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Ferroptosis is a novel regulated cell death pattern discovered when studying the
mechanism of erastin-killing RAS mutant tumor cells in 2012. It is an iron-dependent
programmed cell death pathway mainly caused by an increased redox imbalance but with
distinct biological and morphology characteristics when compared to other known cell
death patterns. Ferroptosis is associated with various diseases including acute kidney
injury, cancer, and cardiovascular, neurodegenerative, and hepatic diseases. Moreover,
activation or inhibition of ferroptosis using a variety of ferroptosis initiators and inhibitors
can modulate disease progression in animal models. In this review, we provide a
comprehensive analysis of the characteristics of ferroptosis, its initiators and inhibitors,
and the potential role of its main metabolic pathways in the treatment and prevention of
various diseased states. We end the review with the current knowledge gaps in this area
to provide direction for future research on ferroptosis.
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WHAT IS FERROPTOSIS?

Definition and Discovery of Ferroptosis
Biological growth and the onset of disease are closely linked to cell death. There are two main
patterns of cell death: 1) accidental cell death (ACD), and 2) regulated cell death (RCD). One type of
RCD is programmed cell death or apoptosis, which occurs normally throughout development
(Galluzzi et al., 2015). Apoptosis was in fact the first RCD mechanism discovered, and since then
other RCD patterns have also been identified such as necrosis, pyroptosis, and, more recently,
ferroptosis (Kroemer et al., 2009).

Studies on ferroptosis initiators and related mechanisms emerged several decades ago, prior to
the establishment of the term “ferroptosis”. As early as 1989, Murphy's group discovered that
glutamate caused neuronal cell death by inhibiting system xc

- (Murphy et al., 1989), which was later
named “oxytosis” by Maher's group in 2001 (Tan et al., 2001). Recent studies found that ferroptosis
and oxytosis had several common characteristics, such as the role of lipoxygenase, ROS production,
and gene expression (Lewerenz et al., 2018). However, there are discrepancies in a few protein-
signaling pathways between ferroptosis and oxytosis (Neitemeier et al., 2017). In 2008, two
compounds, ras-selective lethal small molecules 3 (RSL3) and 5 (RSL5), were screened using a
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high-throughput method that could selectively induce cell death
in cells carrying RAS mutant subtype genes (Yang and Stockwell,
2008). The results facilitated the identification of the lethal
mechanism of the compound erastin (Dolma et al., 2003).
Erastin was discovered to induce cell death without nuclear
morphological changes, DNA fragmentation, and caspase3
activation, and this process could not be reversed by caspase
inhibitors. Therefore, it is a regulated but non-apoptotic form of
cell death (Dixon et al., 2012). This erastin-induced cell death
pattern is accompanied by an increasing concentration of lipid
hydroperoxides (Yagoda et al., 2007) and is inhibited by iron
chelators (e .g . , deferoxamine mesylate) (Yang and
Stockwell, 2008).

In 2012, Stockwell's group was the first to report and name
this iron-dependent cell death pattern characterized by increased
lipid reactive oxygen species (ROS) as “ferroptosis” (Dixon et al.,
2012). In 2018, the Nomenclature Committee on Cell Death
(NCCD) defined ferroptosis as “a form of regulatory cell death
initiated by oxidative perturbations of the intracellular
microenvironment that is under constitutive control by
glutathione peroxidase 4 (GPX4) and can be inhibited by iron
chelators and lipophilic antioxidants” (Galluzzi et al., 2018).

Characteristics of Ferroptosis
Ferroptosis differs from apoptosis, necrosis, and pyroptosis in
morphological and physiological characteristics (Table 1)
(Yagoda et al., 2007; Kroemer et al., 2009; Vandenabeele et al.,
Frontiers in Pharmacology | www.frontiersin.org 2
2010; Galluzzi et al., 2012; Aachoui et al., 2013; Kayagaki et al.,
2015; Shi et al., 2015; Vande Walle and Lamkanfi, 2016; Wang
et al., 2017; Galluzzi et al., 2018). For example, during ferroptosis,
the nuclei of the cell remain intact (Friedmann Angeli et al.,
2014), the chromatin is not aggregated (Xie et al., 2016a), and the
plasma membrane is not broken or foamed. The shrinking
mitochondria show greater inner membrane density while the
outer membrane ruptures. In contrast to ferroptosis, apoptosis is
characterized by cytoplasmic contraction, nuclear division,
chromatin condensation, chromosomal DNA division (Galluzzi
et al., 2012), and mitochondrial cytochrome c release (Galluzzi
et al., 2018). In apoptotic cells, the plasma membrane foams and
eventually forms a distinct intact vesicle (commonly referred to
as an apoptotic body). On the other hand, mitochondrial
permeability transition (MTP)-driven necrosis is characterized
by cytoplasmic granulation, swelling of organelles and cells, loss
of cell membrane integrity, and, ultimately, leakage of cellular
content (Vandenabeele et al., 2010). In pyroptotic cells, early
membrane rupture exposes the inner leaves of the plasma
membrane to the extracellular surface, allowing cellular protein
annexin V to bind to phosphatidylserine (PS) in the inner leaves.
Pyroptotic cells are accompanied by the formation of caspase-1
activity-dependent 12-nm pores in the plasma membrane,
leading to a flux of transmembrane ions, swelling of the
cytoplasm, and, ultimately, the osmotic dissolution of the cell
(Vande Walle and Lamkanfi, 2016). Thus, there are several key
distinctions between ferroptosis and other cell death types.
TABLE 1 | Comparison of Characteristics of Apoptosis, Necrosis, Pyroptosis and Ferroptosis.

Definitions Morphological features Biochemical features

Apoptosis Type of RCD initiated by perturbation of the extracellular or intracellular
microenvironment;
Demarcated by mitochondrial outer membrane permeabilization (MOMP);
Precipitated by executioner caspases, mainly caspase3 (CASP3).

Rounding-up of the cell;
Retraction of pseudopods;
Reduction of cellular and nuclear volume
(pyknosis);
Nuclear fragmentation (karyorrhexis);
Minor modification of cytoplasmic organelles;
Plasma membrane blebbing;
Engulfment by resident phagocytes in vivo.

Release of mitochondrial
intermembrane space
‘IMS’ proteins;
Respiratory chain
inhibition.

MTP-
driven
Necrosis

Specific form of RCD triggered by perturbations of the intracellular
microenvironment and relying on cyclophilin D (CYPD).

Rupture of plasma
Membrane;
Cytoplasm: cytoplasmic swelling.
(Oncosis): Swelling of cytoplasmic organelles;
Moderate chromatin condensation.

Caspase inhibition;
NADPH oxidase
activation;
Neutrophil extracellular
traps (NETs) release (in
some instances).

Pyroptosis A type of RCD that critically depends on the formation of plasma
membrane pores by members of the gasdermin protein family;
Often (but not always) as a consequence of inflammatory caspase
activation.

The early membrane rupture of pyroptotic cells
exposes the inner leaflet of the plasma
membrane to the extracellular surface;
Transmembrane ion fluxes;
Cytoplasmic swelling;
Osmotic lysis of the cell.

Caspase-1 activation;
Caspase-7 activation;
Secretion of IL-1b and
IL18.

Ferroptosis A form of RCD initiated by oxidative perturbations of the intracellular
microenvironment that is under constitutive control by GPX4 and can be
inhibited by iron chelators and lipophilic antioxidants.

Normal nuclei and shrinking mitochondria that
show increased membrane density and outer
mitochondrial membrane rupture.

Iron and ROS
accumulation;
Inhibition of system xc

−;

With decreased cystine
uptake;
GSH depletion and
increased;
NAPDH oxidation
Release of arachidonic
acid mediators.
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The most important biochemical features of ferroptosis are
the elevated levels of lipid hydroperoxides (LOOH) and ferrous
ion (Fe2+) concentration, as ferroptotic cells produce excessive
reactive oxygen species, which initiates lipid peroxidation via
Fenton Chemistry. Glutathione peroxidase 4 (GPX4), an enzyme
that specifically reduces lipid peroxide to the corresponding
alcohol, is another central regulator of ferroptosis (Yang et al.,
2014). In addition, glutathione (GSH) acts as a GPX4 cofactor
and maintains the level of GPX4 through the exchange of
glutamate and cystine via the antiporter system xc

- (Stockwell
et al., 2017).

