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Abstract. Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology
of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting
proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane
trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of
the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane
of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of
PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy,
and highlights the involvement of �-synuclein in these mechanisms.

Keywords: Parkinson’s disease, phosphoinositides, vesicular membrane trafficking

BACKGROUND

Parkinson’s disease (PD) is a heterogeneous neu-
rodegeneration. Disease heterogeneity is reflected
both at the clinical and molecular levels. PD is gen-
erally considered a sporadic disease of unknown
etiology. Nevertheless, in the past two decades, it has
become apparent that many cases (about 5–10%) are
due to familial, inherited forms of the disease [1]. A
growing list of genes and loci has been genetically
implicated in the pathogenesis of PD. Classifying
these genes, according to their known functions, pro-
vides valuable clues about the cellular mechanisms
involved in PD. A mechanistic role in vesicular mem-
brane trafficking was recently highlighted for many
of the PD-associated proteins (recently reviewed in
[2]). The available genetic data also support a role for
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phosphoinositides (PIP) in the pathophysiology of
PD. Central PD-associated genes encode for proteins
that regulate PIP homeostasis at cell membranes.
Other PD-associated genes encode for proteins that
directly interact with PIPs or other PIP-binding, or
PIP-metabolizing proteins (Table 1). This review
focuses on PD- and PIP-associating proteins that play
a role in vesicular membrane trafficking, in particular,
clathrin-mediated endocytosis and macroautophagy.

PIPs are phosphorylated derivatives of the acidic
membrane phospholipid, phosphatidylinositol (PI).
The seven PIP molecules differ in the position and
number of phosphorylated hydroxyls on the inosi-
tol ring of this phospholipid. All PIP members are
master regulators of cellular signaling pathways [3].
They are distributed between cell membranes in a
defined and characteristic manner that is maintained
locally by PIP-kinases and PIP-phosphatases, which
generally present specificity toward the phosphate(s)
position on the inositol ring. The composition of PIPs
on cell membranes is also dependent on cell activities,

ISSN 1877-7171 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:ronit.sharon1@mail.huji.ac.il
https://creativecommons.org/licenses/by-nc/4.0/


1726 M. Schechter and R. Sharon / An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease

Table 1
PD-associated proteins and their mode of PIP-associations

Pathway Gene/protein Mechanism of interaction
with PIP

Role in
endocytosis/autophagy

Link to PD

A. PD-associated genes involved in PIP homeostasis

Endocytosis/
autophagy

Synaptojanin1
(SJ1)

A dual PIP phosphatase: a
5’-phosphatase domain and
a SAC1 domain [61].

Growth, maturation and
uncoating of clathrin-
coated vesicles [19].

Endosomal trafficking;
Ultrafast endocytosis
[209]; Autophagosome
maturation [67, 68].

PARK20
R258Q [54, 56, 57] and

R459P [59]
mutations in SAC1

domain; Y832C and
R839C mutations in
5-phosphatase domain
[60, 266].

Endocytosis INPP5F/Sac2 PIP 4-phosphatase Late stages of CME.
Recruited to early
endosomes by Rab5
[27, 69, 71].

GWAS risk locus
rs117896735 [70, 74].

B. PD-associated genes that directly interact with PIP

Endocytosis/
autophagy

SNCA/�-
Synuclein
(�-Syn)

Increases the steady state
levels of PIPs [125, 128].

Binds acidic phospholipids,
including PIPs [126, 127].

Facilitates CME, a role in
SV cycling [134, 137,
138] and autophagy
[48].

PARK1, 4
A30P, E46K, A53T,

A53E, H50Q, G51D
mutations [79–81, 83,
84, 86]. Gene
duplication/triplication
[76, 78]. Promoter
variability [75]. A main
component of Lewy-
pathology [267].

GWAS risk locus
rs2736990,rs356220
[72, 74]

Endocytosis DNAJC6/
auxilin 1

Binds PI3P, PI4P and PI3,4P2
[268, 269].

Recruits Hsc70 to
complete vesicle
uncoating in CME
[270, 271].

PARK19
Deletion mutation,

splice-site and point
R927G mutations [70,

272–275].
DNAJC26/

auxilin 2
Risk factor candidate

(rs34311866) [70].

Receptor mediated
endocyto-
sis/autophagy

DNAJC13/RME8 Binds PI3P, PI3,5P2 and
PI3,4,5P3 [276].

Retrograde transport to
the trans-Golgi network
(TGN). Endosomal,
protein sorting and
trafficking [277–281].

PARK21
N855S mutation [282].

Autophagy ATP13A2 Interacts with PI3,5P2 in the
lysosome [283, 284].

A lysosomal P-type
transporter ATPase
[285].

PARK9
Frame shift (nucleotide

deletion) and splice site
mutations [286].

Mitophagy;
Non-vesicular
lipid transport

VPS13C Lipid exchange at membrane
contact sites [261]. The
yeast homolog binds PI3P
[287].

Acts at MCS to enhance
PINK1/Parkin-
dependent mitophagy
[260].

PARK23
Truncation mutations

[288–292].

C. PD-associated genes that interact with other PIP-binding proteins

Endocytosis/
autophagy

VAC14 A scaffold for a protein
complex containing
PIKFYVE kinase, a PI and
PI3P 5-kinase. [293, 294].

Endosomal maturation
along the late
endosome/lysosome
pathway [293–295].

A562V and W424L
mutations [60, 296].

(Continued)
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Table 1
(Continued)

Pathway Gene/protein Mechanism of interaction
with PIP

Role in
endocytosis/autophagy

Link to PD

Endocytosis/
autophagy

LRRK2 Protein kinase and GTPase.
Phosphorylates the
PIP-phosphatase SJ1, and
PIP-associating endophilin,
auxilin and Rabs proteins
[184, 185, 188–190, 297].

Modulator of CME at
multiple steps [184,
191, 192, 297, 298].
Involved in autophagy
[193, 212].

PARK 8
Majority of familial PD

cases: G2019S; I2020T
ROC GTPase domain:

R1441C/G/H
COR domain: R1628P;

Y1699C
GWAS risk locus

rs1491923, rs76904798
[72, 173, 175].

Endocytosis/
autophagy

SH3GL2/
endophilin
A

Binds PIP-interacting
proteins, e.g.,
synaptojanin1 and dynamin
[64, 207].

Clathrin-dependent [65,
66, 207] and
clathrin-independent,
ultrafast endocytosis
[209, 299].

Autophagy [212, 213].

Risk locus rs10756899
[74].

Autophagy/mitophagy Pink1 A serine-threonine kinase
-dependent mechanism
elevates PI3,4,5P3 levels
[300].

Activation of AKT
pathway; regulator of
mitophagy [301].

PARK6
G309D, W437X and

additional utosomal
recessive mutations
[302, 303].

Autophagy/mitophagy DJ1 Involved in PI3K/Akt
Pathway [304].

A sensor for oxidative
stress. Degradation of
dysfunctional
mitochondria via
autophagy [305–307].

PARK7
Deletion and

point/missense (M26I,
A104T, D149A,
E163K, and L166P,
L172Q) mutations
[303, 308].

Retromer
complex;
autophagy

VPS35 A component of the retromer
complex, that consists of
sorting nexins (SNX),
containing PI3P/PI3,5P2
binding domain [230, 309].

Involved in packaging and
delivery of cargos from
endosomal membranes
to TGN (or PM) [246].

Regulator of LRRK2
kinase activity [181,
182].

PARK17
Point mutation D620N.

Disease-associated
variants [227, 242].

Late endosome Rab7 Interacts with the PI4P
5-kinase, PIP5K� [241]
and the PI3-kinase Vps34
[240]. Associates with the
recruitment of PI4K2A
kinase to endosomes [231].

Involved in late endosome
and autophagosome
maturation and fusion
with the lysosomes.
Recruit the retromer
complex to endosomal
membrane [229, 249].

No genetic link to PD is
currently known.

Phosphorylated by
LRRK2 [223, 224].

Early endosome Rab5 RAB5-effector proteins
including PIP kinases and
phosphatases [236–238].

Involved in maturation to
early endosomes;
phagophore closure
[310]; and mitophagy
[311].

No genetic link to PD is
currently known.

