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Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich
foods significantly improve cognitive capabilities, inhibit or delay the senescence
process and related neurodegenerative disorders including Alzheimer’s disease (AD). The
flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the
various states of cognitive dysfunction, AD and dementia-like pathological alterations
in different animal models. The mechanisms of flavonoids have been shown to be
mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE),
and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation
of signaling pathways, that are implicated in cognitive and neuroprotective functions.
Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt
and modulate their actions, thereby leading to beneficial neuroprotective effects.
Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in
the hippocampus. Flavonoids also hamper the progression of pathological symptoms
of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic
substances including free radicals and β-amyloid proteins (Aβ). All these protective
mechanisms contribute to the maintenance of number, quality of neurons and their
synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-
related disorders and can be a potential source for the design and development of new
drugs effective in cognitive disorders.

Keywords: Alzheimer’s disease, polyphenols, amyloid beta, cholinesterases, antioxidant, signaling pathways and
cognition
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INTRODUCTION

Flavonoids represent a diverse group of naturally occurring
compounds which are biosynthesized from phenylalanine,
and are ubiquitous to green pigments in the plant kingdom
(Havsteen, 2002). Flavonoids have a long history of medical
use for the treatment of various medical ailments (Rice-Evans
and Packer, 2003). Their great diversity, distribution and
easy isolation make them a dominant class of therapeutic
agents. Flavonoids are the major building blocks for the
synthesis of various drugs and may itself be used as natural
products, thus play a pivotal role in the domain of drug
design and discovery (Havsteen, 1983). Until now, more than
7,000 flavonoids have been reported from natural sources
including medicinal plants, vegetables, fruits and wines.
Flavonoids have the ability to bind with numerous body
proteins and modify the transporters, enzymes, hormones,
DNA, chelation of heavy metals and scavenge the free
radicals; therefore, possess strong antioxidant properties
(Havsteen, 1983; Robak and Gryglewski, 1988; Morel et al.,
1993; Cushnie and Lamb, 2005). A myriad number of
pharmacological studies have been reported that suggest
their usefulness in the management of diabetes mellitus
(DM), cancer, cardiovascular diseases, neurological disorders,
inflammation and microbial diseases (Middleton et al.,
2000; Marder and Paladini, 2002; Galati and O’Brien, 2004;
Cushnie and Lamb, 2005).

Recent studies have shown that regular use of flavonoid-rich
foodstuffs can effectively enhance cognitive capabilities in
humans (Macready et al., 2009; Socci et al., 2017; Bakoyiannis
et al., 2019). Additionally, several flavonoids have been reported
to restrain the progression of pathologies of Alzheimer’s disease
(AD) and this has been stem from their ability to quash
the cognitive deficits in numerous normal and transgenic
preclinical animal models (Macready et al., 2009; Spencer,
2010b; Bakoyiannis et al., 2019). The beneficial effects of
flavonoids rich foods like cocoa, green tea and blue berry
can be attributed to the interactions of flavonoids and their
metabolites with numerous cellular and molecular targets
(Yevchak et al., 2008; Mastroiacovo et al., 2014). For instance,
the specific interactions of flavonoids with receptors within
the ERK and PI3-kinase/Akt signaling pathways have been
reported to augment the expression of neuromodulatory and
neuroprotective proteins as well as enhance the number and
strength of different types of neurons (Schroeter et al., 2002;
Vauzour et al., 2007a; Spencer, 2008). Concomitantly, their
beneficial effects on the cerebrovascular system can improve
the cognitive performance of individuals via an enhancement
in blood flow and stimulation of neurogenesis in brain. Several
other mechanisms regarding the beneficial use of flavonoids have
been recently reported (Spencer, 2009; Spencer et al., 2009).
Flavonoids attenuate the initiation and progression of AD-like
pathological symptoms and related neurodegenerative disorders
(Williams and Spencer, 2012). The possiblemechanisms for these
effects include the inhibition of neuronal apoptosis induced by
neuro-inflammation, oxidative stress, inhibition of key enzymes
involved in the fabrication of amyloid plaques and other

pathological products (Williams and Spencer, 2012). Flavonoids
thus mediate their neuroprotective effects by maintaining the
neuronal quality and number in the key brain areas and thus
prevent the onset/progression of diseases responsible for the
decrease in the cognitive function.

METHODS

Recent scientific literature published in high quality journals
were collected using various search engines including Google
Scholar, SciFinder, Science Direct, PubMed, Web of Science,
EBSCO, Scopus, JSTOR and other web sources. The scientific
literature preferably on dietary flavonoids in context to their
neuroprotective properties and their mechanism of action
were selected. Literature with scientific rigor published up to
2017 was included.

FLAVONOIDS DISTRIBUTION IN NATURE

Flavonoids represent a major group of secondary metabolites
which are extensively distributed in nature especially in
green plants. Majority of natural flavonoids are pigments,
and are usually allied with some vital pharmacological
functions. Flavonoids are differentiated from each other on
the basis of differences in the aglycon ring structure and
state of oxidation/reduction. Moreover, based on the extent
of hydroxylation of aglycon, positions of the hydroxyl
groups, saturation of pyran ring and differences in the
derivatization of the hydroxyl groups are major differentiating
features among the various classes of flavonoids. The major
nutritional sources of flavonoids include fruits, juices,
vegetables, tea, cereals and wines (Manach et al., 2004).
Some common flavonoids include quercetin, kaempferol
(flavonols), myricetin, predominantly present in the onions,
leeks and broccoli, fruits flavones including luteolin and
apigenin are abundant in celery and parsley. Other common
types of flavonoids include isoflavones (daidzein, genistein),
which are naturally distributed in soy and soy products,
flavanones including naringenin and hesperetin, present in
the citrus fruits and tomatoes. Flavanols, that are represented
by epigallocatechin gallate (EGCG), catechin, epicatechin
and epigallocatechin are mainly sequestered in the green
tea, red wine, and chocolate, whereas, anthocyanidins
including malvidin, pelargonidin and cyanidinare are widely
distributed in the berry fruits and red wine (Manach et al.,
2005; Figure 1).