The genes that control ferroptosis also differ from those that
control other forms of cell death. Six protein encoding genes
necessary for ferroptosis were screened in HT1080 and Calu-1
cells using shRNA library targeting genes encoding predicted
mitochondrial proteins, including genes encoding ribosomal
protein L8 (RPL8), iron response element binding protein 2
(IREB2), ATP synthase F0 complex subunit C3 (ATP5G3),
citrate synthase (CS), tetratricopeptide repeat domain 35
(TTC35), and acyl-CoA synthetase family member 2 (ACSF2)
proteins. In addition, TFRC, ISCU, FTH1, and FTL are key genes
in ferroptosis that control iron uptake, metabolism, and storage
by affecting Fe2+ levels (Dixon et al., 2012).

These genes are different from the ones that control apoptosis
(e.g. BH3 interacting domain death agonist (BID), BCL2
antagonist/killer 1(BAK1), BCL2 associated X (BAX), apoptosis
inducing factor mitochondria associated 1(AIFM1)) or genes
that control other cell death patterns (e.g. genes peptidylprolyl
isomerase F (PPIF) involved in MPT-driven necrosis) (Dixon
et al., 2012; Galluzzi et al., 2018).
REGULATORY MECHANISMS OF
FERROPTOSIS

Lipid Oxidation Metabolism
Ferroptosis is linked to a fatal accumulation of lipid peroxidation,
which is the archetype free radical chain reaction formally
resulting in the insertion of O2 into a C-H bond in the
oxidizable free polyunsaturated fatty acids (PUFAs) (Figure 1
Eq. 1.1-1.4). This leads to the formation and accumulation of
LOOH and ROS and causes ferroptosis. Any radical that can
Frontiers in Pharmacology | www.frontiersin.org 3
abstract an H-atom from an oxidizable substrate like PUFAs (L-H,
Figure 1 Eq. 1.1) can initiate the lipid peroxidation process in
vivo. The resultant carbon-centered alkyl radical (L·) reacts with
molecular O2 in the environment at (or near) the rate of diffusion,
giving rise to a peroxyl radical (LOO·). (Figure 1 Eq. 1.2)
(Maillard et al., 1983). The produced peroxyl radicals propagate
the chain reaction at propagation rate kp by abstracting H atom
from another molecule of oxidizable substrate (L-H) to yield
LOOH and a new alkyl radical (L·) (Figure 1 Eq. 1.3). Radical-
radical reactions are the final step resulting in non-radical
products (Figure 1 Eq. 1.4) (Russell, 1956).

The abundance and location of intracellular oxidizable
substrates of lipid peroxidation determines the extent of lipid
peroxidation and the extent of ferroptosis. Free polyunsaturated
fatty acids are esterified into membrane phospholipids (Kagan
et al., 2017) in the lipid metabolic process. Lipidomic analyses
indicate that phosphatidylethanolamines (PEs) containing
arachidonic acid (AA) or adrenic acid (AdA) are key
membrane phospholipids and are further oxidized to
phospholipid hydroperoxides (PE-AA/AdA-OOH) by non-
enzymatic processes, such as the above mentioned free radical
lipid peroxidation or Fenton chemistry drives ferroptosis (Doll
et al., 2017; Kagan et al., 2017).

Two enzymes related to ferroptotic lipid metabolism were
found through the haploid gene screening of chronic myeloid
leukemia cell line KBM7 cells: acyl-CoA synthetase (a long-chain
family member 4 (ACSL4) for synthesizing Pes), and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) for lipid
remodeling. AA/AdA is acylated into membrane phospholipids
by LPCAT3 and ACSL4 (PE-AA/AdA) (Figure 2) (Dixon et al.,
2015; Kagan et al., 2017). The blocking of ACSL4 results in the
suppression of AA or AdA esterification into PE, which reduces
the sensitivity of mouse embryonic fibroblasts Pfa1 cells to
ferroptosis (Kagan et al., 2017). In DU-145 cancer cells,
overexpression of multiple AKR1C family members has been
shown to up-regulate the aldo-keto reductase family 1 member
C1-3 genes (including AKR1C1-3) and blocks ferroptosis.
AKR1C1-3 encodes an aldehyde ketone reductase to reduce the
final product of lipid peroxide (PE-AA/AdA-OOH) to the non-
toxic corresponding lipid derived alcohol (PE-AA/AdA-OH)
(Dixon et al., 2014). Together, these studies demonstrate that
lipid peroxidation is a key factor in ferroptosis.
FIGURE 1 | The free radical chain mechanism of lipid peroxidation.
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PUFAs could also be oxidized to the corresponding
phospholipid hydroperoxides by lipoxygenases (LOXs) (Kagan
et al., 2017; Raefsky et al., 2018). However, whether LOX
isozymes are essential for ferroptosis remains controversial.
While research using a mouse model of GPX4-induced acute
renal failure showed that LOX15 is not required for ferroptosis
(Friedmann Angeli et al., 2014), work on a variety of damaged
cells shows that phosphatidylethanolamine binding protein 1
(PEBP1) forms a complex with ALOX15 and acts as a scaffold
protein to positively regulate ferroptosis by (Wenzel et al., 2017).
In addition, it was found that deuterated AA with deurerium at
the 7-hydrogen atom position of bisallyl was not oxidized to
reduce the sensitivity of cells to ferroptosis. These results proved
that AA was involved in the lipid peroxidation during ferroptosis
(Raefsky et al., 2018).
Frontiers in Pharmacology | www.frontiersin.org 4
Glutathione Metabolic Pathway
The synthesis of tripeptide glutathione (GSH) appears to protect
cells from ferroptotic death. The functional activity of
glutathione peroxidase 4 (GPX4) is dependent on the
biosynthesis of GSH (Yang et al., 2014). More specifically,
depletion of GSH causes GPX4 inactivation and increases
intracellular lipid peroxidation, resulting in ferroptosis (Cao
and Dixon, 2016; Shimada and Stockwell, 2016).

System xc
- also regulates ferroptosis (Yang and Stockwell,

2008). System xc- consists of a 12-pass transmembrane protein
transporter solute carrier family 7 member 11 (SLC7A11) and a
single-pass transmembrane regulatory protein solute carrier
family 3 member 2 (SLC3A2). Glutamate and cystine are
exchanged at a 1:1 ratio by system xc

- (Sato et al., 1999).
Tripeptide GSH is synthesized in two steps from cysteine,
FIGURE 2 | Metabolic pathways affecting ferroptosis. The brown box contains three currently known pathways: Lipid Oxidation Metabolism、Glutathione Metabolic
Pathway、Iron Metabolic Pathway and some related mechanisms of action. Several pharmacological inducer have been shown to induce ferroptosis (eg erastin、
RSL3). A variety of ferroptosis inhibitors inhibit iron death from various pathways (eg Fer-1、lip-1、BP、DFO). AA, Arachidonic acid; ACSL4, Acyl-CoA synthetase
long-chain family member 4; AKR1C1-3, Aldo-keto reductase family 1 member C1-3; Atg5, autophagy-related 5; Atg7, autophagy-related 7; CISD1, CDGSH iron
domain 1; Cys, cysteine; Cys2, cystine; DFO, Deferoxamine; DMT1, Divalent metal transporter 1; Fer-1, Ferrostatin-1; Glu, Glutamate; Gly, glycine; GPX4,
Glutathione peroxidase 4; G6PD, Glucose-6-phosphate dehydrogenase; GSH, Glutathione; GSSH, Glutathione disulfide; IREB2, Iron-responsive element-binding
protein 2; Lip-1, Liproxstatin-1; LOX, Lipoxygenase; LPCAT3, Lysophosphatidylcholine acyltransferase 3; NADPH, Nicotinamide adenine dinucleotide phosphate;
NRF2, Nuclear factor erythroid 2-related factor 2; PE, Phosphatidylethanolamine; PGD, 6-Phosphogluconate dehydrogenase; PKC, Protein kinase C; RSL3, Ras-
selective lethal small molecules 3; SLC7A11, Solute carrier family 7 member 11.
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glutamic acid, and glycine (Yang et al., 2016; Stockwell et al.,
2017). The efficiency of this synthetic process is limited to the
concentration of cysteine in the substrate. Inhibition of systemic
xc

- depletes intracellular cysteine, leads to a decrease in
glutathione concentration and triggers oxidative stress, and
increases the sensitivity of cells to ferroptosis (Cao and Dixon,
2016). However, upregulation of SLC7A11 inhibits erastin-
induced ferroptosis (Dixon et al., 2012; Shimada and
Stockwell, 2016).

