showed significant induction of apoptosis among tumor-associated endothelial cells
in liver metastases from rhLK8-treated mice compared with control mice. Collectively, these results suggest that the
combination of rhLK8 with conventional chemotherapy may be a promising approach for the treatment of patients with
life-threatening colorectal cancer liver metastases.
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Introduction

Colorectal cancer is the third most common cancer and the

second leading cause of cancer death in the United States. It is

estimated that in the year 2013, nearly 142,820 new cases of

colorectal cancer were diagnosed and 50,830 patients died from

this disease [1]. Approximately 25% of patients present with

metastatic disease at diagnosis. The remaining 75% are treated

surgically with cure as the objective [2], but even with complete

resection the disease eventually recurs in 50% of these patients.

The liver is the primary site of metastases in patients with

colorectal cancer, before and after surgical removal of the primary

tumor, and the formation of liver metastases constitutes a major

cause of death from the disease [3]. Surgery is the primary

treatment option for isolated metastases, but only 20–25% of

patients are suitable for resection [4], and recurrence after surgery

is frequent. Therefore, the development of a new treatment

modality for this life-threatening disease is urgently needed.

Angiogenesis is the development of new capillaries from pre-

existing blood vessels. Because angiogenesis is required for the

expansive growth and metastasis of primary tumors, the angio-

genic process is regarded as a promising target for novel cancer

therapies [5,6]. Numerous angiogenesis inhibitors, such as

angiostatin and endostatin, that display significant efficacies

against a variety of tumors, including metastatic colorectal cancer

in pre-clinical settings, have been identified [7,8]. The approval of

bevacizumab (Avastin), a humanized monoclonal antibody against

vascular endothelial growth factor, by the United States Food and

Drug Administration in 2004 as a first-line therapy for metastatic

colorectal cancer further validated the idea that blocking

angiogenesis is an effective strategy for the treatment of human

colorectal cancer.

Metastasis is a highly complex process that consists of a series of

steps, including intravasation of tumor cells from the primary site

into the blood or lymphatic circulation, survival of cells in the

circulatory blood system, colonization of a secondary organ,
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initiation and maintenance of growth, and the development of new

blood vessel for metastatic tumor [9,10]. Any of these steps of

metastasis may be a therapeutic target because the failure of any

one step disrupts the entire metastatic cascade. However, by the

time primary colorectal cancers are detected, subclinical or

clinically relevant liver metastases have already occurred [11].

Accordingly, targeting the later steps of metastasis, such as the

development of new vasculature, is promising because this process

may not have occurred at the time of colorectal cancer diagnosis.

Moreover, this step is considered less efficient than earlier steps,

such as intravasation, survival in the circulation, and initial

colonization at the secondary site. Biologically inefficient processes

can be targeted easily because fewer cells will need to be targeted.

In view of these considerations, anti-angiogenic therapy, which

primarily targets the angiogenesis-dependent growth of metastases,

is a clinically accessible and biologically relevant therapeutic

strategy for liver metastasis.

Apolipoprotein(a) [apo(a)] is a glycoprotein component of

human lipoprotein(a) and has been reported to be associated with

the development of atherosclerosis and coronary heart disease

[12]. Apo(a) consists of repeated kringle domains that closely

resemble plasminogen kringle 4, followed by sequences that are

homologous to the kringle 5 and protease domains of plasminogen

[13]. The physiological role(s) of apo(a) kringle domains remain

poorly understood. However, in line with the suggested role of

kringles as general inhibitors of blood vessel growth [14], current

evidence suggests that full-length or truncated forms of apo(a)

kringles inhibit angiogenesis both in vitro and in vivo and suppress

tumor growth in animal models [15,16,17]. We have also

demonstrated that recombinant apo(a) kringle V, named rhLK8,

inhibits the migration of human umbilical vein endothelial cells

(HUVECs) in vitro, in part by interfering with the activation of

focal adhesion kinases and the subsequent formation of actin stress

fibers/focal adhesions [18]. rhLK8 also inhibited the neovascu-

larization of chick chorioallantoic membranes and capillary

infiltration into the Matrigel plugs in vivo. Recently, we demon-

strated that the systemic administration of rhLK8 in combination

with a chemotherapeutic agent, paclitaxel, can attenuate the

growth of PC-3MM2 human prostate cancer cells in the prostate

and tibia of nude mice [19]. We observed that treatment with

rhLK8, especially in combination with a chemotherapeutic agent,

induces apoptosis in tumor-associated endothelial cells, followed

by apoptosis of the surrounding tumor cells. However, the exact

biochemical mechanism by which rhLK8 induces apoptosis in

endothelial cells remained unknown.

In the present study, we investigated the mechanism of rhLK8-

induced apoptosis in tumor-associated endothelial cells and tested

whether rhLK8 treatment, in combination with chemotherapy,

suppresses colon cancer liver metastasis. We found that rhLK8

induces apoptosis in endothelial cells through the mitochondrial

apoptosis pathway in vitro. Its interaction with glucose-regulated

protein 78 (GRP78) on the endothelial cell surface may play a

critical role in this process. We also demonstrated that rhLK8,

especially in combination with conventional chemotherapy,

significantly suppressed liver metastasis by inducing the apoptosis

of tumor-associated endothelial cells in vivo, resulting in improved

host survival in an experimental animal model of liver metastasis.