CHEMISTRY

Flavonoids are abundantly present as polyphenols in plants
that are the products of secondary metabolites. The basic
chemical structure of flavonoids contains two benzene rings
(A and C) connected by a pyran ring B (Figure 2). One
of the benzene ring (A) is fused with the pyran ring while
the other benzene ring (C) is attached as substituent to
the pyran ring. Depending upon the pattern of substitution
of benzene rings, and that of substitution, oxidation and
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FIGURE 1 | The major classes of flavonoids and their dietary sources.

saturation of pyran ring, various derivatives of flavonoids can be
synthesized that possess unique physicochemical properties and
biological activities acceptable for the efficient management of
neurodegenerative diseases.

CLASSIFICATION

Flavonoids are classified into various groups depending on the
position at which the benzene ring (C) is attached to the pyran
and the degree of unsaturation and oxidation of pyran ring.
These different flavonoids have a dominant role in various
pharmacological activities. Each sub-type is discussed below.

ISOFLAVONES

The class of flavonoids in which the benzene ring (C) is
attached to the position 3 of the pyran ring is shown in
Figure 3. Isoflavone are majorly found in various natural
products especially soybean (Wang and Murphy, 1994).
Several researchers have also synthesized various derivatives
of isoflavone by different synthetic approaches. Wang in
2005 has synthesized various derivatives of isoflavones by
Suzuki coupling (Ding and Wang, 2005). Various derivatives
of this famous group of easily biodegradable antioxidant have
also been synthesized with triazin (Jha et al., 1981). Similarly,
utilizing the catalytic approaches, including enzymatic or using a
heterogeneous catalyst have been reported for efficient synthesis
of isoflavone (Kochs and Grisebach, 1986; Hoshino et al.,
1988). The structures of some well-known isoflavones are given
in Figure 3.

NEOFLAVONOIDS

In this class of flavonoids, the benzene ring (C) is attached
to the position 4 of pyran ring. The general structure

of neoflavonoids is shown in Figure 2. Neoflavonoids, are
naturally occurring heterocyclic compounds, mostly famous
for their antidiabetic activity (Donnelly and Boland, 1995).
The neoflavonoids consist of neoflavones and neoflavenes. The
most prominent source of neoflavonoids is natural but several
researchers have also synthesized various analogs. Some natural
sources, from which the neoflavonoids are reported, are Echinop
sniveus (Singh and Pandey, 1990), Dalbergia odorifera (Chan
et al., 1997), Nepalese propolis (Awale et al., 2005), Polygonum
perfoliatum (Sun and Sneden, 1999) among other important
medicinal plants.

FLAVONES

The flavones contain a double bond on the pyran ring between
position 2 and 3, and a carbonyl (ketone) at position 4.
Depending upon the taxonomic position of various plants, the
flavones contain hydroxyl substituents at both the aromatic rings.
Some commonly employed flavones from both the natural and
synthetic origin are shown in Figure 4. The history of flavones
from natural sources is very common since their synthetic history
is also long (Fukui et al., 1968).

FLAVONOLS

Chemically, flavonols are the alcoholic derivatives of flavones.
The flavonols differ from the flavones in the hydroxyl group
at position 3 of pyran ring. Generally, they can also be called
as 3-hydroxyflavones. Mostly, the flavonols are synthesized by
synthetic procedures. A very well-known synthesis of flavonols
is by oxidation and cyclization of chalcones which ends with
3-hydroxyflavonols. Figure 5 shows the various important
flavonols. In some cases, one or more hydrogen of hydroxyl
group is replaced by a glucose moiety leading to a flavonol
glycoside. As obvious from Figure 5 that pachypodol is not
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FIGURE 2 | The chemical structures of major classes of flavonoids.

FIGURE 3 | The major isoflavones and their chemical structures.

exactly a flavonol but its hydroxyl group is converted into a
methoxy group. However, due to its structure resemblance,
it can be classified as a derivative of 3-hydroxyflavone,
a flavonol.

FLAVANONES

The flavanones, saturated flavones, are also known as
dihydroflavones. The only difference between flavones
and flavanones is the absence of double bond between
position 2 and 3. These types of compounds are shown
in Figure 6.

FLAVANONOLS

The flavanonols are the 3-hydroxy flavanones and are also called
dihydroflavonols. These are the flavonoids with saturated pyran
ring having a hydroxyl group at position 3 and a carbonyl group
at position 4. Some common examples of this class of flavonoids
are shown in Figure 7.

FLAVANOLS

The flavanols, also called flavan-3-ol are the types of flavonoids
which lack the carbonyl group at position 4. The pyran ring
in these types of compounds is saturated and disubstituted at
position 2 and 3. This property of the structure leads to four
possible diastereomers of a flavanol. In flavanols, the benzene
ring (C) is attached to position 2 while the hydroxyl groups at
position 3 of pyran ring. The structures of this type of flavonoids
are shown in Figure 8. Of these, flavonoids not exactly fit in
the definition of flavanol because of a lack of hydroxyl group
at position 3. But, still can be categorized under the heading of
flavanols as it is structurally similar to other flavanol except the
hydroxyl group at position 3.

ANTHOCYANIDINS

They are the only flavonoids which impart color. They are
available in the cations form (as chloride salts). They are the
salt derivatives of 2-phenylchromenylium (flavylium) cation.
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FIGURE 4 | The chemical structures of major flavones derived from natural and synthetic origin.

FIGURE 5 | The major naturally occurring flavonols.

This group contains aurantinidin, capensinidin, cyaniding,
delphinidin, europinidin, hirsutidin, malvidin, pelargonidin,
peonidin, petunidin, pulchellidin and rosinidin. All of them are
different from each other on the basis of the attached groups
(denoted by R) as shown in Figure 2.

CHALCONES

Although they do not have the pyran ring but are classified as
flavonoids because of having a similar synthetic approach to
flavonoids. Moreover, in chalcones, the pyran moiety is available
as open structure. The open structure has a carbonyl conjugated

to a double bond making an α, β-unsaturated ring system, an
ideal Michael acceptor for many organic reactions. The structure
of chalcone is shown in Figure 2.