Moreover, some mammals use methionine as a sulfur donor
to synthesize new cysteines via the trans-sulfuration pathway.
Although mammals usually rely solely on extracellular uptake as
the major source of cysteine, the trans-sulfuration pathway acts
as a compensatory source of cysteine when system xc

- uptake is
inhibited (Shimada and Stockwell, 2016). A genome-wide siRNA
screening of erastin-induced ferroptosis inhibitors showed that
down-regulation of cysteinyl-tRNA synthase (CARS) leads to an
up-regulation of the trans-sulfuration pathway and an inhibition
of erastin-induced ferroptosis. This result supports the
hypothesis that the trans-sulfuration pathway is a regulator of
ferroptosis that compensates for cysteine depletion induced by
cysteine update inhibition (Hayano et al., 2016).

Iron Metabolic Pathway
The homeostasis of intracellular iron is dependent on the balance
between iron absorption, output, utilization, and storage (Galaris
et al., 2019). Ferric iron (Fe3+) enters the endosome through the
membrane protein transferrin receptor 1 (TFR1) and it is
reduced to ferrous iron (Fe2+) by iron reductase. The unstable
Fe2+ is then released into the labile iron pool in the cytoplasm by
the divalent metal transporter 1 (DMT1). Excess iron ions are
either stored in ferritin heteropolymers in the form of Fe3+ or are
released extracellularly via the membrane protein ferroportin.

Excessive ferrous iron provides electron-promoting lipid
peroxidation through the Fenton reaction (Figure 3) and
produces ROS, which triggers ferroptosis. Many autophagy-
related genes can also activate ferroptosis. Inhibition of
autophagy-related 5 7 genes reduce the accumulation of free
iron and inhibit ferroptosis (Gao et al., 2016). Down-regulation
of nuclear receptor coactivator 4 (NCOA4), a ferritin phagosome
receptor, also inhibits ferritin phagocytosis and reduces Fe2+

content in cells (Gao et al., 2016; Hou et al., 2016). Iron-
responsive element-binding protein 2 (IREB2) encodes a major
regulator of iron metabolism, and studies have shown that
shRNA-mediated silencing of IREB2 alters iron uptake,
metabolism, and storage-related genes like TFRC, ISCU, FTH1,
and FTL expression (Dixon et al., 2012). Heat shock protein
beta-1 (HSPB1) (Sun et al., 2015) and CDGSH iron domain 1
(CISD1) (Yuan et al., 2016) also affect iron metabolism and
regulate ferroptosis. In Hela cells, activation of HSPB1
Frontiers in Pharmacology | www.frontiersin.org 5
phosphorylation using protein kinase C (PKC) reduces iron
levels and blocks ferroptosis (Sun et al., 2015). CISD1, located
in the outer membrane of mitochondria, inhibits the uptake of
iron ions by mitochondria and also blocks ferroptosis (Yuan
et al., 2016). However, oncogenic RAS increases iron content in
cells, upregulates TFR, and downregulates ferritin (Yang and
Stockwell, 2008). The RAS–RAF–MEK pathway sensitizes cancer
cell lines with RAS to ferroptosis via mitochondrial voltage-
dependent anion channels 2/3 (VDAC2/3) (Yagoda et al., 2007).
In addition, tubulin negatively regulates mitochondrial
metabolism by turning off VDAC.

Developing novel fluorescent probes which could detect labile
Fe2+ levels in various cells or organs in live animals would
definitely help further understanding of the role of iron in
ferroptosis under various conditions. For example, an
abnormal increase in Fe2+ in lysosomes and endoplasmic
reticulum has been observed before the death of HT1080 cells
induced by erastin using a variety of novel fluorescent probes
(Figure 4) (Hirayama et al., 2019). This study further shows that
iron metabolism plays a key role in the ferroptosis process (Yang
and Stockwell, 2008).

Other Related Signaling Metabolism
In addition to the above-mentioned signaling pathways,
nicotinamide adenine dinucleotide phosphate (NADPH) also
impacts ferroptosis sensitivity. NADPH is one of the most
important reducing agents in cells and protects from excess
oxidative damage. In fact, knocking out NADPH increases the
sensitivity of fibrosarcoma HT1080 cells to ferroptosis (Shimada
et al., 2016a). In the presence of NADPH, glutathione reductase
reduces cystine-glutathione disulfide (GSSG) to GSH and
increases ferroptosis sensitivity in many cancer cell lines (Zhao
et al., 2017).

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a key
regulator of the antioxidant response (Sun et al., 2016). Under
normoxic cellular conditions, Nrf2 is bound by Kelch-like
ECH-associated protein 1 (Keap1) and persists in an
inactivated status through ubiquitination and degradation in
the proteasome (Reisman et al., 2009). Upon oxidative or
electrophilic stress, Nrf2 becomes unleashed from the Keap1
protein binding and translocates to the nucleus (Fan et al.,
2017). In the nucleus, Nrf2 transcripts antioxidant responsive
element (ARE)-dependent genes in order to balance oxidative
mediators and maintain cellular redox homeostasis (Hayes and
Dinkova-Kostova, 2014). The above-described process is also
regulated by autophagy. The autophagy receptor p62 is a
multifunctional protein located throughout the cell which
could activate Nrf2 through inactivation of Keap1 (Komatsu
et al., 2010). In 2016, Tang's group discovered that the p62-
Keap1-Nrf2 antioxidative signaling pathway was involved in the
ferroptosis inhibition in HCC cells (Sun et al., 2016). In
addition, it had been found that the Nrf2-mediated anti-
ferroptosis activity was dependent on the induction of NQO1,
heme oxygenase-1 (HO-1), and ferritin heavy chain (FTH1)
(Sun et al., 2016). These findings also provide a potential
molecular link between ferroptosis and autophagy in the
hepatocellular carcinoma cells.
FIGURE 3 | Fenton reaction.
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With the continuous research progress on ferroptosis,
research evidence has indicated that the occurrence of
ferroptosis crosstalk with autophagy (Hou et al., 2016; Kang
and Tang, 2017) through pathways other than p62-Keap1-Nrf2.
Tang's group demonstrated that knockout or knockdown of
autophagy-related 5 (Atg5) and autophagy-related 7 (Atg7)
degraded ferritin in fibroblasts and cancer cells, resulting in the
limitation of erastin-induced ferroptosis by decreasing
intracellular ferrous iron levels and lipid peroxidation (Hou
et al., 2016). Other studies also confirmed that signaling
pathways closely related to the occurrence of autophagy such
as GPX4, SLC7A11, Nrf2, p53, HSPB1, and ACSL4 were also
involved in ferroptosis (Kang and Tang, 2017). Torii's group
found that autophagy contributed to ferroptosis through the
generation of lysosomal ROS in the N-Ras-mutated HT1080 cells
(Torii et al., 2016). In addition, they also found that autophagy
and lysosomal activity inhibitors including Baf A1, PepA-Me,
and ammonium chloride were effective in the prevention of
erastin-induced ferroptosis (Torii et al., 2016; Sun et al., 2018).
However, the occurrence of ferroptosis is not always related to
autophagy, and the relationship between ferroptosis and
autophagy or other cell death pathways needs to be further
clarified in future research.

P53 also mediates cell cycle inhibition, senescence, and
apoptosis, and contributes to the development of tumors (Jiang
et al., 2015a). P53 regulates cellular metabolism through the
SLC7A11 gene (Jiang et al., 2015b). More specifically, P53
inhibits system xc

- by down-regulating SLC7A11. Exposure to
ROS in P53 gene-silencing human lung cancer H1299 cells does
not change cell viability. However, exposure to ROS after
activation of the P53 gene increases the cell death rate to 90%.
This study shows that the antioxidant capacity is significantly
reduced after activation of the P53 gene, and the cell death rate
decreases by about 40-fold after the addition of the ferroptosis-
specific inhibitor ferrostatin-1 (Jiang et al., 2015b). Therefore, it
indicates that P53 plays an important role in the cellular
ferroptotic-related ROS metabolic pathway.