Materials and Methods

Expression and Purification of rhLK8 and its Derivatives
The Saccharomyces cerevisiae BJ3501 strain was transformed with

an expression vector for rhLK8, which was constructed to express

rhLK8 as a fusion protein with an a factor signal sequence under

the control of the yeast Gal1 promoter and subsequently processed

to be secreted into the culture medium [20]. rhLK8 proteins were

purified to homogeneity from the culture supernatant of S. cerevisiae

BJ3501 expressing rhLK8, as previously described [21]. Purified

rhLK8 proteins were stored in buffer containing 100 mM NaCl

and 150 mM L-glycine (pH 4.2).

The DNA fragment encoding the rhLK8 protein fused to a

hemagglutinin (HA) epitope at the C-terminus (rhLK8-HA) was

amplified by two cycles of polymerase chain reaction (PCR) using

the following primers: rhLK8-forward (59-TTT TTC CAT ATG

GAA CAG GAC TGC ATG TTT GGG AAT GGG-39) and

HA1-reverse (59-CAC ATC ATA AGG GTA AGA GCC CCC

GCC AAA TGA AGA GGA TGC ACA GAG AGG-39) for the

first cycle using the rhLK8-expression vector as template and

rhLK8-forward and HA2-reverse (59-GGA TCC TCA AGA CCC

AGA GGC ATA ATC TGG CAC ATC ATA AGG GTA AGA

GCC CCC-39) for the second cycle using the PCR product of the

first cycle as template. The amplified rhLK8-HA DNA fragment

was cloned into the pET-15b prokaryotic expression vector (Merck

KGaA, Darmstadt, Germany), which was then used to transform

Escherichia coli BL21 (DE3). The expression of the transgene was

induced according to the manufacturer’s instructions. rhLK8-HA

was expressed as a 66His-tagged protein, and the soluble protein

was affinity-purified using pET His-Tag systems (Merck KGaA)

according to the manufacturer’s instructions.

Analysis of Apoptosis by Staining with Hoechst 33452
Confluent human umbilical vein endothelial cell (HUVEC;

Lonza, Walkersville, MD, USA) cultures were incubated in EBM-

2 media (Lonza) supplemented with 1% FBS and various

concentrations of rhLK8 (0.1–5 mM) in the presence or absence

of 3 ng/ml basic fibroblast growth factor (bFGF). After an

incubation period of 12 or 24 h, cells were stained with Hoechst

33452 (500 ng/ml; Sigma, St. Louis, MO, USA) for 30 min at

37uC, and apoptosis was assessed by nuclear chromatin conden-

sation using a fluorescence microscope (Olympus BX51, Olympus,

Center Valley, PA, USA) [22]. Random microscopic fields were

examined for each experimental condition, and the percentage of

cells that were undergoing apoptosis in each field was determined.

Western Blotting of Apoptosis-related Proteins
Cells were lysed in Triton lysis buffer [137 mM NaCl, 2 mM

EDTA, 10% glycerol, 1% Triton X-100, and 20 mM Tris-HCl

(pH 8.0)] containing protease inhibitors. An aliquot of each lysate

was separated by SDS-PAGE using gels polymerized from 4–20%

acrylamide in Tris/Glycine buffer (Invitrogen, Carlsbad, CA,

USA), and immunoblotting was performed with antibodies against

procaspase-3, procaspase-9 (Cell Signaling, Beverly, MA, USA),

cleaved caspase-3 and procaspase-8 (BD Biosciences, San Jose,

CA, USA). Eluted samples of co-immunoprecipitation experi-

ments were also subjected to SDS-PAGE, and the electrophoresed

proteins were transferred onto nitrocellulose membranes. Each

membrane was incubated with mouse anti-GRP78 antibodies (BD

Biosciences; 1:1,000) or rabbit anti-His antibodies (Santa Cruz

Biotechnology, Santa Cruz, CA, USA; 1:1,000) and then with

peroxidase-conjugated anti-mouse or anti-rabbit antibodies (KPL,

Gaithersburg, MD, USA; 1:5,000).

Fractionation of Cytosolic and Membrane-bound
Proteins
Cytosolic and membrane fractions were prepared by selective

plasma membrane permeabilization with digitonin, followed by

membrane solubilization [23]. Briefly, cells were treated with
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Figure 1. Induction of endothelial cell apoptosis by rhLK8. HUVEC monolayers were incubated in EBM-2 containing 1% FBS in the presence or
absence of 3 ng/ml bFGF and treated with various concentrations of rhLK8 (0.1–5 mM) for 12 or 24 h. Endothelial apoptosis was assessed by nuclear
morphology after staining with Hoechst 33452. (A) Representative photomicrographs of control (left) or rhLK8 (5 mM)-treated HUVECs (right) in the
presence of 3 ng/ml bFGF for 12 h. Apoptotic endothelial cells are indicated by arrows. B and C, the percentage of cells undergoing apoptosis was
determined in cells treated with various concentrations of rhLK8 in the absence (B) or presence (C) of bFGF after 12 (filled bars) or 24 h (open bars).
Each column represents the mean 6 SD. (D–F) HUVECs were incubated with rhLK8 (5 mM) for various time periods as indicated. Cells were then
collected and lysed, and whole cell proteins were separated by SDS-PAGE. (D) The activation of caspase-3 was determined by Western blotting using
antibodies against procaspase-3 or a 20 kDa processed form of caspase-3, as indicated. (E) Western blotting using antibodies against procaspase-9
was performed to determine the activation of caspase-9. Actin (lower panel) was used as a loading control. (F) Cytosolic and membrane-bound
proteins were prepared as described in the ‘‘Materials and Methods’’ and were analyzed by Western blotting using antibodies against cytochrome c
to determine the release of cytochrome c into the cytosol. Protein samples loaded in lane C-16 were prepared from cells incubated without rhLK8 for
16 h. The immunoblots shown are representative of at least three independent experiments. (Replicates of Fig. 1D, 1E, and 1F are available in Fig. S1).
doi:10.1371/journal.pone.0093794.g001