Phosphorylated by
LRRK2 [223, 224].

vesicular trafficking, and non-vesicular lipid trans-
port [4]. Accordingly, phosphatidylinositol 3 phos-
phate (PI3P) is enriched at early endosomes;
phosphatidylinositol 4 phosphate (PI4P) at Golgi

membranes, the plasma membrane and recycling
endosomes; phosphatidylinositol 3,5 bisphosphate
(PI3,5P2) at late endocytic compartments; phos-
phatidylinositol 4,5 bisphosphate (PI4,5P2) and
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phosphatidylinositol 3,4,5 triphosphate (PI3,4,5P3)
are enriched at the plasma membrane [3–6].

The defined and characteristic PIP composition on
subcellular membranes provides a lipid signature that
directs proteins to specific organelles and facilitates
cell activity. Proteins may interact with PIPs through
direct binding, mediated by high-affinity PIP-binding
domains or charge attractions, formed between the
acidic PIPs and positively charged protein domains.
PIP-binding proteins may recruit other proteins to
the membrane through protein-protein interactions.
In addition to directing proteins to specific organelles,
the interaction with PIPs may allosterically activate
proteins [3].

PI, the precursor of all PIPs, is synthesized at the
endoplasmic reticulum. It is then delivered to cell
membranes by non-vesicular lipid transport at mem-
brane contact sites (MCSs) [6, 7] and by vesicular
trafficking. PI is an abundant membrane phospho-
lipid, representing ∼10–20 mol % among mam-
malian membranes. However, the total levels of PIPs
appear to be maintained at very low levels, estimated
at 2–5% of PI [4], suggesting that the regulation of
PIP homeostasis may involve additional factors that
are yet to be identified.

Table 1 lists PD-associated proteins that are linked
with PIPs through one of the following categories:
1) PD-associated genes involved in homeostasis of
PIPs, 2) PD-associated genes that directly interact
with PIPs, or 3) PD-associated genes that inter-
act with other PIP-binding proteins. The genetic
evidence linking these genes with PD includes iden-
tified mutations with Mendelian PD inheritance or
contributing risk factors identified in genome-wide
association studies (GWAS). The genes listed in
Table 1 are involved in clathrin-mediated endocyto-
sis and/or macroautophagy, mechanisms consisting
of vesicular membrane trafficking.

PIPS AND VESICULAR MEMBRANE
TRAFFICKING

Cell membranes regulate vital mechanisms of cell
biology and adequate responses to external and inter-
nal stimuli. The membranes undergo continuous adj-
ustments of their contents, including phospholipids
and fatty-acyl side chains, to enable structural and
functional membrane plasticity [8]. The dynamic
nature of cell membranes underlies vesicular mem-
brane trafficking and facilitates cargo delivery,
including proteins and other molecules wrapped up in

double-membrane vesicular structures, between cell
compartments or between the cell and its environ-
ment. Vesicular membrane trafficking is mediated
through vesicles budding from a donor membrane and
fusing with a destination membrane. It involves the
recruitment of specific membrane-interacting pro-
teins to support and stabilize defined stages in the
process. Major vesicular trafficking routes include: 1)
the secretary ER to Golgi pathway that delivers folded
and post translationally modified proteins, as well
as additional cargo molecules, through COPII and
COPI-coated vesicles; 2) internalization of molecules
from cell exterior into the cell interior by clathrin-
coated or other membrane vesicles and then sorting
by endosomes; 3) the internalized cargo can be deliv-
ered to the lysosomes for degradation or recycled
back to the plasma membrane; 4) the retromer com-
plex rescues proteins from lysosomal degradation
by diverting them to the retrograde endosome-to-
Golgi trafficking pathway or back to the plasma
membrane through a recycling pathway [9]; and 5)
macroautophagy engulfs a portion of the cellular
contents in autophagosome for delivery to the lyso-
some for degradation [10]. Specific adaptations of
vesicular membrane trafficking mechanisms enable
specialized cell activities. For example, neuronal cells
communicate with their environment through exo-
cytosis of synaptic vesicles (SVs) and release of
neurotransmitters. Exocytosis of SVs is coupled with
mechanisms of endocytosis, including endocytosis
mediated by the formation of clathrin-coated vesicles
[11, 12].

PIPs play critical roles in vesicular membrane
trafficking [3, 13]. The defined and characteristic
composition of PIP on cell membranes enables the
formation of a gradient of PIP-concentrations, along
which the levels of specific PIPs in the origin mem-
brane of the vesicle are altered to adjust with vesicle
development and the composition of PIPs on the
target membrane. The process of formation and
development of membrane vesicles is accompanied
by a coordinated recruitment of PIP-kinases and/or
PIP-phosphatase to enable the required transitions in
the composition of PIPs and to facilitate the fusion
with the target membrane [5].

CLATHRIN-MEDIATED ENDOCYTOSIS
(CME)

CME is the major endocytic pathway in mam-
malian cells (for recent reviews [14, 15]). This
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mechanism regulates the partitioning of transmem-
brane transporters and receptor proteins between the
surface of the cell and the interior. In this way, CME
regulates the availability of these proteins to receiv-
ing and internalizing signals and molecules from the
external environment into the cell (Fig. 1). CME
occurs through clathrin-coated pits (CCPs). A curve-
forming membrane-structure coated with a clathrin
lattice, which comprises three clathrin heavy chains
(CHC), with tightly associated clathrin light chains
(CLC) and the adaptor protein-2 (AP2), a heterote-
tramer consisting of �, �2, �2, and σ2 subunits. CME
can be dissected into four stages: (a) initiation, (b)
stabilization, (c) maturation, and (d) membrane scis-
sion. The released clathrin-coated vesicle (CCVs) is
then uncoated and delivers its cargo to early end-
osomes. Specific endocytic accessory proteins func-
tion to facilitate each stage and the transition
between the stages. Importantly, this orchestrated
transition between stages is critically regulated by
PIPs [14–16]. Sequential recruitment of specific
PIP-kinases and PIP-phosphatases generates the spa-
tial and temporal combination of PIPs required to
support the process. At initiation on the plasma
membrane, PI4,5P2 is generated from PI4P by phos-
phatidylinositol 4-phosphate 5-kinase 1 (PIPKI). It
acts to recruit the endocytic clathrin adaptors and
their accessory factors to initiate the formation of
a CCP [17, 18]. The maturation of the vesicle
is accompanied by a gradual decline of PI4,5P2
and generation of PI3,4P2 in a two steps pro-

cess where PI4,5P2 is first converted to PI4P by
removal of the phosphate from the 5th hydroxyl posi-
tion on the myo-inositol ring, a process mediated
by synaptojanin1 (SJ1) [19] and SHIP2, inositol-5-
phosphatase [20]; PI4P is then phosphorylated at the
3rd position of the inositol ring to generate PI3,4P2
by the class II phosphatidylinositol 3-kinase C2�
(PIK3C2�) [21]. PI3,4P2 facilitates the recruitment
of Bin/Amphiphysin/Rvs (BAR) domain-containing
proteins, including sorting nexin (SNX)9/18 and
vesicle scission by dynamin [5]. Vesicle uncoat-
ing occurs post scission in a process that requires
dephosphorylation of PI4,5P2 to PI4P and synthe-
sis of PI3P on the vesicle [22] to facilitate fusion
with early endosomes [13]. A certain degree of
inconsistency, attributed to differences in tracing
molecules or other technologies, persists [5, 15].
The importance of dephosphorylating PI4,5P2 to
PI4P for vesicle maturation was initially identi-
fied in CME of SVs in neuronal synapses and
was shown to depend on the PI4,5P2-phosphatase,
SJ1 [23]. Neurons of mice, in which the brain-
specific SJ1 isoform was knocked out, accumulated
coated SVs as well as PI4,5P2 [24]. In non-neuronal
cells, the 5-phosphatase OCRL is implicated in
PI4,5P2 dephosphorylation during endocytosis [25,
26]. OCRL is suggested to function in close
cooperation with the 4-phosphatase, Sac2/INPP5F
[27]. A cooperative function of OCRL/Sac2/INPP5F
presents dual 5- and 4-phosphatase activities similar
to the neuronal SJ1 [27].

Fig. 1. PD-proteins in clathrin-mediated endocytosis. Stages in clathrin-mediated endocytosis (CME) and the suggested involvement of
PD-associated proteins at specific stages of the process. Created with BioRender.com.
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An involvement in CME has been attributed to
several PD-associated proteins (Fig. 1). From the ini-
tiation and stabilization of the CCP to vesicle scission.
That is, �-Synuclein (�-Syn) and Leucine-rich repeat
kinase 2 (LRRK2) are involved throughout the pro-
cess; Endophilin A, in CCP membrane bending and
invagination; SJ1, in CCP maturation; INPP5F/Sac2
and SJ1, in vesicle scission and release; and auxilin
1 & 2, in vesicle uncoating.