It has been revealed that inhibition of cystine–glutamate
exchange leads to the activation of endoplasmic reticulum (ER)
Frontiers in Pharmacology | www.frontiersin.org 6
stress response and upregulation of glutathione-specific gamma-
glutamylcyclotransferase 1 (CHAC1) gene, therefore
contributing to the glutathione degradation and ferroptosis
execution (Rahmani et al., 2007; Dixon et al., 2014). Current
research has indicated that ER stress and p53 upregulated
modulator of apoptosis (PUMA) overexpression caused by
ferroptosis inducers sets up an interaction between ferroptosis
and apoptosis (Hong et al., 2017). It has been found that
ferroptosis initiator artesunate (ART) could induce ER stress
and elevate the expression of the pro-apoptotic PUMA through
the ER stress–mediated PERK–eIF2a–ATF4–CHOP pathway but
without inducing apoptosis (Hong et al., 2017; Lee et al., 2018).
These findings provide new thought on the relationship between
ferroptosis and apoptosis.

The ferroptosis suppressor protein 1 (FSP1) (formerly known
as AIFM2) has recently been found to be independent of GSH
and it could inhibit the transmission of lipid peroxides by
reducing coenzyme Q10 to inhibit ferroptosis (Bersuker et al.,
2019; Doll et al., 2019). Furthermore, N-myristoylation of FSP1
was found to be essential for ferroptosis inhibition and could
provide a new target for the development of drugs targeting the
inhibition of ferroptosis.

It has recently been discovered that intercellular interaction
dictates ferroptosis. Epithelial extracellular E-cadherin regulates
ferroptosis by intracellular NF2–YAP signaling. Antagonism of
NF2 causes YAP to promote ferroptosis by up-regulating the
associated signaling factors of ferroptosis, ACSL4, and TFRC.
Intercellular E-cadherin interactions activate NF2 to inhibit
ferroptosis in cells (Wu et al., 2019). However, whether other
intercellular interactions dictate ferroptosis in other cell lines
remains to be studied.

Currently, whether mitochondria are essential for
ferroptosis remains controversial (Bock and Tait, 2019). On
one hand, Stockwell's group found that cells lacking
mitochondrial DNA were still sensitive to ferroptosis
(Gaschler et al., 2018b). Therefore, their conclusion was that
ROS generated by the mitochondrial electron transport chain
was not essential to ferroptosis initiation. On the other hand,
Jiang's group in 2019 showed that mitochondria did not play a
FIGURE 4 | Structures of Ac-MtFluNox, Lyso-RhoNox, and ER-SiRhoNox.
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role in GPX4 inhibition-induced ferroptosis, but it did play a
crucial pro-active role in cysteine-deprivation-induced
ferroptosis (Gao et al., 2019). In addition, Tang's group
observed that ferroptosis initiator erastin induced the
production of mitochondrial ROS (Yuan et al., 2016). They
also demonstrated that intra-mitochondrial iron-mediated
lipid peroxidation contributed to ferroptosis and CDGSH
iron sulfur domain 1 (CISD1), an iron-containing outer
m i t ochondr i a l membrane p ro t e i n wh i ch l im i t ed
mitochondrial iron uptake and therefore suppressed
ferroptosis (Yuan et al., 2016). Based on the current
research, the controversy on the role of mitochondria in
ferroptosis remained to be solved.
INITIATORS OF FERROPTOSIS

Diseases like cancer can be treated by regulating cell death. In
some pathological processes, treatment also works by depleting
the essential cytokines which then results in cell death.
Numerous studies have focused on discovering novel
ferroptosis inducers to treat cancer (Hassannia et al., 2019).
Ferroptosis inducers can be roughly classified into three
categories: (1) system xc

- inhibitors, (2) GPX4 inhibitors, and
(3) compounds that indirectly inhibit GPX4 activity by GSH
depletion (Table 2).

Erastin and RSL3 are the first ferroptosis inducers identified
using high-throughput screening of small molecule libraries
(Dolma et al., 2003; Yang and Stockwell, 2008). Erastin binds
directly to mitochondrial voltage-dependent anion channel 2
(VDAC2) and causes ROS to be produced by NADPH-
dependent pathway of mitochondrial damage (Yagoda et al.,
2007). RNA interference mediates knockdown of VDAC2 or
VDAC3 and leads to resistance to erastin-induced ferroptosis
(Yagoda et al., 2007). In some tumor cells expressing active
mutations, erastin induces cell death via the RAS-RAF-MEK
pathway. In addition, erastin directly inhibits the activity of
system xc

-, resulting in the reduction in GSH production and
inhibition of GPX4 activity, leading to accelerated production
of ROS and ferroptosis (Dixon et al., 2012). Piperazine erastin
(PE), a derivative of erastin, has better solubility and stability
than erastin in vivo. It inhibits the proliferation of HT1080
cells by inducing ferroptosis (Yang et al., 2014). The carbonyl-
containing erastin analog imidazole ketone erastin (IKE) has
greater water solubility and metabolic capacity. It has been
proved to be a more effective inducer of ferroptosis (Larraufie
et al., 2015). It was also found that heme oxygenase-1 (HO-1)
accelerates the occurrence of ferroptosis initiated by erastin
through supplementing intracellular iron and producing ROS
(Kwon et al., 2015). Sulfasalazine, a widely used molecule that
treats chronic inflammation in the intestines, joints, and
retina, can also inhibit system xc

- and induce ferroptosis
while inhibiting the NF-ĸB signaling pathway (Gout et al.,
2001). Similarly, sorafenib inhibits system xc

- and induces
ferroptosis by non-kinase targets, enhanced toxicity to
hepatocellular carcinoma (HCC) cells, and promoted
Frontiers in Pharmacology | www.frontiersin.org 7
persistent tumor regression (Louandre et al., 2013; Louandre
et al., 2015).

Cell death induced by RSL3 and RSL5 shares a common
feature with erastin-mediated ferroptosis. Similar to erastin, the
initiation of ferroptosis induced by RSL3 and RSL5 is also
dependent on the accumulation of ROS (Yang and Stockwell,
2008). The difference is that RSL3 is a direct inhibitor of GPX4,
but not of system xc

- (Yang et al., 2014). RSL3 inactivates GPX4
and impedes the degradation of LOOH (Yang et al., 2014). On
the other hand, RSL5 acts directly with VDAC2/3 to produce
ROS (Yang and Stockwell, 2008).

The stimulant buthionine sulfoximine (BSO) irreversibly
inhibits the activity of g-glutamate cysteine synthetase, which
is a rate-limiting enzyme in GSH synthesis in RAS mutant
cells. It reduces the synthesis of GSH and further decreases the
activity of GPX4 (Yang et al., 2014). Small molecule inducer
FINs (Table 2) can be divided into two categories according to
their mechanism of action. The first type of FIN, like DPI2,
inhibits the activity of GPX4 by depleting GSH; the second
type of FIN, such as DPI7, directly inhibits the activity of
GPX4 and produces lipid ROS (Yang et al., 2014). Studies show
that acetaminophen (Lorincz et al., 2015) and artesunate
(Eling et al., 2015) kill cancer cells, not only by autophagy
and apoptosis, but also by ferroptosis. In addition, cisplatin
increases the level of intracellular ROS in the treatment of
tumors to induce specific morphological changes in ferroptosis
in cancer cells (Yamaguchi et al., 2013).

The recent discovery of a novel mechanism by which FIN56
and FINO2 trigger cellular death provides new insights on the
regulation of ferroptosis (Shimada et al., 2016b; Gaschler et al.,
2018a). FINO2 promotes lipid peroxidation by inducing iron
oxide and indirectly inactivating GPX4 (Gaschler et al., 2018a).
FIN56-induced cell death is accompanied by lipid ROS
production and can be reversed by vitamin E and iron
chelator, demonstrating that they are potent inducers of
ferroptosis (Shimada et al., 2016b). Unlike the previously
described pathways, FIN56 stimulates ferroptosis by
consuming GPX4 proteins and blocking l ipophi l ic
antioxidants, such as coenzyme Q10 (Shimada et al., 2016b).

Many traditional Chinese medicinal natural products provide
significant health benefits in the prevention and/or treatment of
diseases. Traditional Chinese herbal extracts such as artemisinin
(from Artemisia annua) initiate ferroptosis during the process of
killing cancer cells (Eling et al., 2015). It induces ferroptosis in
tumor cells by increasing ROS levels, decreases GSH levels,
interferes with iron metabolism, and increases Fe2+

concentration (Eling et al., 2015). However, its mechanism of
action related to signaling pathways has not been elucidated
entirely. In 2018, Liu and his collaborators discovered a novel
antitumor compound optimized from natural saponin
Albiziabioside A. It induced ferroptosis as a p53 activator
through the mitochondrial pathway (Wei et al., 2018).