Figure 2. Interaction of GRP78 with rhLK8 as determined by co-immunoprecipitation and flow cytometry. For immunoprecipitation (IP)
experiments, cell extracts of (A) HUVECs or (B) HEK293 cells expressing 66His-tagged GRP78 protein were mixed overnight at 4uC with 10 mg of HA
monoclonal antibody, 2 mg of HA-tagged rhLK8, and protein G-agarose. Eluted samples were separated by SDS-PAGE. GRP78 bound to rhLK8 was
detected by Western blot (WB) using an anti-GRP78 monoclonal antibody or anti-His antibody. To determine the binding of rhLK8 to the GRP78
protein on the surface of HUVECs, HUVECs that had been transduced with scrambled siRNA or GRP78-specific siRNA were harvested and stained with
(C) FITC-labeled rhLK8 or (D) anti-GRP78 antibodies and analyzed by flow cytometry. Unstained cells or cells stained with FITC-labeled secondary
antibody only were used as negative control. Data are representative of two independent experiments. (Replicates of Fig. 2A and 2B are available in
Fig. S2).
doi:10.1371/journal.pone.0093794.g002
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Figure 3. Inhibition of rhLK8-mediated endothelial cell apoptosis by GRP78-directed siRNA knockdown or anti-GRP78 antibodies.
(A) To determine whether GRP78 may be involved in rhLK8-mediated endothelial cell apoptosis, HUVEC monolayers were treated with rhLK8 (1 or
5 mM) after pretreatment with 5 mg of GRP78 antibody for 30 min. Data are representative of three independent experiments. (B) HUVECs transfected
with scrambled siRNA or GRP78-specific siRNA were treated with 5 mM of rhLK8. The subsequent induction of apoptosis was detected by antibodies
against active caspase-3 or procaspase-9. The expression of GRP78 was detected by anti-GRP78 monoclonal antibody. GAPDH was used for loading
control. Data are representative of two independent experiments. (C) HUVECs treated with GRP78 antibody or transfected with GRP78-specific siRNA
were treated with rhLK8 (5 mM) and endothelial apoptosis was assessed by nuclear morphology after staining with Hoechst 33452. Representative
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0.05% digitonin in isotonic buffer A [10 mM HEPES, 150 mM

NaCl, 1.5 mM MgCl2, and 1 mM EGTA (pH 7.4)] containing

protease inhibitors [1 mM 4-(2-aminoethyl) benzenesulfonyl fluo-

ride hydrochloride, 0.8 mM aprotinin, 50 mM bestatin, 15 mM E-

64, 20 mM leupeptin, and 10 mM pepstatin A] for 2 min at room

temperature. The permeabilized cells were collected at 4uC. After
centrifugation at 15,0006g for 10 min, the supernatant (cytosolic

fraction) and the pellet (membrane fraction) were collected

separately. To release membrane- and organelle-bound proteins,

the pellet was further extracted with ice-cold 1% Nonidet P-40 in

buffer A containing protease inhibitors for 60 min at 4uC. Both
cytosolic and membrane fractions were analyzed by Western

blotting using antibodies against cytochrome c (BD Biosciences).

Construction of the Expression Vector for Glucose-
regulated Protein 78 (GRP78) and Transient Transfection
to HEK293 Cells
The GRP78 gene was amplified by PCR using the following

primers: forward (59-TTT TTT GGA TCC ATG AAG CTC

TCC CTG GTG GCC-39) and reverse (59-TTT TTT GCG GCC

GCT CTA CAA CTC ATC TTT TTC TGC-39), and then

cloned into the eukaryotic expression vector pcDNA3.1-myc-his(2

)b (Invitrogen). Transient transfection of HEK-293 cells with the

GRP78 expression vector was performed using lipofectamine 2000

(Invitrogen) reagents according to the manufacturer’s instructions.

Twenty-four hours after the transfection, the cells were washed 3

times with phosphate-buffered saline (PBS), harvested by scraping,

and centrifuged for 5 min at 5006g. The collected cells were lysed

using IP buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.6)

containing 1% NP-40, and cell extracts were analyzed by Western

blotting.

Co-immunoprecipitation of rhLK8-binding Proteins
HEK293 cells transfected with GRP78 expression vectors were

collected and extracted using lysis buffer (150 mM NaCl, 50 mM

Tris, 1% NP-40, 16protease inhibitor, and 1 mM phenylmethyl-

sulfonyl fluoride, pH 7.6). The cell extracts were mixed overnight

at 4uC with 10 mg of monoclonal anti-HA antibody, 2 mg of HA-

tagged rhLK8, and protein G-agarose (Sigma). The immunoad-

sorbents were recovered by centrifugation for 5 min at 7006g,

washed three times, and centrifuged (5 min at 700 6 g) in IP

buffer (150 mM NaCl, 50 mM Tris, 0.1% NP-40, pH 7.6). The

pellets were resuspended in 30 mL of SDS-PAGE loading buffer

(Sigma) and analyzed by Western blotting.