FLAVONOIDS AND ALZHEIMER’S
DISEASE

AD, a neurodegenerative disorder, which is characterized by
a gradual memory loss, cognitive dysfunction, imperfection
in the routine activities, and a decrease in the intellectual
learning process (Sadiq et al., 2015; Ayaz et al., 2017b;
Ovais et al., 2018). AD is the most common cause of
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FIGURE 6 | The chemical structures of important isolated flavanones.

FIGURE 7 | The important members of the flavanonols class of flavonoids.

FIGURE 8 | The major flavanols derived from natural sources.

dementia and affects approximately 5%–8% of individuals
over age 65, 15%–20% of individuals over age 75, and
25%–50% of individuals over age 85. It is estimated that
35.6 million people are living with dementia worldwide
(Duthey, 2013). Although, the exact etiology of AD is
still not known, several mechanistic features including the
deficiency of cholinesterases, deposition of β-amyloid plaques,
hyperphosphorylation of tau proteins and generation of
oxidative stress have been implicated in the development as
well as progression of AD (Kamal et al., 2015; Ullah et al.,

2016). Due to the diverse nature of these pathological targets,
the development of useful anti-AD drugs is still a challenging
task for the scientific community. Consequently, multiple targets
including the inhibition of key enzyme implicated in AD
like acetylcholinesterase (AChE), butyrylcholinesterase (BChE),
β-amyloid cleaving enzyme (BACE-1), monoamine oxidase
(MAO) and antioxidant agents are currently under investigation
as a new therapeutic class of anti-Alzheimer’s agents (Grill and
Cummings, 2010; Ahmad et al., 2016; Balducci and Forloni, 2018;
Chaudhary et al., 2018).
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Currently, only five drugs have been marketed for the
management of AD, among them four drugs including
galantamine, tacrine, rivastigmine and donepezil are
cholinesterase inhibitors whereas, the fifth one is the
glutamatergic system modifier called memantine (Ayaz et al.,
2015). No anti-amyloid drug is currently clinically available,
though several agents are in the different phases of clinical
trials (Vassar, 2014). Due to the toxicity associated with the
use of currently available drugs and their limited therapeutic
effectiveness, the search for new anti-AD drugs is still underway
(Ayaz et al., 2014; Ahmad et al., 2015). Consequently, the multi-
targeting natural products based pure pharmacological moieties
having more bio-safety and promising cognitive enhancing
capabilities are among the potential therapeutic agents (Baptista
et al., 2014; Bakhtiari et al., 2017; Farooqui, 2017; Khan et al.,
2018). Flavonoids including epicatechin-3-gallate, gossypetin,
quercetin and myricetin are reported to block β-amyloid, and
tau aggregation, scavenge free radicals and sequester metal
ions at clinically low concentrations (Ono et al., 2003; Weinreb
et al., 2004; Reznichenko et al., 2006; Ansari et al., 2009).
Furthermore, xanthone flavonoids have also been reported
to scavenge the reactive oxygen species (ROS), inhibit MAO
and AChE enzymes (Zhang et al., 2006; Khan et al., 2009;
Jayasena et al., 2013). Hence, flavonoids are a promising lead
class of compounds for the efficient design and development of
multipotent anti-AD drugs.

AMYLOID PRECURSOR PROTEIN (APP),
AMYLOID BETA (Aβ) AND ALZHEIMER’S
DISEASE

The amyloid precursor protein (APP) belongs to a group of
transmembrane proteins having large extracellular domains
(Wasco et al., 1993; Ali et al., 2017; Ayaz et al., 2017a).

While members of the APP-like proteins family shares several
extracellular domains like E1, E2; however, the amyloid beta (Aβ)
domain is unique to the APP protein. APP is produced in the
endoplasmic reticulum (ER) and subsequently transported via
the Golgi apparatus to the trans-Golgi-network (TGN) where
APP is found abundantly (Hartmann et al., 1997). APP is
transported from TNG by TNG-derived vesicles to the surface
of cells where it is enzymatically cleaved by α-secretase, γ-
secretases and resulting in the formation of a soluble molecule
called sAPPα. 13. This usual process of APP breakdown
is non-amylogenic and does not produce Aβ. However, the
processing of APP via successive actions of beta amyloid cleaving
enzyme (BACE-1) and γ-secretase lead to the formation of Aβ as
shown in Figure 9 (Nordstedt et al., 1993).

PATHOLOGICAL ASPECTS AND DRUG
TARGETS

Flavonoids as Cholinesterase Inhibitors
Cholinesterases including AChE, and BChE are involved in
the breakdown of acetylcholine (ACh), which is responsible
for the impulse transmission across various synapses (Voet
and Voet, 1995). Due to the scarcity of ACh in AD, the use
of cholinesterase inhibitors is among the useful therapeutic
options to maintain the accumulation of neurotransmitter for
a long time at the synapse (Bachman et al., 1992). The data
regarding the currently available drugs indicate that employing
this approach is the most useful target in AD symptomatic
therapy, thus streamlining the eventual clinical approval of
four drugs (Atta-Ur-Rahman et al., 2004). This approach is
also successfully employed in the management of Parkinson’s
disease, ataxia and dementia (Ahmad et al., 2003). Owing to the
unwanted effects and limited efficacy of the currently available
drugs, there is a dire need to develop more safe and effective

FIGURE 9 | The probable mechanism of flavonoids activating non-amyloidogenic pathway through stimulation of α, γ secretases activities, while inhibiting the
neurotoxic amylogenic pathway by inhibition of BACE-1 enzyme.
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drugs (Schneider, 2001). Several flavonoids including genistein,
kaempferol, apigenin, naringin, quercetin, diosmin, silymarin
and silibinin were tested against cholinesterases (AChE, BChE).
Among these flavonoids, quercetin was found most active and
exhibiting a 76.2% inhibition of AChE. Other compounds
including genistein, leteolin and silibinin showed a 65.7, 54.9 and
51.4% inhibitions against BChE, respectively (Orhan et al.,
2007). In a published report, Uriarte-Pueyo and Calvo (2011)
summarized 128 flavonoids with respect to their AChE inhibitory
potentials. Based on their potency as cholinesterase inhibitors,
they were considered to be promising therapeutic agents in the
development of new anti-Alzheimer drugs.