In summary, ferroptosis can be triggered by blocking system xc
-

with exogenous small molecules, interfering with GPX4, disrupting
lipid metabolism balance, and iron homeostasis. Targeted therapy
may be achieved by stimulating ferroptosis based on physiological
March 2020 | Volume 11 | Article 239
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TABLE 2 | Initiators of Ferroptosis.

Compound Target Chemical structures Model

Erastin
(Dolma et al., 2003; Yagoda et al., 2007)

System xc
- and VDAC2/3 HT-1080 cell

BJeLR cell
Calu-1 cell

PE
(Yang et al., 2014)

System xc
- and VDAC2/3 HT-1080 cell

BJeLR cell
DRD cell

IKE
(Larraufie et al., 2015)

System xc
- CCF-STTG1 cell

HT-1080 cell
BJeH cell
BJeHLT cell
DRD cell

Sorafenib (Louandre et al., 2013; Louandre et al., 2015) System xc
-

mitochondria ROS
HCC cell

Sulfasalazine
(Gout et al., 2001)

System xc
- Nb2-SFJCD1 cell

Nb2-U17 rats

Lanperisone
(Shaw et al., 2011)

System xc
- MEFs cell

Mox2-Cre mice

RSL3
(Yang et al., 2014)

GPX4 HT-1080 cell
BJeLR cell
BJeHLT cell
4 BJ cell

RSL5
(Yang and Stockwell, 2008)

VDAC2/3 BJeH cell
BJeHLT cell
BJeLR cell

BSO
(Yang et al., 2014)

GSH depletion BJeLR cell
BJeH cell
BJeHLT cell
DRD cell

DPI2
(Yang et al., 2014)
(class I FINs)

GSH depletion BJeLR cell

DPI7
(Yang et al., 2014)
(class II FINs)

GPX4 BJeLR cell

Acetaminophen (Lorincz et al., 2015) GSH depletion HepG2 cell
NMRI mice

Artesunate
(Eling et al., 2015)

GSH depletion Panc1 cell
COLO357 cell
AsPC-1 cell
BxPC-3 cell
293T cell
HPDE cell
PDAC cell

FIN56
(Shimada et al., 2016b)

Promote the degradation of GPX4
Reduce the abundance of CoQ10

BJeLR cell
DRD cell

(Continued)
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differences between cancer cells and normal cells. Moreover, the
rapid development of nanotechnology also provides new directions
for the discovery of ferroptosis inducers.
INHIBITORS OF FERROPTOSIS

To study the potential role of ferroptosis in vivo, effective and
specific small molecular ferroptosis inhibitors have been
identified using either high-through put screening or by
designing compounds based on the structure-activity
relationship. Most ferroptosis inhibitors can be classified into
lipophilic radical-trapping antioxidants (e.g. Ferrostatin-1, a-
tocopherol), iron chelators (e.g. deferoxamine), and deuterated
polyunsaturated fatty acid phospholipids (PUFA-PLs) (Kagan
et al., 2017). They have been approved to prevent ferroptosis and
regulate normal function of intracellular iron metabolism,
increase GSH levels, activate GPX4, or directly inhibit lipid
peroxidation (Table 3).

Ferrostatins and liproxstatins act as free radical-trapping
antioxidants to inhibit lipid peroxidation associated with
ferroptosis (Yang and Stockwell, 2016). The first generation of
ferrostatins Ferrostatin-1 (Fer-1 in Table 3) inhibits erastin and
RSL3-induced ferroptosis in HT1080 cells. Their activity is
dependent on the aromatic amines, which specifically inhibit
lipid peroxidation (Yang and Stockwell, 2016). The second
(SRS11-92) and third generation (SRS16-86) ferropstatins show
significant enhancement cellular metabolism and damage
prevention compared to the first generation Fer-1 (Ran et al.,
2015). Fer-1 is currently considered as a probe for studying
ferroptosis in different environments and as a basic potential
drug molecule against lipid peroxidation-mediated tissue
damage (Kabiraj et al., 2015).

Liproxstatin-1 (Lip-1) contains amide and sulfonamide
subunits. It has good stability and drug absorption distribution
in vivo (Hofmans et al., 2016). It can inhibit ferroptosis at low
nano molar dose, but it does not interfere with other typical cell
death patterns (Hofmans et al., 2016). Similar to ferrostatins and
liproxstatins, the antioxidants a-tocopherol (Burton and Ingold,
Frontiers in Pharmacology | www.frontiersin.org 9
2002), BHT (Lucarini et al., 1996), N-acetylcystein (NAC)
(Dixon et al., 2012), etc., can block ferroptosis by inhibiting the
lipid peroxidation pathway.

Free polyunsaturated fatty acids are the substrates of LOXs,
which mediate ferroptotic peroxidation (Kuhn et al., 2015).
Studies show that inhibitors of ferroptosis, such as tocopherols
(Khanna et al., 2003) and flavonoids (Xie et al., 2016b), can also
inhibit LOXs activity in some cases. However, not all
l ipoxygenase inhibitors inhibit ferroptosis. Effective
lipoxygenase inhibitors, such as CDC and zileuton, are free
radical-trapping antioxidants (Yang et al., 2016). For example,
5-lipoxygenase (5-LOX) inhibitor zileuton inhibits glutamate
toxicity and ferroptosis by inhibiting cytoplasmic ROS
production in HT22 cells, thereby exerting neuroprotective
effects (Liu et al., 2015).

Ferroptosis can also be inhibited by iron chelators such as
deferoxamine (DFO), deferoxamine mesylate, and 2, 2'-bipyridyl
(Dixon et al., 2012) since they prevent the initiation of lipid
peroxidation by inhibiting Fenton chemistry. Natural products
have also been screened out for ferroptosis inhibitors. In 2016,
Tang's lab found out baicalein was an effective ferroptosis
inhibitor in pancreatic cancer cells (Xie et al., 2016b)
functioned by reducing ROS, regulating iron homeostasis,
chelating Fe2+, and protecting GPx4 (Xie et al., 2016b).

Moreover, inhibition of heat shock factor-1 (HSF-1)
dependent heat shock protein beta 1 (HSPB1) expression can
also inhibit erastin-induced ferroptosis (Sun et al., 2015). In
addition, Nrf2 plays an important role in the anti-ferroptotic
process in liver cancer cells. Upregulation of Nrf2 initiates
transcription of antioxidant protein genes and iron metabolism
protein genes, thereby inhibiting ferroptosis (Sun et al., 2016).
Fms-like tyrosine kinase 3 (Flt3) and phosphoinositide 3-kinase
a (PI3Ka) inhibits neuronal ferroptotic cell death, particularly in
cortical neurons, providing neuroprotection (Kang et al., 2014).

Other than the screened compounds, research has also
focused on designing synthetic ferroptosis inhibitors in order
to provide potential health benefits to prevent and/or ease the
symptom of diseases that are related to ferroptosis. Several series
of effective ferroptosis inhibitors have been developed in recent
TABLE 2 | Continued

Compound Target Chemical structures Model

BJeHLT cell
BJeH cell
HT-1080 cell
143B cell
Calu-1 cell

FINO2

(Gaschler et al., 2018a)
Oxidize ferrous iron
Inactivate GPX4 indirectly

HT-1080 cell
BJ-5ta cell
BJeLR cell
CAKI-1 cell

Silica-based nanoparticles
(Kim et al., 2016)

GSH depletion and increase iron M21 cell
HT-1080 cell
786-O cell

Cisplatin (Yamaguchi et al., 2013) GSH depletion H1299 cell
A549 cell
PC9 cell
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TABLE 3 | Inhibitors of Ferroptosis.