siRNA Transfection
HUVECs were trypsinized, counted, and diluted in antibiotic-

free EGM-2 medium to 2.56105 cells/ml for transfection with

DharmaFECT 1 (Thermo Fisher Scientific, Lafayette, CO, USA),

according to the manufacturer’s instructions. Briefly, HUVECs

were plated into 100 mm dishes and incubated at 37uC with 5%

CO2 overnight. One milliliter of 2 mM ON-TARGETplus

SMARTpool siRNA (Thermo Fisher Scientific) against GRP78

diluted in 16siRNA Buffer (tube-1) and DharmaFECT 1 (tube-2)

diluted with serum-free medium were put in separate tubes,

incubated for 5 min at room temperature, mixed together, and

then incubated for 20 min at room temperature. The incubated

mixtures of siRNA and DharmaFECT 1 were diluted in 8 ml of

serum-free medium and subsequently added to the 100 mm dish

with HUVEC monolayers. After 24 h, the transfection medium

was replaced with complete medium containing FBS and growth

factors. Two days post-transfection, HUVECs were split, and on

the 4th day they were harvested or replated for other experiments.

Analysis of rhLK8 Binding to GRP78 on the HUVECs by
Flow Cytometry
To measure the binding of rhLK8 to the GRP78 protein on the

surface of HUVECs, rhLK8 was labeled with FITC using a FITC-

labeling kit (Sigma) according to the manufacturer’s instructions.

HUVECs that had been transduced with scrambled siRNA or

GRP78-specific siRNA were trypsinized and neutralized by

trypsin neutralizing solution (Lonza). 56105 HUVECs were

stained using FITC-labeled rhLK8 or GRP78 antibodies for

1.5 h at 4uC, washed with PBS 3 times, and analyzed by flow

cytometry with a FACS Caliber (BD Biosciences).

Animal Model for Experimental Liver Metastasis
Athymic BALB/c nude mice were anesthetized by an intraper-

itoneal (i.p.) injection of ketamine/xylazine (Sigma). The spleen

was then exteriorized through a left lateral flank incision.

Approximately 36105 LS174T human colorectal carcinoma cells

(American Type Culture Collection, Manassas, VA, USA) in

100 ml of Hank’s balanced salt solution were injected into the

spleen parenchyma using a 27-gauge needle. The peritoneum and

skin were closed in two layers with metal clips. From the day of

tumor cell inoculation, mice had daily i.p. administrations of 2, 10

and 50 mg/kg rhLK8 for two weeks. In addition, control and

rhLK8 (2, 10 or 50 mg/kg)-treated mice were employed in

survival experiments (n = 10/each group).

To investigate the therapeutic efficacy of rhLK8 treatment in

combination with a conventional chemotherapy, the mice injected

with LS174T cells were randomized into four groups (n = 5 per

group) and treated as follows: (1) daily i.p. administration of

vehicle (100 mM NaCl, 150 mM L-Glycine, pH 4.2); (2) i.p.

injection of 5-fluorouracil (5-FU; 8 mg/kg/day) for the first five

days after intrasplenic injection; (3) daily i.p. injection of rhLK8

(10 mg/kg); and (4) daily i.p. administration of rhLK8 (10 mg/kg)

and i.p. injection of 5-FU (8 mg/kg/day) for the first five days after

intrasplenic injection. Control and rhLK8-treated mice were also

used in survival experiments (n = 10 mice per group) or were

euthanized by CO2 inhalation 2 weeks after treatment, at which

time livers were collected, weighed, and analyzed to determine the

surface tumor nodule numbers or were subjected to histologic and

immunohistochemical examination.

Ethics Statement
All surgical procedures were approved by the Animal Ethics

Committee of the Mogam Biotechnology Research Institute or

Korea Research Institute of Bioscience and Biotechnology

(KRIBB-AEC-13011) and all efforts were made to minimize

suffering. Care administered to the animals was in accordance

with guidelines for the Care and Use of Laboratory Animals of the

National Institutes of Health.

Histology and Immunohistochemistry
To count intra-hepatic nodules, the tumor-bearing livers were

dissected, fixed with 10% neutral buffered formalin overnight,

embedded in paraffin, and sectioned into 4 mm slices. Sections

photomicrographs are shown. Apoptotic endothelial cells are indicated by arrows. The magnifications are 6100. (Replicates of Fig. 3A and 3B are
available in Fig. S3).
doi:10.1371/journal.pone.0093794.g003
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Figure 4. Suppression of liver metastasis by rhLK8. Approximately 36105 LS174T human colorectal carcinoma cells were injected into the
spleen parenchyma of athymic BALB/c nude mice. Mice had daily i.p. administrations of rhLK8 (50, 10 or 2 mg/kg/day) for fourteen days. Mice were
then sacrificed, and the livers were collected to analyze the metastasis of intrasplenically injected LS174T cells. (A) Representative photographs
showing livers obtained from control (left) or rhLK8-treated (right) mice. (B) Number of surface tumor nodules in control and rhLK8-treated livers. *,
p,0.05; **, p,0.01. (C) Sections of tumor tissues stained with H&E. Arrows indicate liver metastases. (D) The number of liver metastases per unit area
(100 mm2) of randomly selected fields. *, p,0.05; **, p,0.01. (E) Immunohistochemical analyses of liver metastases of LS174T human colorectal
carcinoma. Nuclei of liver specimens were stained with Hoechst 33342 (a and c), and double immunofluorescence staining was performed for CD31/
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were stained with hematoxylin and eosin (H&E) and subjected to

immunohistochemical analysis. For frozen blocks, tumor speci-

mens were dissected from mice, embedded immediately in

ornithine carbamoyl transferase (OCT; Miles, Elkhart, IN, USA)

compound, snap frozen in liquid nitrogen and stored at 270uC.
Frozen tissues for CD31/PECAM-1 and/or terminal deoxynu-

cleotidyl transferase-mediated dUTP nick end labeling (TUNEL)

staining were prepared and fixed in cold acetone. The TUNEL

assay was performed with a commercially available apoptosis

detection kit (Promega, Madison, WI, USA) with some modifica-

tion. Immunohistochemistry procedures were performed and all

antibodies and agents for immunohistochemistry were purchased

from sources as described previously [24]. Control samples

exposed to secondary antibody alone showed no specific staining.