AUTOPHAGY

Autophagy regulates the recycling of cellular com-
ponents by degrading dysfunctional or damaged
proteins and organelles. There are three forms of
autophagy: macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA) [10]. In
macroautophagy, a membrane-based structure called
phagophore, engulfs a portion of the cytoplasm and
gradually develops into a mature autophagosome
vesicle. The autophagosome membrane will then fuse
with membranes of endosomes or lysosomes [28]. In
microautophagy, an endosome or lysosome directly
invaginates and engulfs its cargo. The invaginated
membrane pinches off into the lumen of its orig-
inating organelle as a microautophagic body [29].
In CMA, the cargo is selectively recognized by
a chaperone protein and then directly internalized
into the lysosome for its degradation [30]. Microau-
tophagy and CMA, depend on cognate protein of
70 kDa (Hsc70) for target degradation. In addition,
CMA requires the lysosome-associated membrane
protein 2 isoform A (Lamp2A) as protein receptor
[30, 31]. Thus, macroautophagy operates through
vesicular trafficking, however, microautophagy and
CMA proceed with a direct engulfment of cargo into
the endolysosomal compartment [32]. Evidence for
increased abundance of autophagosomes in brains
with PD [33, 34] and the abundance of lysosomes in
the Lewy-bodies [35] directly connect the autophagy-
lysosomal pathway with the disease. Although it is
not clear yet whether the data indicate increased
clearance of damaged proteins and organelles by
autophagy or defective autophagic mechanisms.

PIPs are critically involved in virtually every step
in the autophagy process (for a recent review see
[36, 37]). It is now generally agreed that PI3P plays
a pivotal role in the initiation of autophagy; PI4P
and PI4,5P2 are required for the gradual growth of
the phagophore and generation of a double- mem-
braned autophagosome; and PI3,5P2 is important

for the fusion of the autophagosome with the lyso-
some, to form an autolysosome. To achieve the
fine dynamic balance in membrane PIP composition
along the process, specific PIP-interacting proteins
or PIP-modifying enzymes are sequentially recruited
throughout the process [36, 38]. In mammalian cells,
the key signal to suppress or initiate autophagy
predominantly relies on the mammalian target of
rapamycin complex 1 (mTORC1), which is regulated
by PM levels of PI4,5P2. Conversion of PI4,5P2 to
PI3,4,5P3 by PI3 kinase is leading to activation of
mTORC1 and inhibition of autophagy. The reverse
effect of PTEN 3-phosphatase, to dephosphorylate
PIP3 and generate PI4,5P2, initiates the autophagy
process.

PIPs also regulate autophagic lysosome reforma-
tion, an alternative pathway for lysosome generation
during autophagy, in which a localized budding of
autolysosome membranes forms tubules that undergo
scission to generate new lysosomes [39, 40]. This pro-
cess is facilitated by PI4P and PI4,5P2 that recruit
protein effectors to the reformed membranes. The
inositol polyphosphate 5-phosphatase, INPP5K, is
required for this process [41]. Mutations in INPP5K
are associated with marked lysosome depletion and
inhibition of autophagy. Resulting from the reduced
conversion of PI4,5P2 to PI4P on autolysosomes, and
impaired autophagic lysosome reformation [42, 43].
In relevance to this review, INPP5K was identified as
a contributing risk factor for PD [44, 45].

The critical relevance of autophagy in familial
and sporadic PD was recently reinforced by the
discovery of mutations in specific PD-associated
genes and contributing risk factors encoding for pro-
teins that are part of the autophagy-lysosomal and
mitophagy pathways (recently reviewed [46–48] and
Table 1). In addition, histopathological evidence has
pointed at the accumulation and defective clear-
ance of autophagosomes in PD brains [48]. Protein
markers of autophagosomes and lysosomes were
commonly detected within Lewy-pathology of PD
brains, as well as the related synucleinopathies, mul-
tiple system atrophy and dementia with Lewy-bodies
[35, 48]. Together, autophagy is implicated in PD at
the genetics and histopathology of the disease.

PIPS, AUTOPHAGY AND CME IN PD

Autophagy and endocytosis are two distinct vesic-
ular membrane trafficking mechanisms that intersect
at several stages throughout vesicle formation,
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transport and fusion. These mechanisms share com-
ponents of the molecular machinery and a common
endpoint at the lysosome (reviewed in [31, 49]).
Growing evidence suggests that autophagy is depen-
dent on endocytosis and vice versa [31]. Many of the
PD- and PIP-associated genes are involved either in
CME or autophagy, of which several genes includ-
ing, �-Syn, SJ1, endophilin A, LRRK2 and members
of the Rabs family, play a role in both mechanisms
(Fig. 2).

SJ1

SJ1 and PD
SJ1 harbors two PIP-phosphatases. A 5-phosp-

hatase that dephosphorylates PI4,5P2 and also PI3,
4,5P3 [23, 50], and a Sac1 PI 4-phosphatase that
dephosphorylates PI4P to PI and can also function
as a PI-3 phosphatase [23, 51]. Mutations in the
Sac domain (R258Q, R459P) or the 5-phosphatase
domain (Y832C, R839C) of SJ1 have been associ-

ated with early-onset Parkinsonism and typical PD,
respectively [52–55], and defined SJ1 as PARK20
[54, 56–60]. Data obtained from genome-wide
expression studies reported down-regulation of SJ1
transcript in brains affected with sporadic PD [53].
Knock-in mice, carrying the corresponding human
R258Q mutation in the Sac1 domain of the mouse SJ1
[52], showed motor defects and epilepsy. In relevance
to PD, the mice demonstrated structural alterations in
dopaminergic nerve terminals in their dorsal striatum
[52]. In addition, a reduced rate of SVs endocytosis
accompanied by abnormal accumulations of clathrin-
coated intermediates, was reported. Based on these
findings, a role for the Sac domain of SJ1 in vesicle
uncoating was suggested. The R258Q mutation in
SJ1 was shown to abolish the phosphatase activity of
the Sac domain without affecting the 5-phosphatase
activity [54]. This finding supports an indepen-
dent activity for each of SJ1 phosphatases in CME.
Together, the PD-associated mutations in SJ1 link
CME and disease mechanisms [52]. An additional

Fig. 2. PD- and PIP-associated proteins in vesicular trafficking. The distribution of PD- and PIP-associated proteins in cellular mechanisms
of vesicular membrane trafficking, and the relevant PIPs. Proteins involved in both mechanisms, macroautophagy and CME (�-Syn, LRRK2,
SJ1 and endophilin A); mitophagy (PINK1 and DJ1); and endo-lysosomal proteins (ATP13A2, VAC14, VPS35, Rab5 and Rab7). Created
with BioRender.com.
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mouse model, carrying a heterozygous deletion of
SJ1 (SJ1+/−) displayed an age-dependent motor dys-
function, impaired SV endocytosis and degeneration
of dopaminergic terminals [53].

SJ1, PIP and CME
A well-defined function of SJ1 in the synapse, is

to couple SV endocytosis with dephosphorylation of
PI4,5P2, by sequentially removing the phosphates
from the 5th and 4th positions of the inositol ring
via its two phosphatase domains [13, 23, 51, 61].
Two splice variants for SJ1 are known, a 145- and a
170-kDa isoforms [23]. Although both isoforms are
ubiquitously expressed, SJ1-145 is present at very
high concentrations in presynaptic nerve terminals
of the adult brain [62]. The SJ1-170 splice variant
contains binding sites for clathrin and the clathrin-
adaptor AP2 and is present throughout the formation
and maturation of CCPs [19]. Whereas, the SJ1-
145 variant is involved in the dephosphorylation of
PI4,5P2 as part of vesicle scission and uncoating [19].

Recruitment of SJ1 to endocytic sites is mediated
by the PD-associated endocytic protein, endophilin
[63, 64]. Genetic deletion of either SJ1 or endophilin
in mouse neurons leads to defects in synaptic
transmission [24, 65, 66], represented by a lower
abundance of SVs in nerve terminals; delayed SV
endocytic recycling and accumulation of coated vesi-
cles that have not gone through the uncoating step of
CME.

