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Acceleration of bone regeneration 
by activating Wnt/β-catenin 
signalling pathway via lithium 
released from lithium chloride/
calcium phosphate cement in 
osteoporosis
Li Li1,2,*, Xiaozhong Peng1,*, Yongbao Qin1, Renchong Wang1, Jingli Tang1, Xu Cui2, 
Ting Wang2, Wenlong Liu2, Haobo Pan2 & Bing Li1

By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has 
been applied extensively in bone engineering. Doping a trace element into CPC can change physical 
characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to 
stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing 
effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the 
underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to 
hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon 
release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin 
pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between 
CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC 
had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC 
(P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest 
that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of 
the Wnt/β-catenin pathway in osteoporosis.

Osteoporosis is a common disease characterised by severe loss of bone mass and sparse microarchitecture, 
which frequently leads to fragility fractures1,2. The World Health Organization estimated that in 2004 osteo-
porosis caused > 8.9 million fractures worldwide, and was seen mostly in elderly individuals. The International 
Osteoporosis Foundation has estimated that ≈ 70 million people aged > 50 years have osteoporosis, and that 
687,000 fragility fractures of the hip have occurred in China. In the USA and Europe, ≈ 30% of post-menopausal 
women have osteoporosis. Worldwide, at least 15–30% of men and 40% of women will suffer from one or more 
fragility fractures in their lifetime. Osteoporosis is underdiagnosed and undertreated because most of the popu-
lation resides in rural areas.

The balance between the formation and resorption of bone plays an important part in regulation of bone mass 
in osteoporosis3. The Wnt/β -catenin signalling pathway (hereafter referred to as the “Wnt/β -catenin pathway”) 
also has an essential role in the formation and regeneration of bone. Activation of the Wnt/β -catenin pathway is 
achieved through binding of Wnt to low-density lipoprotein receptor-related protein 5 and 6 co-receptors and the 
7-transmembrane domain-spanning frizzled receptor4,5. Signals are generated through the proteins Disheveled, 
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Axin, and Frat-1, which disrupt the protein complex and downregulate the activity of glycogen synthase kinase 
(GSK)-3β , resulting in hypophosphorylation of β -catenin. Then, stabilised β -catenin aggregates in the cytosol and 
translocates to the nucleus. The transcriptional coactivator subsequently interacts with T cell factor/lymphoid 
enhancer binding factor (TCF/LEF). TCF/LEF are transcription factors that can mediate the effects of Wnts on 
gene transcription to upregulate osteoblast proliferation6.

Lithium chloride can suppress the activity of GSK-3β , which is considered to be a crucial regulator in the 
Wnt/β -catenin pathway7. Lithium chloride can activate the Wnt/β -catenin pathway by suppressing formation of 
the Axin-adenomatous polyposis coli (APC)-GSK-3β  complex and preventing β -catenin phosphorylation, which 
increases bone formation8,9. Activation of β -catenin in the Wnt/β -catenin pathway via lithium treatment in mice 
is associated with an increase in bone mass and improvement in fracture healing10. Furthermore, treatment with 
lithium chloride also decreases the tumour burden in the skeleton and suppresses the development of myeloma in 
vivo11. In addition, lithium has been approved for the treatment of bipolar illness for > 50 years12–14.

Repair of segmental bone defects resulting from cancer, trauma, or metabolic disorders is a major challenge in 
orthopaedic medicine. Calcium phosphate cement (CPC) was discovered first in 1985 by Chow and Brown and, 
since then, it has been popular in bone-tissue engineering15. CPC is a mixture of powder and liquid at a certain 
ratio and can form an injectable and remodelled paste that facilitates surgery and corrects bone defects read-
ily16–18. Initially, CPC can be manipulated to fit the shape of various bone defects and give mechanical support to 
the lesion. Then, implants convert gradually to hydroxyapatite (HA) and integrate with surrounding regenerated 
osseous tissue, which show excellent osteoconductivity19–21.

Pilot studies by our research team have shown that lithium-doped calcium phosphate cement (Li/CPC) can 
promote the proliferation and differentiation of osteoblasts in vivo, and enhance osteogenesis in defects in rats 
compared with CPC22–24. In the present study, we explored the underlying mechanism of the proliferation and 
differentiation of cells under stimulation by lithium released from Li/CPC, and observed the role of Li/CPC in 
the repair of osteoporotic bone defects. We wished to ascertain if Li/CPC activates the Wnt/β -catenin pathway 
to induce osteogenesis and to treat orthopaedic diseases associated with reduced bone mass (e.g., osteoporosis).