Flavonoids as Free Radicals’ Scavengers
Free radicals are generated during the aerobic respiration and are
counteracted by the bodily diverse system of antioxidants. When
the free radicals are generated in excess, they lead to oxidative
stress and thus disturb the functions of different proteins, lipids
and essential body elements (Markesbery and Lovell, 2007).
Besides their role in several disease processes, free radicals
are implicated in the inflammatory damage to neurons and
development of AD. The oxidative stress is a key aspect of AD
as indicated from the elevated level of oxidative stress markers
(Lovell and Markesbery, 2007). Moreover, low concentrations
of antioxidants and antioxidant activity have been detected in
the plasma of patients diagnosed with AD (Mecocci et al., 2002;
Rinaldi et al., 2003). Additionally, the elevated lipid and protein
oxidation byproducts were also observed in the transgenic animal
models of AD (Resende et al., 2008). The AD pathogenic markers
including Aβ and neurofibrillary tangles (NFTs) were also high
in animals having oxidative stress, which may suggest that the
free radicals are among the initiators of AD (Dumont and Beal,
2011). Nearly all the ROS are generated in the mitochondria
(Kowaltowski et al., 2009). In AD patients a deficiency of
cytochrome c oxidase leads to themitochondrial dysfunction and
results in the excessive generation of ROS (Müller et al., 2010).
Aβ is also considered as mitochondrial poison and is known to
initiate the excessive release of free radicals in the presence of
metal ions (Butterfield et al., 2007). In this regard, the use of ions
like clioquinol is known to exhibit useful effects in transgenic
animal models of AD (Grossi et al., 2009).

Activation of glial cells is another hallmark of AD and
neurodegenerative disorders (Craft et al., 2005; Balducci and
Forloni, 2018). The activation of microglia not only generates
pro-inflammatory cytokines but also increases the formation of
superoxide anions using NADPH oxidase (NOX). The presence
of elevated levels of NOX subunits in the brains of AD and
the subsequent improvement of cognitive and cerebrovascular
functions after NOX gene removal from the transgenic animals
support its potential involvement in the pathogenesis of AD
(Park L. et al., 2008). Moreover, in the activated glial cells,
inducible nitric oxide synthase (iNOS) sets free the NO, which
subsequently reacts with the superoxide and forms peroxinitrite
thereby exerting nitrosative stress. Their involvement has been
supported by the genetic removal of iNOS which results
in the amelioration of gliosis, reduction in Aβ load and
phosphorylation of tau proteins in the transgenic animals

(Nathan et al., 2005). Catechins and polyphenols of green tea
are strong antioxidants, which chelate metal ions and scavenge
free radicals (Singh et al., 2008). EGCG prevents oxidative
stress-induced DNA damage by transferring an electron to
the ROS-induced radical sites (Singh et al., 2008). The green
tea suppresses propagation of chain reaction during the lipid
peroxidation initiated by the iron ascorbate in the mitochondrial
membranes of brain. Among the catechins, EGCG is observed
to be the most efficient scavenger (Mandel et al., 2008). EGCG
inhibits fibril formation during Aβ aggregation and attenuates
the lipid peroxidation as initiated by the Aβ (Choi et al., 2001; Lee
et al., 2009). EGCG also inhibits Aβ-induced apoptosis, caspase
activity, thus enhancing the survival of hippocampus neurons
(Choi et al., 2001).

Effectiveness in Alzheimer’s Disease and
Dementia
The effectiveness of flavonoids in the prevention of AD
and cognitive dysfunctions in animal models has been
reported, which signify their therapeutic use in the
management of neurological disorders. Flavonoids mediate
their anti-amyloidogenic effect by targeting key enzymes
implicated in the pathological production and accumulation of
amyloid plaques (Aβ). Anthocyanin-rich flavonoids found in
bilberry and black currant extracts have been recently reported
to prevent behavioral abnormalities and alter APP processing
in APP/PS1 mouse model of AD (Vepsäläinen et al., 2013).
Likewise, chronic therapy with tannic acid using transgenic
PSAPP animal model of cerebral amyloidosis has revealed
potential amelioration of transgene-mediated deficits in the
memory and behavior of animals. A citrus flavonoid nobiletin,
has been reported to improve Aβ mediated memory deficits
and reduce Aβ load in the hippocampus of transgenic animals
(Onozuka et al., 2008). Furthermore, chronic administration of
grapes polyphenols leads to improvement in the memory and
diminish the level of soluble Aβ oligomers in the brain tissues of
Tg2576 animals (Wang et al., 2008). Luteolin, a citrus flavonoid
has been shown to decrease the formation of Aβ peptides in
APP transgenic neuronal cells and lower the activity of BACE1
(Rezai-Zadeh et al., 2009). Moreover, chronic administration
of polyphenol-rich grape seed extracts and curcumin for
9 months inhibit the deposition of Aβ in the brain of AD animals
(Rezai-Zadeh et al., 2009).

Numerous studies have demonstrated various beneficial
aspects of green tea. Epigallocatechin-3-gallate (EGCG), a
green tea polyphenol has been reported to reduce the Aβ

load via inhibition of APP modulating enzyme (Rezai-Zadeh
et al., 2005, 2008). The naturally occurring flavonoids including
curcumin and EGCG are reported to restrain Aβ-mediated
BACE1 upregulation in the neuronal cultures (Shimmyo
et al., 2008). Isorhamnetin has shown a neuroprotective
effect against Aβ-induced memory impairment (Asha and
Sumathi, 2016). It enhances cognition and memory by uplifting
antioxidant defense system, cholinergic signaling, and synaptic
plasticity (Ishola et al., 2019). Kaempferol attenuates cognitive
deficit through regulating antioxidants and neuro-inflammation
(Kouhestani et al., 2018), promotes memory retention and
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FIGURE 10 | The probable mechanisms of flavonoids in inhibiting different signaling pathways implicated in the formation of neurofibrillary tangles (NFTs) and
amyloid plaques (Aβ).

density of hippocampal CA1 neurons (Darbandi et al., 2016).
The flavonoid, quercetin has potential therapeutic benefit in
AD. Quercetin produces a reduction in plaque burden and
mitochondrial dysfunction through the activation of AMPK and
may be one of the mechanisms by which quercetin improves
cognitive functioning (Wang et al., 2014).