SJ1 and autophagy
While SJ1 has long been known for its involve-

ment in SV cycling, recent data support a role for
SJ1 in autophagy in the presynaptic terminals [67,
68]. A study in a knock-in Drosophila model,
expressing the equivalent to the human R258Q muta-
tion in the endogenous SJ1 Sac domain (R228Q),
reported interference with the 3-phosphatase activity
[67] and accumulation of synaptic autophagosomes.
The accumulated autophagosomes were positive to
WIPI2/Atg18 protein, which is a PI3P/PI3,5P2-bin-
ding protein, suggesting abnormal PIP homeostasis
at nerve terminals. In addition, abnormal maturation
of autophagosomes was detected in patient-derived
induced neurons, carrying the human SJ1 R258Q
mutation [67]. Impaired autophagy was also reported
in mice carrying a heterozygous deletion of SJ1
(SJ1+/−) [53]. These results suggest that the PIP-
phosphatase activities of SJ1 couple autophagy with
vesicle cycling and synaptic activity.

Of relevance, a second PIP-phosphatase, Sac2/
INPP5F, containing a Sac domain that functions
primarily as a PI4P phosphatase [27, 69], was
located within a PD risk locus identified by
GWAS [70]. Sac2/INPP5F has been localized to
vesicles formed by CME, as well as other endo-
cytic membranes, including macropinosomes, and
Rab5 endosomes [27, 69]. A synergistic role for
Sac2/INPP5F and SJ1 in regulating PI4P pool size,
whose dysfunction results in PD, was suggested
[27, 71].

α-Syn

α-Syn and PD
�-Syn is strongly implicated in the genetics of

PD. GWAS data showed that the SNCA gene, encod-
ing for �-Syn protein, makes the largest contribution
to the genetic risk associated with idiopathic PD
[72–74]. Genetic variability within the SNCA pro-
moter that results in higher expression levels of �-Syn
is associated with idiopathic PD [75]; Higher �-Syn
expression levels, resulting from gene duplications
or triplications of the chromosomal loci encod-
ing SNCA, are a dominant-inherited cause of PD
[76–78]. Moreover, six autosomal dominant muta-
tions in SNCA have been described, namely, A53T
[79] A30P [80], E46K [81], H50Q [82, 83], G51D
[84, 85] and A53E [86, 87].

�-Syn is also implicated in the histopathology of
PD. �-Syn is a major constituent of Lewy-pathology
[88], the hallmark pathology of PD, including Lewy-
bodies and Lewy-neurites [89]. It is currently debated
whether in the Lewy-bodies �-Syn occurs primar-
ily in fibrillated or non-fibrillated forms [35, 90]. A
debate with a significant impact on the way we under-
stand the pathogenesis of �-Syn in PD and the related
synucleinopathies [91].

α-Syn, membrane phospholipids and PIP
Early studies have shown that �-Syn binds mem-

brane lipids [92] with a preference for negatively
charged phospholipids [92–94]. A lipid-binding do-
main in �-Syn protein, consisting of a stretch of
∼100 aa residues at its N-terminus [94], harbors
seven imperfect repeats of a KTKEGV motif [95].
Positively charged Lysine residues within the repeat
motif were shown to be essential for lipid binding,
mediated by charge attraction with the negatively
charged phospholipid head groups [96, 97]. Mem-
brane binding enhances structure acquisition for this
intrinsically disordered protein [92, 98, 99]. The
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membrane binding domain forms an extended curved
�-helical structure [100] that promotes binding to
curved membranes, akin vesicular structures [101]. A
hydrophobic core region within the membrane bind-
ing domain is suggested to penetrate the phospholipid
bilayer beyond the plain of the phospholipids head-
group, where it interacts with their fatty acyl chains
[102–104]. It has been suggested that the membrane
binding domain in �-Syn senses membrane curva-
ture; facilitates the formation or stabilizes a curvature
on membrane structures [105]; or forms a tether
between vesicles [101]. The acidic C-terminal region
in �-Syn has been suggested to support and sterically
stabilize curved membrane structures [106]. In accord
with these reports, a role for �-Syn in the mainte-
nance [107, 108] and dynamics of SV pools has been
reported [109, 110].

Additional sets of data support an involvement of
�-Syn in regulating the content of lipids on cell mem-
branes. Previous studies have shown that �-Syn binds
fatty acids; enhances their uptake into cell lines and
mouse brains; and incorporation into phospholipids
[111, 112]. A preference for uptake and metabolism
of polyunsaturated fatty acids (PUFA) was suggested
[111, 112]. A recent study reported increases in levels
and metabolism of Oleic acid, a mono-unsaturated
fatty-acid, upon overexpression of �-Syn in yeast
cells, mouse neurons and human induced pluripo-
tent stem cell (iPSC)- neurons [113]. Lipidomic data
in yeast cells further showed alterations in the pro-
files of phospholipids, triglycerides and cholesterol
with �-Syn expression [113]. �-Syn effects on mem-
branes’ phospholipid content were also demonstrated
in myelin membranes purified from �-Syn tg mouse
brains. Higher levels of phospholipids, detected by
31P NMR spectra, were reported in young and healthy
�-Syn tg mice [114]. In accord with the increases in
the content of lipids, accumulation of lipid droplets
was detected with �-Syn expression [113, 115, 116].
Importantly, the alterations in lipid content observed
in the disease models were shown to associate with
�-Syn toxicity [113, 117–121]. Together, the data
support a general role for �-Syn in lipid homeostasis
and metabolism.

In relevance to disease mechanisms, alterations in
lipid profiles were reported in brains affected with PD
and multiple system atrophy at autopsy (reviewed in
[97, 122, 123]. Importantly, genetic studies pointed
at several genes that are involved in lipid metabolism
and implicated in the genetics of PD, including
biosynthesis and turnover of phospholipids, glycol-
ipids, sphingolipids and fatty acids [97].

Based on two main observations relevant to �-Syn
associations with lipids, its preference for binding
acidic phospholipids and its effects to increase the
content of membrane phospholipids, it was hypoth-
esized that �-Syn associates with PIPs. Indeed, it
was found that �-Syn specifically interacts with PIPs
[124–128]. The data further suggested that �-Syn
expression increased the steady-state levels of PI4P,
PI3,4P2 and PI4,5P2 [128]. Expression of the PD-
associated mutations in �-Syn, A53T and A30P,
further increased membrane levels of these PIPs
[128]. A mutant form of �-Syn, which denies lipid
binding, due to charge replacement in the KTKEGV
repeat motif, was ineffective in this respect [96, 125,
128], suggesting that this motif is critical for �-Syn
regulation of PIPs. Of interest, in relevance to �-
Syn effect to enhance uptake and incorporation of
PUFAs [111, 112], PIPs are normally enriched with
polyunsaturated fatty acyl chains [4].

The mechanism through which �-Syn acts to regu-
late the overall content of membrane lipid is currently
unknown. Such a mechanism may potentially involve
alterations in the expression levels of genes that are
master regulators of lipid synthesis and homeosta-
sis [129, 130]. A potential explanation may involve
�-Syn translocation to the nucleus and its involve-
ment in transcription activation mediated by nuclear
receptors [95, 131], including regulators of lipid
homeostasis [132, 133]. In relevance to this review
article, although no mechanistic explanation cur-
rently supports �-Syn involvement in the regulation
of PIPs, the available data place �-Syn among PD-
and PIP-associating protein (Table 1).

α-Syn, CME and SV cycling
A role for �-Syn in CME was first suggested based

on the determination of transferrin’s internalization, a
CME prototype, in cultured dopaminergic cells [134].
�-Syn-mediated enrichment of cell membranes with
PUFAs enhanced membrane fluidity [112] and fur-
ther enhanced endocytosis of transferrin [134].
Accordingly, enrichment of membrane phospho-
lipids with PUFA facilitated membrane invagination
and scission of membrane vesicles mediated by
endophilin and dynamin proteins [135]. The reported
enrichment of �-Syn expression at presynaptic ter-
minals [95, 136] and the knowledge that CME is a
major route for SVs endocytosis, supported a poten-
tial role for �-Syn in SVs cycling. Indeed, loading
the synapses with the lipophilic FM1-43 dye follow-
ing evoked synaptic activity indicated lower uptake
in cultured hippocampal neurons from �-Syn−/−
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than in wild type mouse neurons [134]. Restora-
tion of �-Syn expression in primary cortical neurons
from �-Syn−/− mouse brain enhanced endocyto-
sis determined by the pH-sensitive fluorescence of
Synaptophysin-pHluorin (SypHy) chimeric indica-
tor [128]. It was further suggested based on �, �
and �-Syn knock-out in mice that all three synucle-
ins are involved in clathrin-mediated SV recycling at
presynaptic nerve terminals [137].