Results
Composition and morphology of Li/CPC. At 1 day after immersion in simulated body fluid (SBF), the 
entangled structure of irregular crystals and irregular granular pattern were observed on the surfaces of cements 
under scanning electron microscopy (SEM), suggesting that the original materials were the major components 
of initial hardened cements. A typical flower-like structure was observed at 7 and 14 days, suggesting that HA 
with a poor crystalline structure had been formed gradually. Judging by the morphology of a plate-like structure 
at 28 days, the surface of cements was almost completely covered by precipitated HA (Fig. 1). In addition, X-ray 
diffraction (XRD) showed that the original material peaks were present and that the peak representing HA was 
absent after 1 day of immersion. This finding suggested that the composition of cements was initial materials [tet-
racalcium phosphate (TTCP), anhydrous dicalcium phosphate (DCPA)], and that HA did not form in the initial 
hardening of cements (Fig. 2A). After immersion in SBF for 14 days, the intensity of peaks of TTCP and DCPA 
decreased gradually. Simultaneously, a broad peak at ≈ 32° was observed, suggesting HA formation, which was 
consistent with the morphology of the cements under SEM (Fig. 2B). Combined with the results shown above, 
which consistently reflected HA formation, we concluded that Li/CPC had favourable bioactivity in vitro to the 
same extent as that of CPC, a finding that is in accordance with other reports23.

Morphology of MC3T3-E1 cells. attaching to cements was examined using SEM. MC3T3-E1 cells were 
observed on the cement surface in all groups at 1 day. They showed well-spread and stretched filopodia to anchor 
to scaffold surfaces. At 7 days, cells spread to most scaffold surfaces, connected to adjacent cells or stretched 
numerous pseudopodia to anchor to scaffold surfaces. At 14 days, scaffold surfaces were covered completely with 
MC3T3-E1 cells in all groups and connected to each other via plasma extensions. This finding suggested that the 
cell-compatibility of all groups was satisfied (Fig. 3).

Release of lithium ions (Li+) from cement. Li+ released from cement with a higher concentration of 
lithium in Li/CPC was greater in extracts of materials at the same time. Most Li+ were released within 1 day and 
only a small amount was released after 7 days (Fig. 4A).

Proliferation of MC3T3-E1 cells. At 1 day, cell number was maintained at the same level in all groups. 
Compared with CPC, the cell number in Li/CPC increased at 3, 5, and 7 days with Li+ release at 25.35 ±  0.12 to 
50.74 ±  0.13 mg/l with culture time. However, a too-high concentration of Li+ (102.41 ±  0.11 mg/l) began to elicit 
cytotoxicity. Cell number in Li/CPC-200 was lower than that in Li/CPC-50 and Li/CPC-100, and the rate of cell 
proliferation in Li/CPC-200 was not significantly different compared with CPC (P >  0.05). The rate of cell prolif-
eration on Li/CPC-100 was the highest of all groups tested (P <  0.05) (Fig. 4B).

Differentiation of MC3T3-E1 cells. At 7 days, alkaline phosphatase (ALP) activity in Li/CPC was signif-
icantly higher than that in CPC. Differentiation on Li/CPC-100 was highest (P <  0.05) in all groups tested, and 
differentiation in Li/CPC-200 was not significantly different compared with CPC (P >  0.05) (Fig. 4C). Osteogenic 
differentiation and mineralisation of Li/CPC increased as Li+ were released at 25.35 ±  0.12 to 50.74 ±  0.13 mg/l, 
which reflected the calculation of ALP activity and staining with alizarin red (Fig. 4D,E).

Staining of the cytoskeleton proteins of MC3T3-E1 cells. Figure 4F shows the cytoskeletons of 
MC3T3-E1 cells after immersion for 12 h in different extracts. Compared with CPC control, the attached cells for 
Li/CPC-50 and Li/CPC-100 extracts showed greater spreading and superior extension of filopodia, and greater 
focal adhesion via well-organised F-actin stress fibres (red filaments). However, the cytoskeletons of cells cultured 
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with Li/CPC-200 were similar to those for CPC because the Li+ concentration increased excessively, and there 
was slight deterioration of MC3T3-E1 cells.