The stained sections were examined under an Olympus BX51

microscope (Olympus) equipped with an Olympus DP71 12.5

megapixel digital microscope camera.

Immunofluorescent Double Staining for CD31/PECAM-1
(Endothelial Cells) and TUNEL
The TUNEL assay was performed following CD31/PECAM-1

immunofluorescent staining as described previously [24]. Tissue

samples were incubated with 300 mg/ml of the Hoechst 33342

stain for 1 min at room temperature. Propylgallate was placed on

each slide and then covered with a glass cover slip (Fischer

Scientific, Fair Lawn, NJ, USA). Endothelial cells were visualized

with red fluorescence, and fragmented DNA (TUNEL assay) was

visualized with green fluorescence. Co-localization of red and

green signals produced yellow signals (apoptotic endothelial cells).

Statistical Analysis
Data are presented as the means 6 SD. Statistical significance

was calculated using the Student’s t-test, except for the in vivo

survival experiments, for which we used log-rank analysis of a

Kaplan-Meier survival curve. A value of p,0.05 was considered

statistically significant.

Results

Effects of rhLK8 on Endothelial Cell Apoptosis in vitro
To determine the effects of rhLK8 on endothelial cell apoptosis,

HUVEC monolayers were incubated in EBM-2 containing 1%

FBS in the presence or absence of 3 ng/ml bFGF and treated with

various concentrations of rhLK8 (0.1–5 mM) for 12 or 24 h.

Apoptotic endothelial cells were identified by nuclear morphology

after staining with Hoechst 33452 (Fig. 1A). Treatment with

rhLK8 significantly induced the apoptosis of HUVECs in a time-

and dose-dependent manner in the absence (Fig. 1B) or presence

(Fig. 1C) of angiogenic factors such as 3 ng/ml bFGF.

Caspase-3 and Caspase-9 Activation and Cytochrome C
Release into the Cytosol by rhLK8
To examine the biochemical characteristics of rhLK8-induced

apoptosis of HUVECs, we first tested the effects of rhLK8 on the

activation of an effector caspase, caspase-3, which is a key step in

apoptosis. HUVECs treated with rhLK8 (5 mM) showed decreased

levels of the 32-kDa procaspase-3 but increased levels of the 20-

kDa processed fragment of caspase-3 (Fig. 1D and Fig. S1A),

indicating the activation of caspase-3. Cleavage of a caspase-3

substrate, poly ADP-ribose polymerase, was also detected in

rhLK8-treated HUVECs (data not shown). Effector caspases are

activated downstream of caspase-8 or caspase-9, which are the

initiator caspases involved in signaling through two distinct

apoptotic pathways, the death receptor and mitochondrial

pathways, respectively [25]. To determine which pathway is

responsible for rhLK8-induced endothelial cell apoptosis, we

tested the effects of rhLK8 (5 mM) on the activation of caspase-8 or

caspase-9. The level of procaspase-9 was significantly reduced in

rhLK8-treated HUVECs compared with control cells (Fig. 1E and

Fig. S1B), whereas no difference in the level of procaspase-8 was

observed (data not shown), indicating that the mitochondrial

pathway (also known as the intrinsic pathway) was involved.

Because the mitochondrial pathway is initiated by the release of

cytochrome c and other polypeptides from the mitochondrial

intermembrane space into the cytosol, we examined cytochrome c

release in the rhLK8-treated HUVECs. rhLK8 (5 mM) caused a

time-dependent reduction in the level of cytochrome c in the

mitochondrial membrane, whereas the level of cytosolic cyto-

chrome c was concomitantly increased (Fig. 1F and Fig. S1C).

rhLK8 Interacts with GRP78
Recently, plasminogen kringle V (PK5) has been reported to

induce the caspase-dependent apoptosis of tumor cells and

endothelial cells by binding to GRP78 on the cell surface [26].

Based on the high sequence homology between PK5 and rhLK8,

we tested the possibility that rhLK8 may induce the apoptosis of

endothelial cells by interacting with GRP78. We mixed the

extracts from HUVECs or HEK293 cells expressing His-tagged

PECAM-1 (red) and TUNEL (green) in control mice (a and b) or mice treated with rhLK8 (c, d, and e) as indicated. Apoptosis of tumor-associated
endothelial cells (yellow) in the liver metastases treated with rhLK8 is indicated by arrows. Magnification,6100. High magnification (panel e;6200) of
a selected region of panel (d), indicated by a dotted box. Bars, 100 mm. Data are representative of at least three independent experiments. (Replicates
of Fig. 4A and 4B are available in Fig. S1).
doi:10.1371/journal.pone.0093794.g004