Compound Target Chemical structures Model

Ferrostatin-1
(Skouta et al., 2014)

ROS from lipid peroxidation HT-1080 cell

SRS 11-92
(Skouta et al., 2014)

ROS from lipid peroxidation HT-1080 cell

SRS 16-86
(Linkermann et al., 2014)

ROS from lipid peroxidation C57BL/6 mice
FADD fl/fl mice
RIPK3- deficient mice

Liproxstatin-1 (Friedmann Angeli et al., 2014) ROS from lipid peroxidation HRPTEpiCs cell
HK-2 cell

a-tocopherol
(Burton and Ingold, 2002)

Oxidative pathway Pfa1 cell

2,6-di-tert-buyl-4-methylphenol (BHT)
(Lucarini et al., 1996)

Oxidative pathway HT-1080 cell

b-carotene
(Yagoda et al., 2007)

Oxidative pathway HT-1080 cell
BJeLR cell
Calu-1 cell

N-acetylcysteine
(Dixon et al., 2012)
(NAC)

Oxidative pathway BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell
DRD cell, MEFs cell

Ammonium chloride
(Torii et al., 2016)

Regulation of iron equilibria
and ROS generation

HT-1080 cell
Calu-1 cell

Baf A1
(Torii et al., 2016)

Regulation of iron equilibria
and ROS generation

HT-1080 cell
Calu-1 cell

PepA-Me
(Torii et al., 2016)

Regulation of iron equilibria
and ROS generation

HT-1080 cell
Calu-1 cell

Deferoxamine (DFO)
(Dixon et al., 2012)

Intracellular iron BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell
DRD cell, MEFs cell

Deferoxamine mesylate
(Yang and Stockwell, 2008)

Intracellular iron BJeHLT cell
HT1080 cell
MIA PaCa-2 cell
BJeH cell, A549 cell
BJeLR cell, Calu-1 cell

2,2'-bipyridyl
(Dixon et al., 2012)

Intracellular iron BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell
DRD cell, MEFs cell

Ciclopirox olamine
(Dixon et al., 2012)

Intracellular iron BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell
DRD cell, MEFs cell

Zileuton
(Yang et al., 2016)

Lipoxygenases BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell

(Continued)
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years (Zilka et al., 2017). Radical-trapping antioxidants,
including tetrahydronapthyridinols (THNs), phenoxazine,
phenothiazine, and diarylamine (Table 3), have been shown to
effectively inhibit ferroptosis in cellular models, with some
exhibiting better activity than Fer-1 and Lip-1. Recently, we
Frontiers in Pharmacology | www.frontiersin.org 11
have designed and synthesized a series of chalcone derivatives to
inhibit amyloid-b aggregation and ferroptosis at the same time in
cellular models as a potential preventive and/or therapeutic agent
to Alzheimer's disease (Cong et al., 2019). Together, these
findings suggest the possibility for introducing multi-functional
TABLE 3 | Continued

Compound Target Chemical structures Model

NDGA
(Probst et al., 2017)

Lipoxygenases acute lymphoblastic leukemia cells

PD146176
(Yang et al., 2016)

Lipoxygenases BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell

CDC
(Yang et al., 2016)

Lipoxygenases BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell

AA-861
(Yang et al., 2016)

Lipoxygenases BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell

BW A4C
(Angeli et al., 2017)

Lipoxygenases MEFs cell

Baicalein
(Yang et al., 2016)

Lipoxygenases PANC1 cell
BxPc3 cell

XJB-5-131
(Krainz et al., 2016)

Nitroxide antioxidant
(Oxidative pathway)

HT-1080 cell
BJeLR cell
panc-1 cell

Cycloheximide
(Dixon et al., 2012)

Protein synthesis BJeH cell
BJeHLT cell
BJeLR cell
HT-1080 cell
DRD cell, MEFs cell

Diarylamine
(Shah et al., 2017)

Radical-trapping antioxidant HepG2 cell
Pfa1 cell

Phenoxazine
(Shah et al., 2017)

Radical-trapping antioxidant HepG2 cell
Pfa1 cell

Phenothiazine
(Shah et al., 2017)

Radical-trapping antioxidant HepG2 cell
Pfa1 cell

Tetrahydronapthyridinols
(Angeli et al., 2017)
(THNs)

Radical-trapping antioxidant HEK293 cell
MEFs cell

PMC
(Shah et al., 2018)

Radical-trapping antioxidant MEFs cell

TEMPO
(Griesser et al., 2018)

Radical–trapping antioxidant MEFs cell

Rosiglitazone
(Angeli et al., 2017)

ACSL4 Caco-2 cell
C57BL/6 mice

Pioglitazone
(Angeli et al., 2017)

ACSL4 HepG2 cell
Hep3B cell

Troglitazone
(Angeli et al., 2017)

ACSL4 Human breast cancer cell lines
SK-BR-3 cell
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ferroptosis inhibitors to prevent and/or treat diseases that are
closely associated with ferroptosis.
POTENTIAL ROLE OF THE INITIATORS
AND INHIBITORS OF FERROPTOSIS IN
THE TREATMENT OF VARIOUS DISEASES

Neurodegenerative Diseases
Neurodegenerative diseases, such as Alzheimer's disease (AD) and
Parkinson's disease (PD), are known to be associated with
dysregulation of iron homeostasis and excessive ROS in the brain.
Before the concept of ferroptosis, neurodegenerative diseases were
thought to be caused by apoptosis (Ward et al., 2014). With the
definition of ferroptosis in 2012 and iron-dependent oxidative stress
as a significant marker of cellular ferroptosis, there is an increasing
amount of research supporting the idea that ferroptosis is
inextricably linked to neurodegenerative diseases.

Alzheimer's disease is one of the most common causes of
dementia in aging individuals. It is characterized by progressive
memory impairment and cognitive dysfunction. The main
pathological features of AD are extracellular b-amyloid (Ab)
deposition and neurofibrillary tangles caused by abnormal
phosphorylation of intracellular Tau protein. There is evidence
supporting that oxidative stress and iron metabolism disorder
are associated with the progression of AD (Masaldan
et al., 2019).

Ferroptosis is characterized by an accumulation of lipid
peroxidation and dysregulation of iron, which are precisely the
hallmarks of Alzheimer's disease (Pratico and Sung, 2004;
Castellani et al., 2007). Therefore, regulating ferroptosis has
become a new direction for the potential treatment of
Alzheimer's disease. Iron chelators also prevent the
development of AD by maintaining levels of hypoxia inducible
factor-1 alpha (HIF-1a) in the nerve and inhibiting neuronal
death, which provides a novel neuroprotective mechanism
against AD (Ashok et al., 2017). In addition to the treatment
of AD by a single iron chelator, multi-target drugs by chelating
Fe (II) combined with scavenging free radicals may also be
effective. As a multifunctional non-toxic and brain-permeable
iron chelator, M30 not only attenuates Tau phosphorylation but
also activates the HIF-1a signaling pathway, showing great
potential in the prevention and treatment of AD (Kupershmidt
et al., 2012). Alpha-Lipoic acid not only regulates the
redistribution of iron via iron chelation, but also acts as a
direct free radical scavenger and an indirect antioxidant which
can inhibit ferroptosis to alleviate the progression of AD (Zhang
et al., 2018a). According to our understanding, the radical-
trapping antioxidant a-tocopherol and the iron chelator DFO
entered clinical testing to treat AD before they were discovered as
inhibitors of ferroptosis (Mclachlan et al., 1991; Dysken et al.,
2014). Clinical trials proved that patients with mild to moderate
AD who received 2000 IU/day a-tocopherol showed a slower
decline in cognitive function compared to the placebo group
(Dysken et al., 2014).
Frontiers in Pharmacology | www.frontiersin.org 12
Parkinson's disease is the second most common
neurodegenerative disease and it is characterized by the loss of
dopaminergic neurons in the substantia nigra and the formation
of cytoplasmic eosinophilic inclusion bodies, i.e., Lewy bodies
(Hornykiewicz, 2008). It is currently believed that lipid
peroxidation of dopaminergic neurons in the substantia nigra
pars compacta is important in the pathogenesis of PD (Burbulla
et al., 2017). Some pathological features found in PD patients are
elevated levels of free iron in the substantia nigra neurons, lipid
peroxide production, and accumulation of ROS, are closely
related to ferroptosis. In mammalian models, several studies
have shown that iron chelators can protect against neuronal
damage in PD (Kaur et al., 2003; Ayton et al., 2013; Lei et al.,
2015). For example, in 2014, clinical studies of the deferiprone
(DFP), an iron chelator, has shown that iron-removing treatment
can alleviate the motor symptoms of early PD patients by
reducing iron levels in patients (Devos et al., 2014). Iron
chelator VK28, or its derivative, M30, which can penetrate the
blood-brain barrier, provide significant neuroprotective effects in
PD mouse models (Avramovich-Tirosh et al., 2010). In addition,
genetic studies of PD have shown that PD marker a-synuclein,
encoded by the SNCA gene, connect strongly with ferrous and
ferric ions (Peng et al., 2010; Febbraro et al., 2012). These two
forms of iron ions have been shown to accelerate the aggregation
of a-syn in vitro, and the iron chelators can significantly inhibit
this phenomenon (Hashimoto et al., 1999; Davies et al., 2011).
For instance, deferoxamine (DFO) can be used to treat HEK293
cells, confirming that iron deficiency could inhibit the expression
of a-synuclein and prevent PD-like changes in cells (Febbraro
et al., 2012).