Expression of osteogenic genes. Osteogenesis-related gene expression of osteoblastic markers [collagen 
type I alpha 1 (Col1a1), bone gamma-carboxyglutamate protein (Bglap), osteoprotegerin (OPG), runt-related 
transcription factor 2 (Runx2), β -catenin] were detected after incubation for 3 and 7 days with MC3T3-E1 cells 
in different extracts. In general, gene expression was time-dependent. After 3 days, expression of osteoblastic 

Figure 1. Characterisation of cement after immersion in simulated body fluid. SEM images indicated that 
original phases (TTCP, DCPA) had been converted gradually to flower-like or plate-like structures of HA at 1, 7, 
14 and 28 days of immersion.

Figure 2. XRD analyses showed that the HA peak appeared at 1 and 14 days of immersion. (A) The original 
material peaks were present at 1 day, suggesting that cement composition was of initial materials (TTCP, 
DCPA). (B) A broad peak at ≈ 32° was observed at 14 days, suggesting HA formation.
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markers in the Li/CPC-50 and Li/CPC-100 was higher than that for CPC (P <  0.05), but there was no significant 
difference compared with Li/CPC-200 (P 0.05). Expression of osteoblastic markers was higher in Li/CPC-50 and 
Li/CPC-100 than that in CPC except for Li/CPC-200 at 7 days (P <  0.05) (Fig. 5A–E).

Wnt/β-catenin pathway. We examined the effect of Li+  released from Li/CPC on activation of 
Wnt/β -catenin pathway. As the amount of phosphorylated GSK-3β  increased, the amount of phosphorylated 
β -catenin decreased. This action stabilised β -catenin aggregated in the cytoplasm, which translocated to the 
nucleus when Li+ release was 25.35 ±  0.12 to 50.74 ±  0.13 mg/l (Fig. 5F,G). Li/CPC increased Runx2 expression 
significantly (P <  0.05) (Fig. 5H). Runx2 is essential for osteogenic differentiation as a Wnt/β -catenin/TCF target 
gene product. This result was similar to the result of Runx2 gene expression.

Rat model of osteoporosis. Histomorphometric parameters and micro-architectural properties of 
bone were analysed 3 months after surgery via micro-computed tomography (CT) and histological staining of 
tibia-tissue sections. Bone mineral density (BMD), relative bone volume (BV/TV), trabecular number (Tb.N), 
trabecular thickness (Tb.Th) and connectivity density (Conn.D) decreased 3 months after surgery relative to sham 
rats, whereas trabecular separation (Tb.Sp) increased (P <  0.05). Three-dimensional (3D) micro-CT showed that 
rats that had undergone ovariectomy (OVX) had significantly less trabecular bone compared with sham-operated 
rats. Compared with the sham-operated group, histology images of tibias at 3 months post-OVX showed signifi-
cantly sparser bone trabecular in OVX rats, which was consistent with 3D micro-CT results (Fig. 6).

Micro-CT. Bone defects were created by implantation of cylindrical material; such implantation was done in 
OVX rats. Micro-CT images and 3D computer models of tibial defects upon implantation were used to evaluate 
regenerated bone mass. At 4 weeks, a small amount of regenerated osseous tissue was found, and more extensive, 
newly formed bone occurred at 8 weeks (Fig. 7). Increased formation of new bone was detected around the Li/
CPC compared with CPC at 4 and 8 weeks. The BV/TV at different distances from the surface of Li/CPC was sig-
nificantly higher than that for CPC at 4 and 8 weeks (P <  0.05), which suggested that Li/CPC had better capacity 
for bone regeneration at interfacial areas.

Histological staining. OVX rats that had undergone filling of bone defects were killed. Specimens of the 
proximal tibia were collected for staining [haemotoxylin and eosin (H&E), Giemsa]. At 4 weeks, fibrous tissue 
was seen to infiltrate into a small gap between cement and bone in CPC. However, the initial gap was occupied 
entirely by new bone in Li/CPC. At 8 weeks, regenerated osseous tissue anchored to the surface of the implant 
was found in CPC and Li/CPC groups. However, this regenerated osseous tissue penetrated into the initial outer 
surface around Li/CPC, which suggested that Li/CPC could accelerate bone regeneration (Fig. 8).