Figure 5. Kaplan-Meier survival curve for mice bearing liver
metastases. Athymic BALB/c nude mice were injected intrasplenically
with 36105 LS174T human colorectal carcinoma cells. Mice had daily i.p.
administrations of 0 (N), 10 (.) or 50 (#) mg/kg rhLK8, and the fraction
of surviving mice was monitored over time. Differences in survival were
statistically significant, as determined by log-rank analysis: p,0.005,
control vs. the rhLK8-treated group (10 mg/kg); p,0.0001, control vs.
the rhLK8-treated group (50 mg/kg). Data are representative of two
independent experiments.
doi:10.1371/journal.pone.0093794.g005
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GRP78 with 10 mg of monoclonal anti-HA antibody, 2 mg of HA-

tagged rhLK8, and protein G-agarose and the immunoprecipi-

tants were immunoblotted with anti-GRP78 or anti-His antibod-

ies. Both endogenous GRP78 in HUVECs (Fig. 2A and Fig. S2A)

and His-tagged GRP78 in HEK293 cells (Fig. 2B and Fig. S2B)

clearly bound to the rhLK8 added to the co-immunoprecipitation

mixture. However, no GRP78 protein was detected when the co-

immunoprecipitation assay was performed in the absence of HA-

tagged rhLK8 protein.

rhLK8 Binds to GRP78 Expressed on the Surface of
HUVECs
To determine whether rhLK8 binds to GRP78 expressed on the

surface of HUVECs, HUVECs were treated with either the

specific siRNA for GRP78 or scrambled siRNA, stained with

FITC-conjugated rhLK8 or anti-GRP78 antibodies, and analyzed

by flow cytometry. Both rhLK8 and GRP78 antibodies bound to

the surface of HUVECs transduced with control siRNA in a dose-

dependent manner, whereas the binding of rhLK8 and GRP78

antibodies was decreased in HUVECs transduced with GRP78-

specific siRNA (Fig. 2C and 2D).

rhLK8 induces Apoptosis of Endothelial Cells in vitro by
Interacting with GRP78
To determine whether GRP78 proteins are involved in the

rhLK8-induced apoptosis of endothelial cells, HUVECs were

treated with an antibody against GRP78 prior to treatment with

rhLK8. Treatment with a GRP78 antibody significantly decreased

the level of the active caspase-3 in HUVECs compared with

control cells, indicating that GRP78 may play a role in rhLK8-

mediated endothelial cell apoptosis (Fig. 3A and Fig. S3A). These

data are supported further by the results showing that apoptosis in

HUVECs with GRP78 siRNA knockdown was not different with

or without treatment with rhLK8 (Fig. 3B and Fig. S3B–D),

whereas the apoptosis of HUVECs transfected with the scrambled

siRNA was significantly induced by treatment with rhLK8, as

determined by the increase in active caspase-3 and the decrease in

procaspase-9 (Fig. 3B and Fig. S3B–D). Consistently, GRP78

antibody treatment or GRP78 knock-down by siRNA transfection

abolished rhLK8-induced apoptosis of HUVECs at cellular level,

as assessed by the number of apoptotic cells (Fig. 3C).

Treatment with rhLK8 Suppresses the Growth of
Intrasplenically Injected LS174T Cells in the Liver
As angiogenesis is critical for tumor cell metastasis and solid

tumor growth, we examined the effects of rhLK8 on the liver

metastasis of intrasplenically injected LS174T cells. Mice in the

rhLK8 treatment group that received daily i.p. injections of 2, 10,

or 50 mg/kg rhLK8 showed fewer liver metastases in a dose-

dependent manner (Fig. 4A–B and Fig. S4) compared with the

control group of mice. To further analyze rhLK8-mediated

suppression of liver metastasis, the liver tissues were stained with

H&E, and metastases were counted. There were significantly more

metastasized tumors in the livers of control mice than in those of

the rhLK8-treated mice (Fig. 4C). The number of liver metastases

in rhLK8-treated mice was significantly lower than in control

mice, and this effect was dose dependent (Fig. 4D).

rhLK8 Induces the Apoptosis of Endothelial Cells
Associated with Colon Cancer Liver Metastasis
To examine the mechanism of the inhibition of liver metastasis

by rhLK8, liver tissues with colon cancer metastases from mice

treated with rhLK8 (10 mg/kg/day) or vehicle for 7 days were

analyzed by immunohistochemical staining for CD31/PECAM-1

and TUNEL. The CD31/TUNEL fluorescent double-labeling

revealed that rhLK8 induced apoptosis of tumor-associated

endothelial cells (Fig. 4E), while no substantial apoptosis was

observed in control cells (Fig. 4E). Apoptosis of endothelial cells of

normal liver tissue was not observed in either vehicle-treated

control or rhLK8-treated groups.

rhLK8 Improves the Survival of Mice with Colon Cancer
Liver Metastases
To assess whether the suppression of metastasis by rhLK8

translates into a survival benefit, we conducted the following

survival experiment. Mice were injected intrasplenically with

LS174T human colon carcinoma cells and were then treated

intraperitoneally with 10 or 50 mg/kg rhLK8. The fraction of

surviving animals was monitored for ,70 days. As depicted in

Fig. 5, systemic treatment with 10 or 50 mg/kg/day rhLK8

significantly improved host survival in rhLK8-treated mice

compared with control mice (log-rank test; p,0.005 and p,

0.0001 for mice treated with 10 or 50 mg/kg rhLK8 vs. control,

respectively). The median survival was 29, 41 and 46 days and the

overall survival was 38, 50, and 68 days in control mice and mice

treated with 10 or 50 mg/kg rhLK8, respectively (Fig. 5).