Growing evidence now supports a role for �-
Syn to facilitate and increase the rate of endocytosis
[128, 134, 137–139]. �-Syn colocalizes with clathrin
[134, 137]. Its colocalization with phosphorylated
AP2, PI4,5P2 and PI3,4P2 [128] supports its recruit-
ment to CME already at the initiation stage. Data
obtained in synapses of dynamin 1, 3 KO neurons,
in which CME is arrested at the scission step and
synapses accumulate clathrin pits [140, 141], show
that �-Syn is colocalizing with clathrin in the arrested
clathrin pits [137]. Moreover, �-Syn was shown to
directly interact with Hsc70 and excess of �-Syn
at the lamprey reticulospinal synapse leads to
sequestration of Hsc70 and impairment of CCV
uncoating at the synapse [142]. Together, these fin-
dings support an association of �-Syn with CCPs
from vesicle initiation, throughout their growth and
maturation, to scission and uncoating. However, other
studies reported that excess of �-Syn in the synapse
interfered with endocytosis [124, 142, 143]. More-
over, loading synapses of the lamprey neurons with
�-Syn resulted in inhibition of SV endocytosis dur-
ing intense electrical stimulation [144]; and neurons
overexpressing �-Syn were shown to internalize
lower amounts of styryl dye indicators for SV recy-
cling, indicating a reduction in endocytosis [109,
145].

Alongside the reports describing a role for �-Syn
in CME and SV endocytosis, a large body of evi-
dence also supports a role for �-Syn in SV exocytosis
(recently reviewed in [146, 147]). �-Syn was shown
to play roles in the assembly of the SNARE complex
[148–151]; vesicle docking and fusion [152, 153];
transmitter release [110, 154, 155]; and regulation of
fusion pore dilation [156]. To summarize a large body
of evidence that links �-Syn with vesicular mem-
brane trafficking, it is currently difficult to conclude
whether �-Syn enhances or inhibits the process, and
whether it is endocytosis or exocytosis [146, 147].

A recent study has shown that the actual compo-
sition of PIPs in the plasma membrane determines
�-Syn’s activity in the endocytosis of transferrin.
A rapid recruitment of PIP 5-phosphatase to the

plasma membrane [157], acutely depleted PI4,5P2
content and in accord, inhibited endocytosis of
transferrin. The data further supported a role for
membrane PIPs in SV endocytosis mediated by �-
Syn [128]. Importantly, in addition to its roles in
SVs endocytosis, PI4,5P2 is critically involved in
SVs exocytosis. Including, priming and fusion steps
of Ca2+ -triggered vesicle release [158]; recruit-
ment and activation of specific protein regulators of
SNARE complex assembly and function [158, 159];
and involvement in dilation of the fusion pore [158,
159]. PI4,5P2 roles in exocytosis may also involve
PI4,5P2-binding proteins such as CAPS, Munc13 and
synaptotagmin [160–163] or its effects on F-actin
polymerization [164].

Considering the findings showing that �-Syn
involvement in SVs cycling is mediated through its
effects to enrich cell membranes with PIPs, it is rea-
sonable to hypothesize that similar to its effects in
endocytosis, �-Syn may also act in exocytosis by
enriching the presynaptic membranes with PIPs.

It is thus important to better understand the involve-
ment of �-Syn in the regulation of synaptic PI4,5P2
levels. Whether there are single or multiple pools
of PI4,5P2 at the synapse and whether regulatory
checkpoints may act to maintain a balance in PIP
availability for the endocytic and exocytic arms of
SV cycling.

α-Syn and autophagy
The associations of �-Syn with autophagy are

complex. Toxic �-Syn forms, including misfolded
or aggregated �-Syn, are cleared by CMA [165,
166] and macroautophagy [167]. In relevance to the
clearance of �-Syn, data suggest the occurrence of
a cellular cross-talk between macroautophagy and
CMA. A compromise in CMA results in activation of
macroautophagy and vice versa [30]. Additional data
support an involvement of �-Syn in macroautophagy,
yet with a certain degree of controversy. That is, over
expression of �-Syn was shown to enhance macroau-
tophagy [165, 168, 169]. However, other studies have
reported evidence showing an inhibitory role for
�-Syn in autophagosome formation and macroau-
tophagy [170, 171].

In summary, the controversies over �-Syn effects
in autophagy and CME, may relate to one another.
The shared components between the two pathways,
including the dependence on vesicular membrane
trafficking and the critical roles of PIPs through-
out the processes, bring up a question related to
the mechanism of action of �-Syn in autophagy.
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Whether similar to its role in CME, �-Syn may act in
autophagy to alter the steady state levels of specific
membrane PIPs?

LRRK2

LRRK2 and PD
LRRK2 is a large multidomain protein harboring a

kinase, GTPase and protein-binding domains [172].
Missense mutations in LRRK2 cause late-onset
autosomal dominant PD which is clinically indis-
tinguishable from sporadic PD [173, 174]. LRRK2
mutations are the most common genetic cause of
familial PD [173, 175] and GWAS studies identi-
fied LRRK2 as a risk factor for idiopathic PD [70].
Pathologically, LRRK2 mutation carriers experience
progressive neurodegeneration of the nigrostriatal
pathway and often develop �-Syn-positive Lewy-
bodies. In addition, a subset of patients with LRRK2
mutations presents inclusion bodies that are negative
for �-Syn yet, positive for tau and TDP-43 [173,
176–178]. Suggesting that the pathophysiology of
LRRK2 in PD may occur independently of clas-
sical Lewy-pathology. Through its kinase activity,
LRRK2 interacts with many PD-associated proteins.
In addition, Rab29 [179–181] and VPS35 [181, 182]
proteins associated with PD, are upstream regulators
of LRRK2. Due to its central roles in the genetics and
pathophysiology of PD, LRRK2 is a subject of inten-
sive research. The readers are referred to other recent
reviews that provide a comprehensive description of
the current knowledge (for example [172, 183]).

LRRK2 and PIP
While no evidence is currently known to directly

link LRRK2 and PIPs, ample evidence shows that
LRRK2 interacts with and phosphorylates PD-
associated, PIP-interacting proteins. These include
the following proteins that are involved in vesicular
membrane trafficking: ATP13A2; Auxilin 1, and 2;
Dynamin; endophilin-A1; SJ1; VPS35; and specific
Rab proteins (see Table 1 and below).

LRRK2 and CME
LRRK2 plays a role in CME and SV endocyto-

sis. Silencing LRRK2 expression in flies or mice
resulted in accumulation of endocytic intermediates;
an abnormal vesicle morphology; and a reduced
number of synaptic vesicles [184, 185]. Notably,
the defects in LRRK2 activity in endocytosis were
attributed to its kinase activity [185]. The most com-
mon LRRK2 G2019S PD-mutation was shown to

impair SV endocytosis in mouse ventral midbrain
neurons, including in dopaminergic neurons [186].
It was further shown that the impairments in endo-
cytosis, resulting from LRRK2 G2019S transgenic
expression, could be rescued by inhibiting LRRK2
kinase activity [186, 187]. Reductions in SV densities
were also reported for iPSC-derived dopaminergic
neurons expressing the LRRK2 R1441C mutation
[188]. Moreover, the vesicles appeared to lack distinct
surrounding membranes, consistent with membrane-
less clathrin cages observed in models involving
defective clathrin uncoating [188].

LRRK2 was shown to interact physically and func-
tionally with critical components or facilitators of
CME and SV endocytosis, including auxilin [188],
Dynamin 1, 2, and 3 [189], SJ1 [186, 190] and
endophilin-A1 [184, 185]. LRRK2 also interacts with
clathrin [191] and the clathrin adaptor AP2 complex,
regulating the recruitment of AP2 [187] and phospho-
rylation of AP2M1 at threonine 156 [192]. Finally,
data show evidence for indirect associations between
�-Syn and LRRK2 [177]. Together, the reported data
suggest that, through its phosphorylation and other
associations with proteins involved in CME, LRRK2
is a master regulator of CME, recruited to the pro-
cess at the early stage of initiation and supports the
process throughout, to vesicle uncoating (Fig. 1).