Discussion
CPC has been used for synthetic bone grafts in bone engineering because of its excellent bioactivity and osteocon-
ductivity25–28. Li/CPC was manufactured by doping lithium chloride onto CPC. After immersion, testing of the 

Figure 3. Morphology of MC3T3-E1 cells on the cement surface. With an increase in culture time, cements 
were covered by MC3T3-E1 cells gradually, indicating that cements had good biocompatibility. Red arrows 
pointed at MC3T3-E1 cells what were outlined by yellow line.
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hardened cement body was done to investigate bioactivity in vitro. With an increase in immersion time, cement 
morphology was changed gradually to the typical morphology seen in HA. This change was in accordance with 
the XRD-peak characteristics of HA, suggesting formation of a poorly crystalline apatite. HA has good biocom-
patibility and bioactivity29. Its chemical composition and crystalline structures are similar to those of apatite in 
human bone. Also, the molar ratio of calcium: phosphorus in HA is 1.67, which is close to that of human bone30. 
An exchange reaction of calcium ions in HA can occur with the carboxyl group present in amino acids, proteins, 
and organic acids, and new bone can be combined with implant material to provide a good growth interface for 
bone cells31,32. In addition, MC3T3-E1 cells exposed to cements also showed good biocompatibility at 14 days.

The Wnt/β -catenin pathway has an essential role in regeneration of osseous tissue by stimulation of the prolif-
eration and differentiation of osteoblasts33,34. If signalling is blocked, phosphorylation of β -catenin is induced by 
a protein complex consisting of axin, adenomatous polyposis coli, and GSK-3β 6. Lithium chloride can activate 
the Wnt/β -catenin pathway by inhibition of GSK-3β  activity to stimulate the proliferation and differentiation of 
osteoblasts35.

The present study showed linear release of Li+ in the medium. That is, the lithium in Li/CPC is directly pro-
portional to Li+ in the medium. The cell proliferation seen in Li/CPC-50 and Li/CPC-100 was better than that in 
Li/CPC-200 and CPC, which was in accordance with the results of cell-cytoskeleton staining. Early osteogenic 
differentiation (as reflected by ALP level) in Li/CPC-50 and Li/CPC-100 was better than that for Li/CPC-200 and 
CPC. As a marker of osteogenic differentiation, high expression of ALP suggests that a certain concentration of 
lithium doped to CPC favoured osteoblastic differentiation. Alizarin-red staining showed more calcium nodules, 
suggesting that a lithium concentration of 50–100 mM doped to CPC also favours osteoblastic mineralisation.

Studies on the Wnt/β -catenin pathway demonstrated that Li/CPC-50 and Li/CPC-100 increased the amount 
of phosphorylated GSK-3β  significantly and decreased the amount of phosphorylated β -catenin. Then, stabilised 
β -catenin aggregated in the cytoplasm and translocated to the nucleus compared with Li/CPC-200 and CPC36. 
Reverse transcription-polymerase chain reaction (RT-PCR) showed that expression of osteogenesis-related genes 

Figure 4. Effects of Li+ in extracts on proliferation and differentiation of MC3T3-E1 cells. (A) Li+ were 
released linearly from cements after immersion in medium for the same time, and most Li+ were released 
within 1day, only a small amount was released after 7 days (n =  5). (B) Cell proliferation on Li/CPC-50 and Li/
CPC-100 was better at 3, 5 and 7 days than that on Li/CPC-200 and CPC (n =  5). (C) ALP activity at 7 days was 
better in Li/CPC-50 and Li/CPC-100 than for Li/CPC-200 and CPC (n =  5). (D,E) Osteogenic differentiation 
(ALP staining) and mineralisation (alizarin-red staining) of Li/CPC-50 and Li/CPC-100 were more obvious 
than those on Li/CPC-200 and CPC (n =  3). (F) Cells attached on Li/CPC-50 and Li/CPC-100 showed more 
spread and superior extension of filopodia, as well as greater focal adhesion via well-organized F-actin stress 
fibres (n =  3). Statistical analyses were done using Students’t-test. *p <  0.05 was considered significant.
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was upregulated significantly in Li/CPC-50 and Li/CPC-100 compared with Li/CPC-200 and CPC, data that are 
in accordance with expression of the Wnt/β -catenin/TCF target gene product Runx2. These findings strongly 
suggest that the positive effect of Li+ release from Li/CPC at 25.35 ±  0.12 to 50.74 ±  0.13 mg/l on the proliferation, 
differentiation and mineralisation of MC3T3-E1 cells is associated with activation of the Wnt/β -catenin pathway 
(Fig. 9).

Osteoporosis is a systemic metabolic disease characterised by reduction of bone density, which leads to osteo-
porotic fractures. In osteoporosis, bone-formation capacity is weakened or bone-resorption capacity is enhanced 
relatively37,38. CPC has been used for treatment of non-load-bearing bone defects by virtue of its excellent bioac-
tivity, biocompatibility and osteoconductivity, but it does not have special advantages for osteoporosis treatment. 
A GSK-3β  inhibitor can activate the Wnt/β -catenin pathway to improve the microenvironment of bone cells7,9,39. 
Lithium had been used widely for the treatment of mental disorders (e.g., depression, mania) but increased bone 
mass and decreased bone transformation has been observed in these patients40,41. Hence, lithium is considered a 
candidate drug for osteoporosis treatment.