Combination Therapy of rhLK8 and 5-fluorouracil
Extends the Overall Survival of Mice with Colorectal
Cancer Liver Metastasis
Next, we determined the therapeutic effects of rhLK8

monotherapy or combination therapy with a conventional

chemotherapeutic agent, 5-fluorouracil (5-FU), against LS174T

cells growing in the livers of nude mice. When compared to the

control group, mice treated with rhLK8 or 5-FU showed a

significant reduction in the number liver metastases (Fig. 6A; p,

0.05 vs. control group), an effect that was even more pronounced

with the combination with rhLK8 and 5-FU (Fig. 6A; p,0.0005

vs. control group), as determined by the number of surface

nodules. Moreover, host survival was significantly extended by the

treatment with rhLK8 or 5-FU, and the extended host survival

was improved further with the combination of rhLK8 and 5-FU,

compared with the control group of mice (log-rank test; p,0.005,

p,0.001, and p,0.0001 for mice treated with rhLK8, 5-FU, and

rhLK8 plus 5-FU, respectively). The median survival was 28, 34,

34, and 39 days and the overall survival was 33, 43, 41, and 55

days after the intrasplenic injection of LS174T cells for control

mice and mice treated with rhLK8, 5-FU, and rhLK8 plus 5-FU,

respectively (Fig. 6B).

Figure 6. Effects of the combination of rhLK8 and conventional chemotherapy on the suppression of colon cancer liver metastasis
and host survival. Mice injected intrasplenically with LS174T human colorectal carcinoma cells were administered vehicle, 5-FU, rhLK8, or 5-FU plus
rhLK8, as described in ‘‘Materials and Methods’’. (A) Mice were sacrificed, and surface nodules were counted. *, p,0.05 vs. control. **, p,0.0005 vs.
control. (B) Kaplan-Meier survival curve of control mice (N) and mice treated with 5-FU (#), rhLK8 (.), or 5-FU plus rhLK8 (h). Differences in survival
were statistically significant, as determined by log-rank analysis: p,0.005, p,0.001, and p,0.0001 vs. control mice.
doi:10.1371/journal.pone.0093794.g006
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Discussion

One of the main obstacles to the treatment of cancer is the

heterogeneity and genetic instability of cancer cells, which leads to

the development of chemoresistance [27]. For many solid tumors,

despite an initial favorable response to therapy, treatment

strategies developed in the past few decades have not achieved a

significant increase in the median survival of patients, and

improvements in prognosis are often due to better supportive

care rather than to improved treatment of the cancers per se

[28,29]. Therefore, targeting more homogeneous and genetically

stable host factors, such as the tumor vasculature, has become an

attractive approach [5,30]. In this context, anti-vascular therapy is

regarded as a promising treatment strategy that could avoid drug

resistance and reduce drug-related toxicities by targeting only the

highly proliferative tumor-associated endothelial cells [31] rather

than the relatively dormant endothelial cells in normal tissues [32].

Endothelial cell survival through the inhibition of apoptosis is

thought to be an essential process during angiogenesis, whereas the

induction of endothelial cell apoptosis may counteract angiogen-

esis [33]. Thus, angiogenesis is controlled by a balance between

pro- and anti-angiogenic factors, and disturbances in this balance

can trigger the cell responses required for angiogenesis [34].

Factors such as vascular endothelial growth factor and bFGF have

been found to play a critical role in angiogenesis. In addition to

promoting endothelial cell proliferation and migration, these pro-

angiogenic factors inhibit endothelial cell apoptosis. Conversely,

natural inhibitors of angiogenesis, such as angiostatin [35], have

been reported to induce either the extrinsic (death receptor

pathway) or intrinsic (mitochondrial pathway) apoptosis pathways

in endothelial cells.

PK5 is considered the most potent angiogenesis inhibitor both

in vitro and in vivo among plasminogen kringles [36,37], and anti-

angiogenic therapy with PK5 inhibits the growth of a variety of

tumors [38,39,40,41,42,43]. Though the exact mechanism of

action remains to be elucidated, it has been shown that PK5

induces the apoptosis of proliferating endothelial cells [26] by

interacting with a chaperone protein, the glucose-regulated

protein 78 (GRP78), in the endoplasmic reticulum [26]. Binding

of PK5 to GRP78 may cause the activation of caspase-7, leading

to apoptotic cell death. Considering that PK5 treatment promotes

the release of cytochrome c and the activation of caspase cascades

including caspase-3, -6, and -7 following the mitochondrial

depolarization [44], PK5 seems to induce the apoptosis of

endothelial cells through the mitochondrial apoptosis pathway.

In this process, regulation of the Bak/Bcl-XL ratio, but not the

Bax/Bcl-2 ratio, without any effects on the total amount of these

proteins, has been suggested to play a critical role in the regulation

of endothelial cell apoptosis [45].

In the present study, rhLK8 stimulated apoptotic turnover in

endothelial cells through the mitochondria-dependent activation

of caspases-9. Unlike PK5, which showed a significant sequence

homology with rhLK8, our preliminary data suggest that rhLK8

increased the Bax/Bcl-2 ratio in the mitochondria but decreased

the ratio in the cytosol without significantly affecting the

expression of these proteins (Ahn et al., unpublished data). The

pro-apoptotic protein Bax, which normally resides in the cytosol,

translocates to mitochondria when triggered by certain stimuli.