Recently, Huntington's disease (HD), a hereditary
neurodegenerative disorder, has also been shown to be
inextricably linked to ferroptosis. Similar to Alzheimer's and
Parkinson's diseases, Huntington's disease also associates with
abnormal levels in lipid peroxidation, GSH metabolism, and iron
accumulation (Paul et al., 2014). Increasing lipid peroxidation was
detected in cortical striatal brain sections (Skouta et al., 2014) and
cerebrospinal fluid (Reddy and Shirendeb, 2012) of the mN90Q73
HD mouse model. 3-nitropropionic acid (3-NP)-induced HD mice
display a decrease in GSH and GSH-S-transferase in the striatum,
cortex, and hippocampus (Kumar et al., 2010). Moreover, increasing
iron supplementation reduces the striatum volume and contributes
to neurodegeneration (Van Bergen et al., 2016). In contrast,
intracerebroventricular administration of deferoxamine (DFO)
improves striatal pathology and motor phenotype in R6/2HD
mice (Chen et al., 2013).

Cell stress response to ROS includes the activation of pro-
survival pathways as well as the production of molecules
endowed with antioxidant and anti-apoptotic activities, which
is under the control of protective genes called vitagenes
(Calabrese et al., 2009). Vitagene network includes members of
the heat shock protein (HSP) family, such as heme oxygenase-1
(HO-1), Hsp70, sirtuins (Sirt-1), and thioredoxin/thioredoxin
reductase (Trx/TrxR) (Calabrese et al., 2009). Heat shock factors
(HSFs) are the master transcriptional factors that regulate the
inducible synthesis of these HSPs during stress (Wu, 1995). In
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addition to HSF, some of the vitagenes are also upregulated as
part of the phase 2 responses, a cytoprotective response that
protects against various electrophiles and oxidants (Calabrese
et al., 2007). Vitagene network including heme oxygenase 1,
thioredoxin, and thioredoxin reductase can be upregulated by
the transcription factor Nrf2 (Calabrese et al., 2010b). It has been
found that GPX4, heat shock protein beta-1(HSPB1), and Nrf2
function as negative regulators of ferroptosis by limiting ROS
production and reducing cellular iron uptake, respectively (Xie
et al., 2016a). The protection effect of HSPs in ferroptosis has
been elucidated in the past few years. In 2015, Tang's group
found that inhibition of HSF-1-dependent HSPB1 expression
increased ferroptosis, whereas overexpression of HSPB1
inhibited erastin-induced ferroptosis (Sun et al., 2015). They
also found that the PKC-mediated HSPB1 phosphorylation in
Hela cells was required for conferring resistance to erastin-
induced ferroptosis, possibly through regulating iron-mediated
lipid ROS production (Sun et al., 2015). In 2017, Tang's group
showed that heat shock 70-kDa protein 5 (HSPA5) negatively
regu la ted ferroptos i s in human pancreat ic ducta l
adenocarcinoma (PDAC) cells through the HSPA5-GPX4
pathway (Zhu et al., 2017). Mechanistically, activating
transcription factor 4 (ATF4) resulted in the induction of
HSPA5, which in turn bound glutathione peroxidase 4 (GPX4)
and protected against GPX4 protein degradation and subsequent
lipid peroxidation (Zhu et al., 2017). Due to the known neuron
protection effect of HSPs in vitro, it provides a potential
therapeutic strategy for acute injury in the nervous system.

In conclusion, current studies on the role of ferroptosis in
neurodegenerative diseases mainly concentrate on studying
whether ferroptosis inhibitors could slow disease progression,
and mostly use animal models. Most of the experimental studies
in animals have shown that effective inhibition of ferroptosis
provided potential treatment. However, most clinical trials on
administering iron chelators and antioxidants showed only
moderate treatment effect. These results lead us to think that
iron chelators and antioxidants are not sufficient to provide
effective treatment. Potential molecules that regulate ferroptosis
through other signaling pathways have yet to be further explored
for their potential to treat neurodegenerative diseases and could
provide better treatment.

Cancer
Most cancer cells exhibit elevated levels of ROS (Hassannia et al.,
2019). They rely on the level of glutathione to maintain their
survival and proliferation (Di Meco et al., 2017). Raising the level
of ROS to a cytotoxic level can eliminate cancer cells.
Endogenous cysteine produced under elevated ROS levels is
not sufficient to synthesize sufficient glutathione. Therefore,
extracellular cysteines need to be obtained by the reverse
transporter system xc

- (Dixon et al., 2014). Erastin (Dixon
et al., 2012), sorafenib (Louandre et al., 2013), and
sulfasalazine (Gout et al., 2001) have been explored as
inhibitors of system xc

- to stimulate ferroptosis in cancer cells.
Ferroptosis was first discovered in tumor cells when studying

RAS mutations. In 2014, Stockwell's group (Yang et al., 2014)
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studied the possibility of using ferroptosis inducers for RAS
mutant cancer cells by measuring erastin from 117 cancer cell
lines from different tissues. Results showed that kidney cancer
cells (RCCs) and leukemia (DLBCL) are more sensitive to erastin
than other cancer cells, like those found in lung and ovarian
cancers. They also demonstrated that RAS mutations are not
associated with the efficacy of erastin. In addition, erastin can
enhance the efficacy of chemotherapy drugs, such as
temozolomide (Chen et al., 2015) and cisplatin (Yamaguchi
et al., 2013), to treat specific cancer cells. The analogs of
erastin, piperazine erastin (PE) (Yang et al., 2014), and
imidazole ketone erastin (IKE) (Larraufie et al., 2015), have
also been used as in vivo probes for tumor susceptibility
to ferroptosis.

In 2015, Jian and colleagues (2015) elucidated a new role for
P53 in the mediation of tumor suppression through ferroptosis.
The authors demonstrated that P53 inhibits the uptake of cystine
through the inhibition of SLC7A11 gene expression, resulting in
ferroptosis. This conclusion also indicates that P53 wild-type
tumors can be treated with ferroptosis inducers that inhibit
system xc

-. Interestingly, SLC7A11 gene-deficient mice develop
normally and healthy (Sato et al., 2005), suggesting that system
xc

- targeted drugs with high cancer cell selectivity have few side
effects in preclinical studies.

In addition, it has been found that the ACSL4 enzyme is
preferentially expressed in a subset of triple-negative breast
cancer cells (TNBC) and that expression of the ACSL4 enzyme
is closely related to stimulating ferroptosis (Doll et al., 2017).
Since triple-negative breast cancer is difficult to control,
ferroptosis initiation introduces a new method for the
treatment of cancer cells with ACSL4 expression (Doll
et al., 2017).

In recent years, with the rapid development of nanotechnology,
studies have shown that tumor xenografts in mice that use high-
dose multiple intravenous injections of polyethylene nanoparticles
coated with polyethylene glycol exhibit a slower growth of cancer
and even signs of regression (Szwed et al., 2019). However, this
phenomenon is reversed by ferroptosis inhibitor liprostatin-1 (Kim
et al., 2016). This suggests that ferroptosis could have great potential
for targeted cancer treatment through ultra-smal l
silica nanoparticles.

Currently, FDA-approved drugs sorafenib (Louandre et al.,
2013), sulfasalazine (Gout et al., 2001), artesunate (Eling et al.,
2015), and lanperisone (Shaw et al., 2011) have been shown to
induce ferroptosis in certain cancer cells. Among them,
sorafenib-induced cellular ferroptosis had two different
mechanisms: (1) inhibition of system xc

- mediated cystine
input and triggering endoplasmic reticulum stress (Dixon
et al., 2014); (2) reduction of Rb protein, which is best known
for its regulatory role in cell proliferation and its key role at the
G1/S checkpoint accompanied by increased ROS in
mitochondria (Louandre et al., 2015). However, further
research is necessary to determine whether endoplasmic
reticulum stress is the key initiator of cancer cell death after
treatment with sorafenib. Further studies are needed to elucidate
the mechanism of Rb protein production.
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Ischemia Reperfusion Injury
Ferroptosis inhibitors have been used to treat a variety of kidney
injuries, such as ischemia-reperfusion and oxalic acid-induced
kidney damage (Gascon et al., 2016), rhabdomyolysis (Bosch
et al., 2009), and acute renal failure (ARF) (Bosch et al., 2009).
Ferroptosis inhibitor Fer-1 prevents cell death in an in vitro
model of rhabdomyolysis-induced acute kidney injury (Skouta
et al., 2014). In an in vivo model of renal ischemia-reperfusion
injury, SRS16-86, a third generation ferrostatin with increased
plasma and metabolic stability, protected renal function and
prolonged survival after ischemia-reperfusion injury
(Linkermann et al., 2014). Ferroptosis inhibitor Lip-1 can
rescue acute renal failure and prolong life in mice due to
GPX4 deletion (Friedmann Angeli et al., 2014). In addition,
thiazolidinediones (TZDs) inhibit acyl-CoA synthase 4 and
partially reduce the mortality of induced GPX4 knockout mice
(Doll et al., 2017). These results reinforce the sensitivity of kidney
tissue to ferroptosis and demonstrate the value of ferroptosis
inhibitors in the treatment of renal damage (Sancho-Martinez
et al., 2015).