Li/CPC improved the proliferation, differentiation and biomineralisation of MC3T3-E1 cells. This action 
is achieved by stimulation of specific cellular responses at the molecular level upon Li+ release. In our study, 
female Sprague–Dawley rats underwent bilateral OVX. This osteoporotic rat model was established at 3 months 
post-OVX, which is in accordance with previous reports42,43. Micro-CT showed that Li/CPC enhanced osteogen-
esis significantly and elicited greater bone formation with higher BV/TV at the periphery of the implant material 
compared with CPC, indicating superior stimulation of osteogenesis in vivo. Early endochondral ossification and 
formation of new bone at 4 weeks, and penetration of regenerated osseous tissue into the initial outer surface at 8 
weeks postoperatively in Li/CPC, suggested better osteoconductivity and osseointegration. We studied the effect 
of lithium-doped and undoped CPC on local osteogenesis. A sham-operated control group was not created and 
studied. Thus, we did not know the effect of bone fracture treated with or without implanted materials.

Figure 5. Activation of the Wnt/β-catenin signalling pathway via lithium released from Li/CPC. (A–E) 
Gene expression of Col1a1, Bglap, OPG, Runx2 and β -catenin were better in Li/CPC-50 and Li/CPC-100 
than in CPC and Li/CPC-200 (n =  3). (F) β -catenin accumulation in the cytosol and translocation to the 
nucleus in Li/CPC-100 (n =  3). (G,H) Representative Western blot analysis of p-GSK-3β , t-GSK-3β , p-β 
-catenin, t-β -catenin and Runx2. Li/CPC-50 and Li/CPC-100 increased the amount of p-GSK-3β  significantly 
and decreased the amount of p-β -catenin compared with Li/CPC-200 and CPC, expression of Runx2 was 
increased significantly in Li/CPC-50 and Li/CPC-100 compared with Li/CPC-200 and CPC. The band density 
was quantified using ImageJ software and data from three independent experiments were presented (CPC as 
the control group, the values were expressed as the mean ±  SD, n =  3). Statistical analyses were done using 
Students’t-test. *p <  0.05 was considered significant.
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Figure 6. Establishment of a model of osteoporosis rats. (A–D) Micro-CT showed that OVX-treated rats had 
significantly less trabecular bone formation compared with the sham-operated group (n =  6). (E,F) Compared 
with the sham group, H&E staining of the tibia 3 months post-OVX showed significantly sparser trabecular 
bone in OVX rats (n =  6). (G–K) At 3 months after surgery, BMD, BV/TV, Tb.N, Tb.Th and Conn.D decreased 
relative to sham rats, and Tb.Sp increased (n =  6). Statistical analyses were done using Students’t-test. *p <  0.05 
was considered significant.

Figure 7. Micro-CT of rat tibial defects implanted with cements. Micro-CT showed the capacity of bone 
regeneration at varying distances from the periphery of implant was better in Li/CPC-100 than in CPC (n =  6). 
Statistical analyses were done using Students’t-test. *p <  0.05 was considered significant.
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Conclusions
The present study suggests that local application of Li/CPC to osteoporotic fractures can accelerate bone regen-
eration by activation of the Wnt/β -catenin pathway via lithium released from bioactive materials. Li/CPC 
maintained the bioactivity and biocompatibility of CPC, but also showed better osteoconductivity and osseo-
integration than CPC. Hence, Li/CPC may be a novel biomedical filling material for treatment of orthopaedic 
diseases with reduced bone volume, such as osteoporosis.

Materials and Methods
Preparation of Li/CPC. Li/CPC was prepared according to a method described previously23. TTCP (Sigma–
Aldrich, Saint Louis, MO, USA) and DCPA (Sigma–Aldrich) were mixed at a ratio of 1:1 as a powder phase. 
Lithium chloride (0, 50, 100 and 200 mM; Sigma–Aldrich) was added to 20% wt of citric acid as a liquid phase 
(pH 4). Powder and liquid phases were mixed at a ratio of 0.3 ml/g and placed in a cylindrical mould to prepare 
the cement paste. A diameter of 12 mm and a height of 2 mm were used for material and cell-culture experiments, 
whereas 2.5 mm and 4 mm, respectively, were employed for animal studies.