LRRK2 and autophagy
An involvement for LRRK2 in autophagy is now

well documented (reviewed in [172, 193]). How-
ever, inconsistencies in autophagy outcome, whether
increasing or decreasing the autophagic flux, per-
sists [172, 183]. The inconsistencies are explained by
differences in experimental models and deny a con-
clusion about the mechanism of action of LRRK2 in
autophagy.

Similar to �-Syn, LRRK2 is a substrate for CMA
[165, 194]. The PD-associated G2019S mutation in
LRRK2 and high levels of wild type LRRK2 were
shown to inhibit CMA [194–197]. CMA inhibition by
LRRK2 interfered with �-Syn clearance [194, 198],
resulting in intracellular accumulation of �-Syn. The
G2019S mutation increases LRRK2 kinase activ-
ity [199–201]. Interestingly, inhibitors for LRRK2
kinase activity were shown to reduce the accumula-
tion of �-Syn in human neuronal cell lines carrying
the G2019S mutation [202]. Supporting a pathogenic
role for LRRK2 that involves �-Syn toxicity in PD.

LRRK2 was found to form a complex with
Rab7L1 and auxilin 2 proteins, encoded by genes
identified as risk genes for sporadic PD, and BCL2-
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associated athanogene 5 (Bag5). This complex
promotes clearance of Golgi-derived vesicles through
the autophagy–lysosome system [203]. Together,
although the mechanism of action for LRRK2 in
autophagy, CMA and the lysosome is still missing, it
appears to be strongly associated with disease mech-
anisms.

Endophilin-A1

SH3GL2 encoding endophilin-A1 was identified in
a PD risk locus by a large-scale GWAS meta-analysis
[204]. Additional evidence linking endophilin with
PD includes its phosphorylation by LRRK2 [185];
association with Parkin [205] and with the synu-
cleins [137]; and its upregulation in PD brains
[206]. Endophilin’s associations with PIPs are indi-
rect and mediated through its interactions with the
PIP-phosphatase, SJ1 [64, 207] and the PIP-binding
protein, dynamin [64].

Endophilin CME
Endophilin is best known for its role in CME

[64, 208]. However, it is also implicated in clathrin
independent, ultrafast SV endocytosis [209], and
exocytosis of neurosecretory vesicles [210]. Its inter-
actions with the endocytic proteins, dynamin and SJ1
[49], facilitate neck formation in the endocytic vesicle
[209] and clathrin-uncoating [65, 211]. Impairment
of endophilin expression or function results in severe
deficits in SV endocytosis [65, 66, 207, 211].

Endophilin and autophagy
Together with SJ1, endophilin belongs to the

growing family of presynaptic endocytic proteins
that are involved in autophagy (reviewed in [49]).
Endophilin-A1 colocalizes with autophagosomes and
its loss of expression interfered with the forma-
tion or transport of autophagosomes [212, 213]. An
operational switch in endophilin’s function upon
its phosphorylation by LRRK2 is suggested to dif-
ferentiate non-phosphorylated endophilin activity in
CME and membrane tubulation, while phosphory-
lated endophilin facilitates the formation of highly
curved membranes, serving as docking sites for the
autophagic factor Atg3 [212]. Thus, phosphorylation
of endophilin is suggested to balance synaptic activity
between endocytosis and autophagy.

Rabs

Rab GTPases include ∼70 family members in
humans. They control all aspects of intracellular
vesicle trafficking by acting as regulatable switches
that recruit effector molecules [214, 215]. Rab
GTPases are reversibly anchored into membranes
by hydrophobic geranylgeranyl groups. Rabs cycle
between two states, an active GTP-bound and an inac-
tive GDP-bound state. The conversion between active
and inactive states is catalyzed by guanine nucleotide
exchange factors (GEFs) and GTPase-activating pro-
teins (GAPs) [216].

Rabs and PD
Mutations in Rab39b (Park 21 locus) predispose

to PD in humans [217, 218]. Additional genetic find-
ings link Rab7L1, a LRRK2 effector protein also
known as Rab29 [179, 180], with PD [219]. Overex-
pression of Rab1, Rab3a, Rab8a and Rab11 attenuate
�-Syn-induced cytotoxicity in cell and animal models
[220–222]. The potential involvement of additional
Rabs is supported by data showing that LRRK2 inter-
acts with and phosphorylates several Rab proteins,
including Rab5 and Rab7 [172, 180, 223–226]. The
phosphorylation of Rab proteins is augmented by PD-
associated mutations in LRRK2, which interfere with
Rabs’ ability to bind both upstream regulatory pro-
teins and downstream effector proteins [223, 224].
In addition, Vps35, a PD-associated gene [227] that
is part of the retromer complex, interacts with Rab7
[228] to recruit the retromer complex to the endoso-
mal membrane [229, 230].

Rab5, Rab7, endo-lysosomes and PIPs
The conversion between the Rab-GTP and Rab-

GDP bound states, regulated by GEFs and GAPs,
is mediated by the content of specific PIPs on the
membrane [231, 232]. Rabs associate with PIPs,
yet, these associations are generally indirect and
mediated by other proteins (Table 1). Rabs regulate
the recruitment and activation of PIP kinases and
phosphatases [233]. For example, Rab35 binds and
recruits OCRL, a PI4,5P2 5-phosphatase, to facil-
itate PI4,5P2 hydrolysis and clathrin-uncoating in
CME, and the subsequent steps of cargo sorting
through endosomes [234, 235]. A dynamic conver-
sion of PIPs occurs following vesicle uncoating,
where PI4-phosphates (e.g., PI4P and PI4,5P2 [22])
are converted to PI3P alongside with recruitment of
Rab5 to the vesicle as it matures into Rab5-positive
early endosome [236]. At early endosomes, Rab5
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interacts with the PI 3-kinases Vps34, PI3K� and
PI3KC2� to synthesize PI3P [236, 237]. Rab5 also
interacts with the PIP-phosphatases, type II inosi-
tol 5-phosphatase (INPP5B) [238] and Sac2/INPP5F
inositol 4-phosphatase [27].

A shift in PIPs composition couples the transition
between early to late endosomes and the replacement
of Rab5 with Rab7 [214, 239]. Similar to Rab5, Rab7
interacts with Vps34 [240]. However, Rab7-positive
endosomes are associated with higher PI4P levels,
primarily produced by PI4K2A kinase [231]. Rab7
interacts with the PI4P 5-kinase, PIP5K� [241] and
the acute conversion of endosomal PI4P to PI4,5P2
causes Rab7 to dissociate from late endosomes [231].
Recent studies suggest the occurrence of a late endo-
somal regulatory loop that impacts autophagosome
flux and involves Rab7 cycling and PI4P to PI4,5P2
conversion [231, 241]. That is, interference with
PI4,5P2 synthesis on the late endosomal membrane
resulted in accumulation of LC3-positive structures
with defective autophagosome-lysosome fusion.

The retromer

The retromer is a peripheral membrane protein
complex that plays an instrumental role in pro-
tein recycling from endosomes to the trans-Golgi
network. The retromer consists of two distinct sub-
complexes, a membrane recognizing, PI3P binding
sorting nexin (SNX) complex and a cargo recog-
nition, vacuolar protein sorting (Vps) complex.
Importantly, a mutation in the VPS35 gene encoding
a retromer core protein, is a rare cause of famil-
ial PD [227, 242]. An involvement of the retromer
and the specific D620N mutation in VPS35 has
been implicated in dysfunction of the dopaminer-
gic synapse [243] and neurodegeneration [244–248].
The D620N mutation in VPS35 was also shown to
enhance LRRK2-mediated phosphorylation of sev-
eral Rab members [182]. Finally, Rab7 interacts with
VPS35 and recruits the retromer to late endosomes
[229], in a mechanism that also requires Rab5 [249].

A role for the retromer in SV recycling, autophagy
and lysosomal degradation has been reported [250,
251]. The D620N mutation in VPS35 disrupted cargo
sorting [252]; associated with an abnormal endo-
some morphology [253]; interfered with endosomal
subcellular localization and displayed evidence of
retention of early and late endosome markers [252].
Moreover, the D620N mutation poorly associates
with SNX3 that binds PI3P on endosomal membranes
and impairs the recruitment of the WASH complex

to endosomes. However, the effects of D620N muta-
tions in autophagy are not clear yet [253, 254].