The EGCG-induced increase of non-amyloidogenic APP
processing was observed to be carried out through the estrogen
receptor-α/phosphoinositide 3-kinase/Ak-transforming based
mechanisms. As the post-menopausal depletion of estrogen
has been linked to an increased risk of AD development, thus,
selective estrogen receptor modulators can be an alternative
therapeutic option in the treatment of AD. The use of
EGCG mediated estrogen receptor modulation could be an
alternative to estrogen-based therapy in the management of
this disease (Fernandez et al., 2010). EGCG also produce
beneficial neuroprotective effects via inhibition of amyloid
fibrils sheet rich in Aβ and inhibition of fibrillogenesis. The
fibrillogenesis reticence is mediated by direct binding with
unfolded polypeptides and inhibition of their conversion to
neurotoxic intermediates (Ehrnhoefer et al., 2008). Moreover,
EGCG is capable of splitting large size Aβ fibrils to small proteins

and thus are not able to aggregate and thereby devoid of any
toxic effects (Bieschke et al., 2010). The flavonoid, myricetin
has shown potential in vitro anti-amyloid activity and thus
possesses prospective beneficial effect for neurodegeneration
related cognitive disorders (Ono et al., 2003; Hirohata et al.,
2007). In general, these reports advocate that some flavonoids
have the capability to interrupt fibrillization process of Aβ

formation, inhibit a vital enzyme BACE1 implicated in the
formation of Aβ, which lead to inhibition of Aβ production.
Nevertheless, further studies are required to uncover the neuro-
modulating potentials and underlying mechanisms of flavonoids
for clinical use.

Flavonoids as Tau Modifying Agents
Several reported studies describe the effects of flavonoids
in the formation of highly phoshorylated tau proteins, a
pathological hallmark of AD (Calcul et al., 2012; Baptista
et al., 2014). For instance, myrecetin and epicatechin-5-gallate
have been reported to avert heparin-mediated tau formation
(Taniguchi et al., 2005). Epicatechin-5-gallate administration
in the transgenic animal models of AD has been shown
to modulate tau profiles by suppressing the formation of
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FIGURE 11 | The probable mechanisms of flavonoids stimulating/inhibiting signaling pathways implicated in cognitive performance and neurodegeneration.

sarkosyl-soluble phosphorylated tau isoforms (Rezai-Zadeh et al.,
2008). In other studies using grape seed proanthocyanidin extract
(GSPE), tau neuropathology was significantly reduced in animals
model of AD via inhibition of tau peptide aggregations, its
destabilization and its eventual clearance (Pasinetti et al., 2010;
Wang et al., 2010). Hyperphosphorylation of tau proteins with
subsequent accumulation as NFTs is a major contributor in the
cognitive dysfunctions. Several kinases like GSK-3β are known
to contribute to the phosphorylation of tau protein and are
implicated in the pathogenesis of AD. Flavonoids inhibit the
activities of several kinases and thus aid in the prevention of
AD. For instance, indirubins restrain the activities of protein
kinases including CDK5/p25 and GSK-3β, both of which are
implicated in the abnormal phosphorylation of tau proteins
observed in the AD patients (Figure 10; Leclerc et al., 2001).
Another flavonoid, morin is reported to inhibit the activity of
GSK-3β and obstruct GSK-3β-mediated phosphorylation of tau
proteins. Morin also diminishes Aβ-mediated phosphorylation
of tau proteins and provides protection against Aβ induced
cytotoxicity in human neuroblastoma cells. Furthermore, morin
therapy has been shown to reduce tau hyperphosphorylation
in the hippocampal neurons of transgenic animals (3xTg-
AD mice; Gong et al., 2011). Cyanidin 3-O-glucoside (Cy3G)
has also afforded a significant protection against cognitive
dysfunctions induced by administration of Aβ in animal

models which is mediated by modulation of GSK-3β/tau
(Qin et al., 2013).

Neuro-inflammation and Neurotoxins
Modulating Effects
The neurodegenerative outcomes observed in various
neurological disorders appear to be elicited by several
events like neuro-inflammation, depletion of endogenous
antioxidants, glutamatergic excitotoxicity and neurotoxicity
mediated by various metabolic products (Jellinger, 2001).
Scientific evidence suggest that flavonoids might counteract the
underlying mechanisms of neuronal injuries and can hamper the
progression of different neurodegenerative disorders (Mandel
and Youdim, 2004; Spencer, 2008). Consumption of green tea
has been reported to reduce the risk of Parkinson’s disease,
attenuate neurodegeneration and ischemic hippocampal injury,
which can be attributed to the presence of EGCG (Lee et al.,
2000; Weinreb et al., 2004). EGCG is also known to modulate
various signaling pathways particularly protein kinase C and
PI3-kinase which are implicated in the neuroprotection and
reduce the nigral damage by chelating free radicals (Mandel
et al., 2005; Weinreb et al., 2009).

Various in vitro studies also corroborated the idea that
flavonoids prevent the pathological aspects of Parkinson’s
disease by inhibiting the formation of endogenous neurotoxin
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FIGURE 12 | The PI3-kinases activation mediated neuroprotective action of flavonoids.

FIGURE 13 | The probable abridged mechanism of flavonoids in enhancing cognition and suppression of neurodegeneration.