When the isolated cardiac ischemia-reperfusion model of
wild-type mice is treated with glutaminolysis inhibitor
compound 968 and iron chelator DFO, the cardiac function is
significantly enhanced when compared to the control group
(Gao et al., 2015). This indicates that heart damage caused by
ischemia-reperfusion can be reduced by inhibit ing
glutaminolysis, which is the essential component in ferroptosis.
Fang and colleagues (2019) used a variety of cell death inhibitor
treatments and cell death pathway-related knockout mouse
models to find that only the ferroptosis-specific inhibitor Fer-1
could significantly reduce the cardiotoxicity caused by DOX, an
anticancer drug. It was revealed that ferroptosis was involved in
the mechanism of myocardial injury. The researchers also found
the presence of ferroptosis in a mouse model of myocardial
ischemia-reperfusion injury. The administration of ferroptosis
inhibitors to block ferroptosis could significantly reduce acute
and chronic heart damage caused by ischemia-reperfusion.
These results provide new ideas and strategies for clinical heart
diseases such as myocardial infarction.

Excessive acetaminophen is the most common cause of acute
liver failure. Acetaminophen has been shown to induce
ferroptosis in primary hepatocytes, while ferroptosis inhibitors
such as Fer-1 inhibit acetaminophen-induced cell death (Lorincz
et al., 2015). Moreover, Lip-1 repairs liver damage caused by
ischemia-reperfusion (Friedmann Angeli et al., 2014).
Collectively, these findings show the importance of ferroptosis
in ischemia reperfusion injury and support the potential
therapeutic application of ferroptosis inhibitors that target
pathways involved in ferroptosis execution.

Other Diseases
Excessive accumulation of iron ions causes lipid peroxidation
and tissue damage, leading to atherosclerosis and diabetes (Wu
and Chen, 2015). Studies have shown that iron overload in the
heart caused myocardial dysfunction and metabolic damage that
ultimately led to heart disease (Dixon et al., 2012). In GPX4-
Frontiers in Pharmacology | www.frontiersin.org 14
deficient T cells, the cell membrane rapidly accumulates lipid
peroxides, which induces ferroptosis. Instead, inhibiting
ferroptosis promotes the survival and expansion of T cells and
protects the immune function of T cells (Matsushita et al., 2015).
Research also shows that ferroptosis participates in keratinocyte
death due to GSH loss, and high doses of vitamin E can inhibit
ferroptosis of skin keratinocytes and reduce skin damage (Wu
and Chen, 2015). Recent studies show that the decreased
expression of frataxin, a key protein of Friedreich's ataxia
(FRDA), characterized by puberty onset, loss of tendon
reflexes, and deep sensory loss , is associated with
mitochondrial dysfunction, mitochondrial iron accumulation,
and increased oxidative stress. Ferroptosis inhibitor SRS11-92
reduces cell death caused by FRDA (Cotticelli et al., 2019).

For a long time, researchers believed that the secondary
damage caused by intracranial hemorrhage was caused by the
random spread of iron ions. However, the discovery of
ferroptosis has led more researchers to wonder whether the
damage caused by intracranial hemorrhage is the induction of
ferroptosis in cells. Alim and colleagues (2019) not only validated
in hemorrhagic stroke models that stroke induces ferroptosis to
some extent, but also found that the expression of the GPX4 can
be driven by delivering a single dose of selenium to the brain,
thereby protecting neurons and improving the behavior of mice
after stroke (Green, 2018; Ingold et al., 2018). These findings
provide important guidance in the nutritional care and follow-up
treatment of cerebral hemorrhage.

In summary, the survival of cells is an important part of the
body's normal metabolism. It is clear that ferroptosis has an
intimate relationship with pathological cell death. Effective
alleviation or prevention of the progression of the disease or
the clinical symptoms in mice or rat models can be achieved by
administering ferroptosis inhibitors or inducers. Emerging
evidence also suggests that ferroptosis initiation has a potential
tumor inhibitory function, which could clear tumor cells that
lack key nutrients in the environment and cells that are damaged
by infection (Yang et al., 2014). In-depth study and clarification
of the pathophysiological mechanism of ferroptosis in related
diseases will provide new ideas for discovering potential drug
targets and clinical prevention methods.
SUMMARY

Different from other cell death patterns induced by cytosolic or
mitochondrial reactive oxygen species, ferroptosis is defined as a
form of programmed cell death involving the accumulation of
lipid hydroperoxides which can be suppressed by iron chelators
and lipophilic antioxidants. It is characterized by the loss of
activity of enzyme GPX4, which results in the accumulation of
lethal lipid hydroperoxides. Topics on signaling pathways
involved in ferroptosis, the role of ferroptosis inhibitors and
initiators as well as their mechanism of action, the role of
ferroptosis in disease, and the difference between ferroptosis
and other cell death types involving excessive reactive oxygen
species, have been widely studied in the past few years.
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The difference between ferroptosis and other cell death
pathways caused by excessive oxidative damage in vivo has not
been elucidated yet. Recent studies indicate that ferroptosis
shares a few common characteristics with several types of cell
death pathways, like oxytosis (Neitemeier et al., 2017) and
ferritinophagy (Zhang et al., 2018b), with a few differences in
protein-signaling pathways. In cellular models, the morphology
and characteristics of cells and mitochondria can be explored to
provide evidence to distinguish ferroptosis from other types of
cell death. However, it is challenging to do so in the diseased
animal models. In addition, different cell death patterns might
happen and contribute to the pathology of disease at the same
time. For example, it is already known that both ferroptosis and
necroptosis happen after ischemic injury (Linkermann et al.,
2014) and both apoptosis and ferroptosis occur after traumatic
brain damage (Raghupathi et al., 2000; Magtanong and Dixon,
2018). Therefore, detection of markers of one cell death type
alone cannot indicate the lack of other cell death types in
diseased model.

It is known that ROS in the biological system has hormesis
feature, which means although excess ROS is harmful to keep the
redox balance, small amounts of ROS, such as mitochondrial
superoxide and hydrogen peroxide, play important roles in a
range of cellular functions, and can also activate signaling
pathways that promote cell survival and disease resistance
(Calabrese et al., 2008; Mattson, 2008; Calabrese et al., 2010a).
An example of cellular hormesis mediated by ROS is the study
showing that oxidative stress can stimulate angiogenesis in the
brain, a process that is very important in restoring blood flow to
neurons after a stroke (Hougaard et al., 2013; Wei et al., 2013).
To date, it is not yet clear whether ferroptosis has hormesis
feature. However, some known ferroptosis inhibitors, such as the
natural products curcumin and baicalein, have hormesis feature
(Wang et al., 2018; Concetta Scuto et al., 2019). At low
concentration, curcumin and baicalein inhibit ferroptosis in
cellular models (Concetta Scuto et al., 2019; Li et al., 2019).
However, at concentration above a threshold, they induced
Frontiers in Pharmacology | www.frontiersin.org 15
toxicities. Therefore, special precaution is necessary when
applying ferroptosis inhibitors as potential protective agents.

In addition, the interpretation of cell-based data and animal-
based data related to the link between ferroptosis and
neurodegenerative diseases must also be carefully considered
since the in vitro cellular experimental conditions are quite
different from in vivo conditions. To date, there is no clinical
trial using ferroptosis inhibitors or initiators to treat degenerative
diseases (see www.clinicaltrials.gov for details). Further research
on the mechanism through which lipid peroxidation induces
ferroptotic cell death is necessary.
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