PIPS AND NON-VESICULAR TRANSPORT

Cells rely on lipid transport mechanisms to main-
tain structural and functional membrane plasticity,
and replenish PIPs levels at the plasma membrane.
Vesicular membrane trafficking is an essential route
for lipid transfer between cell membranes. Following
transport, PIPs and their precursor PI may serve as
substrates for enzymatic conversions that will gener-
ate the required local PIP composition for membrane
activities.

A key mechanism that drives local delivery of
lipids from the endoplasmic reticulum (ER), the site
of PI synthesis, to the plasma membrane as well as
other organellar membranes, is non-vesicular lipid
transport [255]. A mechanism mediated by MCS,
formed between two distinct organellar membrane
compartments [256, 257]. MCS are stabilized by
tethering complexes that maintain close proxim-
ity between the connecting membranes but without
membrane fusion. This direct route of communica-
tion is regulating lipid exchange between membranes
[255]. PIPs, including PI4P and PI4,5P2, are playing
fundamental roles in non-vesicular lipid transport by
serving for the exchange of lipids between the plasma
membrane and the ER, mediated by lipid trans-
fer proteins [3]. A mechanistic cooperation between
vesicular trafficking and non-vesicular lipid transport
has recently been implicated in phagolysosome reso-
lution, a late stage in the phagolysosomal process that
facilitates the absorbance of phagolysosomal con-
tents. Transfer of PI4P from the phagolysosomes to
the ER through membrane contact sites plays a sig-
nificant role in this process [258]. Moreover, de novo
phospholipid synthesis at the ER was shown to sup-
port the expansion of the growing phagophore vesicle
by generating stable contacts between the membranes
[259]. Of interest, the PD-associated VPS13C gene
encodes for a lipid transporter, acting at MCSs [242,
260, 261]. In addition, �-Syn was detected MCSs
formed between the ER and mitochondria [262].

�-GLUCOCEREBROSIDASE (GBA) AND
PIPS

Although not directly related to the focus of this
review, it is of interest to include a recent study that
reported evidence for a role for PIPs in the cell traf-
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ficking of GBA, a sphingolipids hydrolyze [263].
Homozygous GBA mutations are a genetic cause of
Gaucher disease. However, heterozygous carriers of
GBA mutations have significantly increased risk for
PD [264, 265]. Data show that the catalytic activity of
the PI 4-kinases, PI4KIII� and PI4KII� are required
for the physiological trafficking of GBA along the
route of its synthesis and maturation to lysosomes,
where it is involved in sphingolipids catabolism.

CONCLUDING REMARKS

Understanding the implications of altered PIP
homeostasis in PD mechanisms may provide clues to
solve open questions and controversies over the func-
tion and dysfunction of several PD genes, improve
disease diagnosis and management. Attempts are
currently being made to develop specific chemical
modulators for specific PIP-modifying enzymes as
therapeutic strategies for diseases, including, infec-
tious diseases, cancer and neurodegenerations.
These developments hold promise for therapeutic
approaches that seek the restoration of a physiologic
PIP homeostasis.
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Niedieker D, El-Mashtoly SF, Quadri M, Van IWFJ, Boni-
fati V, Gerwert K, Bohrmann B, Frank S, Britschgi M,
Stahlberg H, Van de Berg WDJ, Lauer ME (2019) Lewy
pathology in Parkinson’s disease consists of crowded
organelles and lipid membranes. Nat Neurosci 22,
1099-1109.

[36] Palamiuc L, Ravi A, Emerling BM (2020) Phosphoinosi-
tides in autophagy: Current roles and future insights. FEBS
J 287, 222-238.

[37] Baba T, Balla T (2020) Emerging roles of phosphatidyli-
nositol 4-phosphate and phosphatidylinositol 4,5-bis-
phosphate as regulators of multiple steps in autophagy.
J Biochem 168, 329-336.

[38] Wallroth A, Haucke V (2018) Phosphoinositide conver-
sion in endocytosis and the endolysosomal system. J Biol
Chem 293, 1526-1535.

[39] Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng
J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot
V, Klumperman J, Baehrecke EH, Lenardo MJ (2010)
Termination of autophagy and reformation of lysosomes
regulated by mTOR. Nature 465, 942-946.

[40] Chen Y, Yu L (2018) Development of research into
autophagic lysosome reformation. Mol Cells 41, 45-49.

[41] Gurung R, Tan A, Ooms LM, McGrath MJ, Huys-
mans RD, Munday AD, Prescott M, Whisstock JC,
Mitchell CA (2003) Identification of a novel domain in
two mammalian inositol-polyphosphate 5-phosphatases
that mediates membrane ruffle localization. The inositol
5-phosphatase skip localizes to the endoplasmic retic-
ulum and translocates to membrane ruffles following
epidermal growth factor stimulation. J Biol Chem 278,
11376-11385.

[42] McGrath MJ, Eramo MJ, Gurung R, Sriratana A, Gehrig
SM, Lynch GS, Lourdes SR, Koentgen F, Feeney SJ,
Lazarou M, McLean CA, Mitchell CA (2021) Defective
lysosome reformation during autophagy causes skeletal
muscle disease. J Clin Invest 131, e135124.

[43] Eramo MJ, Gurung R, Mitchell CA, McGrath MJ
(2021) Bidirectional interconversion between PtdIns4P
and PtdIns(4,5)P(2) is required for autophagic lysosome
reformation and protection from skeletal muscle disease.
Autophagy 17, 1287-1289.

[44] Liu G, Zhao Y, Sun JY, Sun BL (2019) Parkinson’s dis-
ease risk variant rs1109303 regulates the expression of
INPP5K and CRK in human brain. Neurosci Bull 35,
365-368.

[45] Zhu W, Luo X, Adnan A, Yu P, Zhang S, Huo Z, Xu Q, Pang
H (2018) Association analysis of NUCKS1 and INPP5K
polymorphism with Parkinson’s disease. Genes Genet Syst
93, 59-64.

[46] Hou X, Watzlawik JO, Fiesel FC, Springer W (2020)
Autophagy in Parkinson’s disease. J Mol Biol 432,
2651-2672.

[47] Cerri S, Blandini F (2019) Role of autophagy in Parkin-
son’s disease. Curr Med Chem 26, 3702-3718.

[48] Arotcarena ML, Teil M, Dehay B (2019) Autophagy in
synucleinopathy: The overwhelmed and defective machin-
ery. Cells 8, 565.

[49] Azarnia Tehran D, Kuijpers M, Haucke V (2018)
Presynaptic endocytic factors in autophagy and neurode-
generation. Curr Opin Neurobiol 48, 153-159.

[50] Pirruccello M, Nandez R, Idevall-Hagren O, Alcazar-
Roman A, Abriola L, Berwick SA, Lucast L, Morel D,
De Camilli P (2014) Identification of inhibitors of inosi-
tol 5-phosphatases through multiple screening strategies.
ACS Chem Biol 9, 1359-1368.

[51] Guo S, Stolz LE, Lemrow SM, York JD (1999) SAC1-like
domains of yeast SAC1, INP52, and INP53 and of human
synaptojanin encode polyphosphoinositide phosphatases.
J Biol Chem 274, 12990-12995.

[52] Cao M, Wu Y, Ashrafi G, McCartney AJ, Wheeler H,
Bushong EA, Boassa D, Ellisman MH, Ryan TA, De
Camilli P (2017) Parkinson sac domain mutation in synap-
tojanin 1 impairs clathrin uncoating at synapses and
triggers dystrophic changes in dopaminergic axons. Neu-
ron 93, 882-896 e885.

[53] Pan PY, Sheehan P, Wang Q, Zhu X, Zhang Y, Choi I, Li
X, Saenz J, Zhu J, Wang J, El Gaamouch F, Zhu L, Cai D,
Yue Z (2020) Synj1 haploinsufficiency causes dopamine
neuron vulnerability and alpha-synuclein accumulation in
mice. Hum Mol Genet 29, 2300-2312.



1740 M. Schechter and R. Sharon / An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease

[54] Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov
V, Darvish H, Di Paolo G, Walker RH, Shahidi GA,
Buxbaum JD, De Camilli P, Yue Z, Paisan-Ruiz C (2013)
The Sac1 domain of SYNJ1 identified mutated in a family
with early-onset progressive Parkinsonism with general-
ized seizures. Hum Mutat 34, 1200-1207.