Translocated Bax has been shown to induce cytochrome c release

both in vitro and in vivo, followed by caspase activation [46]. Co-

immunoprecipitation and flow cytometric experiments demon-

strated that rhLK8 specifically binds to GRP78 on the endothelial

cell surface. GRP78 proteins appeared to be involved in the

rhLK8-mediated endothelial cell apoptosis, as treatment with

GRP78 siRNA or GRP78-specific antibodies masked the rhLK8-

induced apoptosis of HUVECs. However, the mechanism by

which rhLK8 affects Bax translocation and how rhLK8 induces

endothelial cell apoptosis through GRP78 remains unknown.

Anti-angiogenic therapy with rhLK8 may be a promising

candidate for the treatment of colorectal cancer liver metastasis, as

rhLK8 suppressed liver metastasis of LS174T human colorectal

cancer cells in the experimental liver metastasis model in a dose-

dependent manner. In line with the findings that anti-angiogenic

agents may target the proliferating endothelial cells, but not the

dormant endothelial cells in the normal human body, immuno-

histochemical analyses showed that rhLK8 induces the apoptosis

of tumor-associated endothelial cells in livers from the rhLK8-

treated mice but not in livers from the control group of mice or

normal liver tissues. These findings may have important clinical

implications because this selectivity should lead to minimal side

effects even after prolonged exposure to anti-angiogenic therapy.

Most angiogenesis inhibitors confer clinical benefits primarily

when combined with other conventional chemotherapies rather

than when used as a monotherapy [47], as reported in the present

study. With conventional chemotherapy alone, drug delivery to

cancer cells may be significantly impaired by high interstitial

pressure due to the inherent leakiness of the tumor vasculature. A

potential explanation for the synergism of angiogenesis inhibitors

and conventional chemotherapy is that anti-angiogenic therapy

may initially normalize the tumor-associated vasculature, resulting

in improved tissue oxygenation and increased delivery of

chemotherapeutic agents [48,49,50].

In conclusion, these results suggest that targeting tumor

angiogenesis with rhLK8 combined with a conventional chemo-

therapy could be a promising approach for the treatment of

colorectal cancer liver metastasis.

Supporting Information

Figure S1 Induction of endothelial cell apoptosis by
rhLK8. HUVEC monolayers were incubated in EBM-2 contain-

ing 1% FBS in the presence of 3 ng/ml bFGF and treated with

rhLK8 (5 mM) for various time periods as indicated. Cells were

then collected and lysed, and whole cell proteins were separated by

SDS-PAGE. (A) The activation of caspase-3 was determined by

Western blotting using antibodies against procaspase-3 or a

20 kDa processed form of caspase-3 as indicated. (B) Western

blotting using antibodies against procaspase-9 was performed to

determine the activation of caspase-9. Actin was used as a loading

control. (C) Cytosolic and membrane-bound proteins were

prepared as described in the ‘‘Materials and Methods’’ and were

analyzed by Western blotting using antibodies against cytochrome

c to determine the release of cytochrome c into the cytosol. Protein

samples loaded in lanes C-16 or C-24 were prepared from cells

incubated without rhLK8 for 16 and 24 h, respectively. (Repli-

cates of Fig. 1D, 1E, and 1F).

(TIF)

Figure S2 Interaction of GRP78 with rhLK8 as deter-
mined by co-immunoprecipitation assay. Cell extracts of
(A) HUVECs or (B) HEK293 cells expressing 66His-tagged

GRP78 protein were mixed overnight at 4uC with 10 mg of HA

monoclonal antibody, 2 mg of HA-tagged rhLK8, and protein G-

agarose. Eluted samples were separated by SDS-PAGE. GRP78

bound to rhLK8 was detected by Western blot (WB) using an anti-

GRP78 monoclonal antibody or anti-His antibody. (Replicates of

Fig. 2A and 2B).

(TIF)
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Figure S3 Inhibition of rhLK8-mediated endothelial cell
apoptosis by GRP78-directed siRNA knockdown or anti-
GRP78 antibodies. (A) To determine whether GRP78 is

involved in rhLK8-mediated endothelial cell apoptosis, HUVEC

monolayers were treated with rhLK8 (0–5 mM) after pretreatment

with 5 mg of GRP78 antibody for 30 min. (B) Transfection of

GRP78-specific siRNA decreases the expression of GRP78

proteins in HUVECs as assessed by Western blotting. (C–D)

HUVECs transfected with scrambled siRNA or GRP78-specific

siRNA were treated with 0–5 mM of rhLK8 as indicated. The

subsequent induction of apoptosis was detected by antibodies

against (C) active caspase-3 or (D) procaspase-9 as indicated. The

expression of GRP78 was detected by anti-GRP78 monoclonal

antibody. GAPDH was used for loading control. (Replicates of

Fig. 3A and 3B).

(TIF)

Figure S4 Suppression of liver metastasis by rhLK8.
LS174T human colorectal carcinoma cells (36105 cells) were

injected into the spleen parenchyma of athymic BALB/c nude

mice. Mice had daily i.p. administrations of rhLK8 (250, 50, 10, 2

or 0.4 mg/kg/day) for fourteen days. Mice were then sacrificed,

and the livers were collected to analyze the metastasis of

intrasplenically injected LS174T cells. (A) Representative photo-

graphs showing livers obtained from control or mice treated with

various concentrations of rhLK8 as indicated. (B–C) Number of

surface tumor nodules in livers from control and mice treated with

various concentrations of rhLK8 as indicated. (Replicates of

Fig. 4A and 4B).

(TIF)
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