5-S-cysteinyldopamine (Vauzour et al., 2007b). Moreover,
the neuroprotective effects of flavonoids have also been
reported in other diseases like Huntington disease, mediated
via ERK pathway (Maher et al., 2006, 2011). Naringenin, a

citrus flavanone has been reported to reduce the neuronal
injury via inhibition of lipopolysaccharide/interferon-γ-
induced glial cells activation and inhibition of p38/STAT-
1 pathway (Vafeiadou et al., 2009). Naringenin also
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inhibits the production of nitric oxide in the activated
microglia cells. Blueberry flavonoids also have been shown
to attenuate the production of TNF-α, nitric oxide and
IL-1β in activated microglia cells (Lau et al., 2007). Other
flavonoids including quercetin, wogonin, bacalein and
EGCG have been shown to modulate neuro-inflammation
and microglial/astrocyte-mediated nitric oxide production
(Lee et al., 2003; Chen et al., 2005). All these actions
are mediated by transformation of protein, lipid kinase
signaling pathways, nitric oxide production, pro-inflammatory
transcription factors, downstream regulation of iNOS
and cyclooxygenase (COX-2) expression, free radicals
scavenging, NOX activation and liberation of cytokine
(Jang et al., 2008; Zheng et al., 2008). EGCG and genistein
are reported to enhance the production of glutathione via
PI3-kinase-reliant regulation of nuclear factor erythroid
2–related factor 2 (Nrf2)-induced antioxidant pathway
(Hernandez-Montes et al., 2006).

Flavonoids for Better Cognition
Several studies highlight the beneficial effects of flavonoid-rich
foodstuffs’ consumption on cognition (Commenges et al., 2000;
Letenneur et al., 2007; Spencer, 2010a). Isoflavones from soy
and soy-derived foods have been reported to improve learning
and memory possibly by their potential to mimic the activity
of estrogens in brain (File et al., 2001). These isoflavones also
modulate the neuronal concentrations of ACh and neurotrophic
factors including the brain derived neurotrophic factor (BDNF)
and nerve growth factor (NGF) in the hippocampus and frontal
cortex regions of brain (Pan et al., 1999a,b).

The use of flavonoids rich foods including grapes juice,
cocoa and blueberry have shown to possess potential cognition-
enhancing effects (Krikorian et al., 2010; Scholey et al.,
2010; Shukitt-Hale, 2012). Behavioral evidences suggest that
periodic consumption of flavonoids rich fruits like pomegranate,
blueberry, grapes, strawberry, as well as pure compounds
including quercetin and EGCG are able to improve cognitive
performance as indicated from the improvement in the
overall scores of memory acquisition, short and long term
memory, memory retention and retrieval (Joseph et al., 1999;
Hartman et al., 2006). The above mentioned fruits are rich
in flavanols and anthocyanins which improve cognitive and
spatial working memory deficits in animal models (Joseph
et al., 1998; Shukitt-Hale et al., 2009). Additionally, pure
EGCG can improve the retention of spatial memory (van
Praag et al., 2007). Flavonoids from blueberry also improve
the processing of spatial memory via its action on the
dentate gyrus (DG), which is highly sensitive to the effects of
aging (Small et al., 2004; Burke and Barnes, 2006). Blueberry
flavonoids have been reported to boost up precursor cells
proliferation in the DG of animal models, thus increasing
DG neurogenesis and improve cognitive capabilities (Casadesus
et al., 2004). However, further characterization of these food
supplements, isolation of pure natural compounds and their
comparison to the already established flavonoids may provide
more useful insights into the memory enhancing properties of
dietary flavonoids.

Flavonoids Interactions With Useful
Signaling Pathways
Flavonoids are able to preferentially bind with the neuronal
receptors including GABAA, tyrosine receptor kinase B (TrkB),
δ-opioid, estrogen, testosterone, nicotinic and adenosine
receptors and mediate the various neuropharmacological
actions (Ji et al., 1996; Katavic et al., 2007; Fernandez
et al., 2008; Lee et al., 2010). Several reports regarding the
beneficial neuroprotective effects of flavonoids and their
metabolites via interactions with neuronal signaling pathways
have been published (Spencer, 2007; Incani et al., 2010).
They interact with several protein kinase and lipid kinase
signaling pathways like tyrosine kinase, mitogen-activated
kinase (MAPK), PI3K/Akt, protein kinase C and nuclear
factor κB pathway (Gamet-Payrastre et al., 1999; Schroeter
et al., 2001; Incani et al., 2010). When flavonoids bound to
these receptors, they may stimulate or inhibit the receptors
and thus mediate their actions via modulation of gene
expression or phosphorylation. Subsequently, they modulate
the synaptic protein synthesis, neuronal plasticity and other
morphological changes responsible for neurodegenerative
disorders and impairment in cognition. For instance, flavonoids
and their metabolites have been reported to interact with
MAPKs signaling pathways (MEK1 and MEK2 receptors)
which result in downstream activation of cAMP response
element binding protein (CREB), thus leading to significant
changes in synaptic plasticity and memory (Finkbeiner et al.,
1997; Impey et al., 1998). Supplementation of flavanols and
anthocyanins rich blueberry have been reported to enhance
cognitive performance in animals via activation of CREB and
elevation of BDNF levels in hippocampus (Williams et al.,
2008). Furthermore, chronic administration of green tea
catechins can reduce the levels of Aβ1–42 oligomers, elevate
the activities of kinase A/cAMP-response element binding
protein (PKA/CREB) pathway and up-regulated the action
of synaptic plasticity related proteins in the hippocampus
(Li et al., 2009). Moreover, flavonoids stabilize hypoxia-
inducible factor-1 (HIF-1) and Nrf2 transcription factors
(Park S. S. et al., 2008), activate peroxisome proliferator-
activated receptor-γ coactivator-1 (PGC-1α) pathway
(Zhang et al., 2010), and act as modulators of peroxisome
proliferator-activated receptor gamma (PPAR-γ; Feng et al.,
2016). These molecular changes produced by flavonoids
may improve AD pathophysiology by protecting neurons
against oxidative stress, improve mitochondrial dysfunction,
reduce insulin resistance, and thus ameliorate cognitive
impairment (Figure 11).