[55] Xie F, Chen S, Cen ZD, Chen Y, Yang DH, Wang HT,
Zhang BR, Luo W (2019) A novel homozygous SYNJ1
mutation in two siblings with typical Parkinson’s disease.
Parkinsonism Relat Disord 69, 134-137.

[56] Olgiati S, De Rosa A, Quadri M, Criscuolo C, Breedveld
GJ, Picillo M, Pappata S, Quarantelli M, Barone P, De
Michele G, Bonifati V (2014) PARK20 caused by SYNJ1
homozygous Arg258Gln mutation in a new Italian family.
Neurogenetics 15, 183-188.

[57] Quadri M, Fang M, Picillo M, Olgiati S, Breedveld GJ,
Graafland J, Wu B, Xu F, Erro R, Amboni M, Pappata S,
Quarantelli M, Annesi G, Quattrone A, Chien HF, Bar-
bosa ER, International Parkinsonism Genetics N, Oostra
BA, Barone P, Wang J, Bonifati V (2013) Mutation in the
SYNJ1 gene associated with autosomal recessive, early-
onset Parkinsonism. Hum Mutat 34, 1208-1215.

[58] Chen KH, Wu RM, Lin HI, Tai CH, Lin CH (2015) Muta-
tional analysis of SYNJ1 gene (PARK20) in Parkinson’s
disease in a Taiwanese population. Neurobiol Aging 36,
2905.e2907-2908.

[59] Kirola L, Behari M, Shishir C, Thelma BK (2016) Iden-
tification of a novel homozygous mutation Arg459Pro in
SYNJ1 gene of an Indian family with autosomal reces-
sive juvenile Parkinsonism. Parkinsonism Relat Disord 31,
124-128.

[60] Taghavi S, Chaouni R, Tafakhori A, Azcona LJ, Firouz-
abadi SG, Omrani MD, Jamshidi J, Emamalizadeh B,
Shahidi GA, Ahmadi M, Habibi SAH, Ahmadifard A,
Fazeli A, Motallebi M, Petramfar P, Askarpour S, Askar-
pour S, Shahmohammadibeni HA, Shahmohammadibeni
N, Eftekhari H, Shafiei Zarneh AE, Mohammadihossein-
abad S, Khorrami M, Najmi S, Chitsaz A, Shokraeian P,
Ehsanbakhsh H, Rezaeidian J, Ebrahimi Rad R, Madadi F,
Andarva M, Alehabib E, Atakhorrami M, Mortazavi SE,
Azimzadeh Z, Bayat M, Besharati AM, Harati-Ghavi MA,
Omidvari S, Dehghani-Tafti Z, Mohammadi F, Moham-
mad Hossein Pour B, Noorollahi Moghaddam H, Esmaili
Shandiz E, Habibi A, Taherian-Esfahani Z, Darvish H,
Paisán-Ruiz C (2018) A clinical and molecular genetic
study of 50 families with autosomal recessive parkin-
sonism revealed known and novel gene mutations. Mol
Neurobiol 55, 3477-3489.

[61] Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De
Camilli P, Ryan TA (2007) The dual phosphatase activ-
ity of synaptojanin1 is required for both efficient synaptic
vesicle endocytosis and reavailability at nerve terminals.
Neuron 56, 1004-1018.

[62] Ramjaun AR, McPherson PS (1996) Tissue-specific alter-
native splicing generates two synaptojanin isoforms with
differential membrane binding properties. J Biol Chem
271, 24856-24861.

[63] de Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin
WS, McPherson PS (1997) Identification of the major
synaptojanin-binding proteins in brain. J Biol Chem 272,
8710-8716.

[64] Ringstad N, Nemoto Y, De Camilli P (1997) The
SH3p4/Sh3p8/SH3p13 protein family: Binding partners
for synaptojanin and dynamin via a Grb2-like Src

homology 3 domain. Proc Natl Acad Sci U S A 94,
8569-8574.

[65] Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C,
Shen H, Paradise S, O’Toole E, Ferguson S, Cremona O,
De Camilli P (2011) Recruitment of endophilin to clathrin-
coated pit necks is required for efficient vesicle uncoating
after fission. Neuron 72, 587-601.
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nandez DG, Krüger R, Federoff M, Klein C, Goate A,
Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C,
Houlden H, Steffens M, Okun MS, Racette BA, Cookson
MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S,
Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G,
Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J,
Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess
O, Hardy JA, Singleton AB, Gasser T (2009) Genome-
wide association study reveals genetic risk underlying
Parkinson’s disease. Nat Genet 41, 1308-1312.

[73] Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C,
Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda
A, Tomiyama H, Nakashima K, Hasegawa K, Obata
F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto
M, Hattori N, Murata M, Nakamura Y, Toda T (2009)
Genome-wide association study identifies common vari-
ants at four loci as genetic risk factors for Parkinson’s
disease. Nat Genet 41, 1303-1307.



M. Schechter and R. Sharon / An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease 1741

[74] Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K,
Bandres-Ciga S, Chang D, Tan M, Kia DA, Noyce AJ,
Xue A, Bras J, Young E, von Coelln R, Simón-Sánchez
J, Schulte C, Sharma M, Krohn L, Pihlstrøm L, Siitonen
A, Iwaki H, Leonard H, Faghri F, Gibbs JR, Hernandez
DG, Scholz SW, Botia JA, Martinez M, Corvol JC, Lesage
S, Jankovic J, Shulman LM, Sutherland M, Tienari P,
Majamaa K, Toft M, Andreassen OA, Bangale T, Brice
A, Yang J, Gan-Or Z, Gasser T, Heutink P, Shulman JM,
Wood NW, Hinds DA, Hardy JA, Morris HR, Gratten J,
Visscher PM, Graham RR, Singleton AB (2019) Identifi-
cation of novel risk loci, causal insights, and heritable risk
for Parkinson’s disease: A meta-analysis of genome-wide
association studies. Lancet Neurol 18, 1091-1102.

[75] Pals P, Lincoln S, Manning J, Heckman M, Skipper L,
Hulihan M, Van den Broeck M, De Pooter T, Cras P,
Crook J, Van Broeckhoven C, Farrer MJ (2004) alpha-
Synuclein promoter confers susceptibility to Parkinson’s
disease. Ann Neurol 56, 591-595.

[76] Singleton AB, Farrer M, Johnson J, Singleton A, Hague
S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nuss-
baum R, Lincoln S, Crawley A, Hanson M, Maraganore
D, Adler C, Cookson MR, Muenter M, Baptista M, Miller
D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-
Synuclein locus triplication causes Parkinson’s disease.
Science 302, 841.

[77] Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux
V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J,
Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer
M, Destée A (2004) Alpha-synuclein locus duplication
as a cause of familial Parkinson’s disease. Lancet 364,
1167-1169.

[78] Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F,
Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation
between alpha-synuclein gene duplication and familial
Parkinson’s disease. Lancet 364, 1169-1171.

[79] Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehe-
jia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer
R, Stenroos ES, Chandrasekharappa S, Athanassiadou A,
Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin
RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Muta-
tion in the alpha-synuclein gene identified in families with
Parkinson’s disease. Science 276, 2045-2047.

[80] Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M,
Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998)
Ala30Pro mutation in the gene encoding alpha-synuclein
in Parkinson’s disease. Nat Genet 18, 106-108.

[81] Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros
R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares
B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG,
de Yebenes JG (2004) The new mutation, E46K, of alpha-
synuclein causes Parkinson and Lewy body dementia. Ann
Neurol 55, 164-173.

[82] Appel-Cresswell S, Vilarino-Guell C, Encarnacion M,
Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-
Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon Stoessl
A, Farrer MJ (2013) Alpha-synuclein p.H50Q, a novel
pathogenic mutation for Parkinson’s disease. Mov Disord
28, 811-813.

[83] Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper
JM, Millhauser GL, Houlden H, Schapira AH (2013) A
novel �-synuclein missense mutation in Parkinson disease.
Neurology 80, 1062-1064.

[84] Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis
P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T,

Houlden H, Holton JL (2013) �-Synucleinopathy asso-
ciated with G51D SNCA mutation: A link between
Parkinson’s disease and multiple system atrophy? Acta
Neuropathol 125, 753-769.

[85] Lesage S, Anheim M, Letournel F, Bousset L, Honoré A,
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