Flavonoids possess PI3-kinase modulating potentials
(Figure 12), by directly interacting with its ATP binding site
(Vlahos et al., 1994). Moreover, quercetin and its metabolites
inhibit prosurvival Akt/PKB signaling pathways through
inhibition of PI3-kinase activity (Spencer et al., 2003). On the
contrary, some flavanones like hesperetin activate Akt/PKB
signaling pathway and impart prosurvival characteristics in the
cortical neurons (Vauzour et al., 2007a). Moreover, epicatechin-
5-gallate has been reported to modulate neurotransmission,
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TABLE 1 | Summary of the prospective neuropharmacological activities of essential oils and bioactive compounds isolated from medicinal plants.

Flavonoid/s Source Study design Results Reference

Anthocyanin flavonoids Bilberry
Black currant

APP/PS1 model of AD ↓ Behavioral abnormalities
↓ APP processing

Vepsäläinen et al. (2013)

Nobiletin
Naringenin

Citrus Flavonoid/
flavanone

Transgenic AD model ELISA study
p38/STAT-1 pathway
Lipopolysaccharide/interferon-γ-induced glial
cells activation

↓ Aβ load in hippocampus
↓ Aβ-mediated memory deficits
↓ Guanidine-soluble Aβ1–40, Aβ1–42

↑ cAMP/protein kinase A response element-binding
protein signaling in hippocampal neurons
↓ Aβ induced memory impairment
↓ Neuronal injury
↓ p38/STAT-1 pathway
↓ NO in activated microglia cells

Hernandez-Montes et al.
(2006); Onozuka et al.
(2008) and Vafeiadou et al.
(2009)

Epigalocatechin
Galate (EGCG)
Genistein

Green Tea Antioxidant assays

Anti-amyloid study

Secretases inhibition assays

EGCG mediated estrogen receptors
(Estrogen receptor-α
Phosphoinositide 3-kinase,
Ak) modulation.

Anti-tau study on AD Transgenic animals
Antioxidant studies in neuronal cells

↑ Metal ions chelation
↑ Free radicals scavenging
↓Oxidative stress-induced DNA
↓ Fibril formation during Aβ aggregation
↓ ERK and NF-κB pathways
↓ Aβ induced lipid peroxidation
↓Aβ-induced apoptosis, Capse activity
↑ Neuronal survival
↑ Non-amyloidogenic APP
↓ Fibrillogenesis
↓ Formation of sarkosyl-soluble hosphorylated tau
isoforms
↓Risk of Parkinson’s disease
↓ Neurodegeneration
↓Ischemic hippocampal injury
↑ Protein kinase C activity
↑ PI3-kinase activity
↑ Nigral damage via scavenging of free radicals
↑ Glutathione

Lee et al. (2000, 2009),
Choi et al. (2001), Weinreb
et al. (2004), Weinreb et al.
(2009), Mandel et al. (2005),
Ehrnhoefer et al. (2008),
Rezai-Zadeh et al. (2008),
Singh et al. (2008) and
Fernandez et al. (2010)

Luteolin
Curcumin
Cyanidin-
3-O-glucoside (Cy3G)

Citrus
Flavonoid
Edible Plants
Curcuma longa
Hibiscus sabdariffa

APP Tg neuronal cells
AD animal model
Tg2576 model

↓ Formation of Aβ peptides
↓ BACE1 activity
↑Soluble Aβ

↓GSK-3 activity
↓ Association of PS1-APP
Modulation of GSK-3β/tau
↓ Cognitive dysfunctions

Rezai-Zadeh et al. (2009)
and Qin et al. (2013)

Myricetin
Indirubins
Morin

Vegetables
Fruits, Berries
Nuts, Tea
Edible Plants

AChE inhibition ssay
Protein kinases study
Aβ induced Cytotoxicity in neuroblastoma cells
3xTg-AD mice

↓ BACE1 activity, Interrupt fibrillization
↓ Heparin-induced tau formation
↓ CDK5/p25, GSK-3β activity
↓ Tau hyperphosphorylation
↓ Aβ-induced cytotoxicity

Leclerc et al. (2001), Ono
et al. (2003), Taniguchi et al.
(2005) and Hirohata et al.
(2007)

(Continued)
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TABLE 1 | (Continued)

Flavonoid/s Source Study design Results Reference

Quercetin Wogonin Fruits, Nuts etc.,
Scutellaria
baicalensis Georgi

PI3-kinase inhibitory activity
LPS, IFN-γ induced NO production in BV-2
microglia cells
Animal model of Inflammation, ischemia
Microglia cells study

↓ Akt/PKB signaling pathways
↓ Nitric oxide synthase gene transcription
↓ Neuroinflammation
↓ Nitric oxide production
↓ TNF-alpha, ↓ interleukin-1β

↓ NF-kappa-β activation

Lee et al. (2003), Spencer
et al. (2003) and Chen et al.
(2005)

Blueberry
Flavonoids

Blueberry Chronic animals study
Activated microglia cells

↑ HC Akt phosphorylation
↑ Downstream mTOR activation
↑ Arc/Arg3.1
↓ TNF-α
↓ NO Production, IL-1β

Lau et al. (2007) and
Williams et al. (2008)

Isoflavones
Flavanols,
Anthocyanins rich food/
Compounds/ Extracts

Soy foods
Grapes juice,
Cocoa
Blueberry,
Pomegranate

AD animal models
Brain estrogen study
Behavioral Tasks
Memory tasks
Locomotor tasks

↑ BDNF
↑NGF
↑CREB
↑ ACh
↑Cognition
↓ Working memory deficits
Mimic Brain estrogens activity

Finkbeiner et al. (1997),
Impey et al. (1998), Joseph
et al. (1998), Pan et al.
(1999b), File et al. (2001),
Williams et al. (2008),
Krikorian et al. (2010),
Scholey et al. (2010) and
Shukitt-Hale (2012)

127 Flavonoids including, Silibinin Genistein,
Apigenin, kaempferol, NaringinQuercetin,
Diosmin, Silymarin

Foods
Citrus Fruits
Natural Products

Cholinesterase inhibition assays ↓AChE activity
↓BChE activity

Orhan et al. (2007) and
Uriarte-Pueyo and Calvo
(2011)

↑, Increase/activate; ↓, Decrease/inhibit; HP, hippocampus; AD, Alzheimer’s disease; ACh, Acetylcholine; LPS, Lipopolysaccharide; INF-γ, Interferon-gamma-gamma; BDNF, Brain derived neurotrophic factor; NGF, Nerve growth factor;
Arc/Arg3.1, activity-regulated cytoskeletal-associated protein; BACE1, Beta amyloid cleaving enzyme-1; MWM, Morris water Maze; NO, Nitrous Oxide.
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synaptogenesis and plasticity mediated through stimulation of
extracellular signal regulated kinase (ERK), PI3K reliant raise
in CREB phosphorylation and upregulation of GluR2 levels in
cortical neurons (Schroeter et al., 2007).

In a study, the chronic ingestion of blueberry is reported
to increase Akt phosphorylation, activation of downstream
mammalian target of rapamycin (mTOR) receptor and increase
the content of Arc/Arg3.1 (activity-regulated cytoskeletal-
associated protein) in the hippocampus (Williams et al., 2008).
As Arc is regulated by BDNF and is important in the long term
potentiation (LTP), therefore these changes may be related to the
improvement of spatial memory and cognition (Waltereit et al.,
2001; Yin et al., 2002). This has been supported by various studies
regarding the effects of flavonoids on changes in the neuronal
morphologies (van Praag et al., 2007).

Overview of Mechanisms Underpinning the
Therapeutic Effects of Flavonoids in
Neurodegeneration
Flavonoids by virtue of their low molecular weight, impact
multiple cellular targets simultaneously and thus mediate their
beneficial neuropharmacological effects in neurodegeneration.
Flavonoids interact with several neuronal and glial signaling
pathways implicated in neuronal functions and survival
(Williams et al., 2004; Spencer, 2010a). They also up-regulate
the body antioxidant system and expression of proteins related
to neuronal repair and synaptic plasticity (Kong et al., 2000;
Eggler et al., 2008). They modulate cerebral blood flow and
inhibit neuropathological processing in different regions of
brain (Dinges, 2006). The probable mechanism underlying
these neuromodulatory properties of flavonoids is shown
in Figure 13.

Toxicological Propensity of Flavonoids
The wide availability of flavonoids and their recent increase
consumption by humans has raised important questions
regarding the potential toxicity of these dietary components.
Although majority of natural products are well tolerated;
however, flavonoids and related phytochemicals have been
shown to induce neurobehavioral and endocrine disrupting
effects (Bugel et al., 2016; Patisaul, 2017). The toxicity of
flavonoids is very low in animals. For rats, the LD50 has been
reported as 2–10 g per animal for most flavonoids. Similar
doses in humans are quite unrealistic. As a precaution, doses
less than 1 mg per adult per day have been recommended for
humans (Galati and O’Brien, 2004). High doses of quercetin
over several years has shown to result in the formation
of tumors in mice. However, in other long-term studies,
no carcinogenicity was found (Dunnick and Halley, 1992).
Flavonoids can either inhibit or induce human cytochrome
P450 (CYPs) depending upon their structures, concentrations.
The interactions of flavonoids with CYP3A4, the predominant
human hepatic and intestinal CYP responsible for metabolizing
50% of therapeutic agents is of particular interest. The
simultaneous administration of flavonoids and clinically used
drugs may cause flavonoid–drug interactions by modulating the

pharmacokinetics of certain drugs (Hodek et al., 2002; Galati and
O’Brien, 2004).

CONCLUSION AND FUTURE DIRECTIONS

The dietary use of flavonoid-rich foodstuffs has the propensity to
lessen age-related decline in cognition and may restore memory
functions as well as attenuate the development of conditions
associated with dementia. The therapeutic importance of natural
products in neurodegeneration has been attributed from their
various modulatory neuropharmacological properties (Table 1).
Further studies are required especially well-designed clinical
trials to endorse the clinical effectiveness of flavonoids in
neurodegeneration associated clinical signs and symptoms.
Moreover, various in vivo studies should be designed to obtain
a better insight of flavonoids efficacy with regard to their
bioavailability, potential toxicities and accumulation at the target
sites in the aging brain. For instance, providing a direct link
between behavioral responses in test animals/humans to changes
in the cortical, and hippocampal areas, the underlying molecular
events linked to synaptic plasticity, effects on neuronal stem
cells proliferation and changes in the cerebral blood flow will
provide guidelines for flavonoids-based dietary applications and
subsequent clinical recommendations in neurological disorders.
The use of imaging and spectroscopic techniques like MRI
and NMR can provide a better understanding of flavonoids-
based changes in cerebral blood flow, quantitative changes in
neuronal stem cells, progenitor cells and gray matter density
along with electrophysiological changes. All these efforts will
provide mechanism based links between flavonoids therapy
and brain functions and information related to their effective
doses. In relation to AD and dementia, it is most important to
explore the anti-amyloid and tau modifying effects of flavonoids
both in in vitro and in vivo models. In this regard, tau
modifying potentials of flavonoids have been investigated at
preliminary level, yet detail studies on destabilization effects of
β-amyloid, tau proteins and effects on microglial activation need
to be explored. Furthermore, a recommendation regarding the
dose/daily intake and duration of therapy must be provided
for safe and efficacious results. Molecules which improve the
function of CREB are reported to consolidate memory by
promoting the gene expression responsible for the synaptic
morphology and long term memory. Compounds which activate
the function of upstream regulators of CREB, like Akt and ERK
are considered to be highly potential memory enhancer drugs.
Flavonoids are reported to concentrate in the brain and activate
ERK–CREB and Akt–CREB mediated memory and are thus are
promising candidates for the development of memory enhancing
drugs. Regardless of significant progress in the understanding of
flavonoids biology, majority of clinicians mistakenly considered
them only as simple antioxidants, which is a major barrier in
the development of bioactive flavonoids at the preclinical level.
Now it is well known that flavonoids are much more likely to
prevent both normal and disease-mediated decline in cognitive
functions by modulating cellular and molecular functions of
brain. Thus, flavonoids represent a group of vital precursor
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molecules in the quest to discover new generation of memory-
enhancing agents that may be able to counteract and perhaps
even quash age-related decline in cognitive functions.
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