Composition and morphology. Cements were immersed in simulated body fluid (142 mM Na+, 
5.0 mM K+, 1.5 mM Mg2+, 2.5 mM Ca2+, 147.8 mM Cl−, 4.2 mM HCO3

−, 1.0 mM HPO4
2–, 0.5 mM SO4

2−, pH 7.4) 
at 37 °C. Then, 1/10 of the apparent surface area of the sample (mm2) was used to calculate the soak volume (ml), 
and liquid was changed every other day. The setting reaction was stopped by dipping in liquid nitrogen for 30 min 
after 1, 7, 14 and 28 days of immersion. Then, cements were stored at − 80 °C and dried with a freeze-drying 
machine (Alpha 2-4LD plus; Martin Christ, Osterode am Harz, Germany). Morphology of the cement surface 

Figure 8. Histological staining. Images of H&E staining and Giemsa staining showed better in vivo 
osteoconductivity and osseointegration in Li/CPC-100 than in CPC at 4 and 8 weeks (n =  3).

Figure 9. Mechanism of activation of the Wnt/β-catenin signalling pathway via lithium released from Li/
CPC. 
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was observed under SEM (SUPRA 55; Zeiss, Oberkochen, Germany). Some cements were ground into powders 
and used for detection of the constitution and structure of the material phase by XRD (D8 Advance; Bruker, 
Billerica, MA, USA) using Cu Kα  (γ  =  1.5406 Å) radiation in step-scan mode (2θ  =  0.02° per step).

Preparation of extracts and differentiated solutions. Liquid extracts were prepared by immersion of 
cements in Dulbecco’s modified Eagle’s medium-alpha (DMEM-α ; Hyclone, San Angelo, TX, USA) containing 
10% FBS (Corning, Corning, NY, USA) and antibiotics (10 U/ml penicillin, 100 mg/ml streptomycin; Sigma–
Aldrich) (1.25 cm2/ml, 37 °C, 24 h) according to International Standard Organization 10993-5 and the litera-
ture23. Differentiated solutions were prepared by supplementation with 100 nM dexamethasone (Sigma–Aldrich), 
10 mM β -glycerophosphate (Sigma–Aldrich) and 0.2 mM ascorbic acid (Sigma–Aldrich) in different extracts.

Li+ release from cements. Liquid extracts were prepared according to the methods described above. Li+ 
concentrations in cell culture media at 1, 3, 5 and 7 days were determined by inductively coupled plasma–atomic 
emission spectroscopy (JY2000-2; Horiba Jobin Yvon, Kyoto, Japan).

Cell morphology. MC3T3-E1 cells (2 ×  104) were inoculated on cements placed in 24-well plates and cul-
tured in DMEM-α  containing 10% FBS. Cements were removed from wells after culture for 1, 7 and 14 days, 
washed with phosphate-buffered saline (PBS), and fixed in 4% paraformaldehyde for 1 h. Cement–cell constructs 
were dehydrated in a graded series of ethanol solutions (50, 70, 90, 95 and 100%) and dried with hexamethyldis-
ilazane. Morphology of attached cells was observed using SEM (SUPRA 55; Zeiss).

Cell proliferation. MC3T3-E1 cells (2 ×  104) were inoculated in 96-well plates (37 °C, 100% relative humid-
ity, 5% CO2). Extracts were added to each well to replace the culture medium after 24 h. Cell proliferation was 
determined using cell counting kit-8 (Dojindo, Tokyo, Japan) at 1, 3, 5 and 7 days. The optical density (OD) of 
supernatants was detected by a spectrophotometer (Multiskan™  GO; Thermo Scientific, Waltham, MA, USA) at 
450 nm.

Assay to measure ALP activity. MC3T3-E1 cells (2 ×  104) were added to 24-well plates. After culture in 
cell-differentiated solutions for 7 days, supernatants were removed gently and the plates washed carefully with 
PBS. Cells on plates were homogenised in 0.2% Triton X-100 (200 μ l). ALP activity was tested using an ALP Assay 
kit (Beyotime, Jiangsu, China). p-nitrophenol production was detected by monitoring OD using a microplate 
reader (Multiskan™  GO; Thermo Scientific) at 405 nm. The obtained value of OD was compared with the value 
from a standard curve of a series of diluted concentrations of p-nitrophenol in lysis buffer. The result of ALP 
activity was normalised by total protein content, which was measured with a Bicinchoninic Acid (BCA) Protein 
Assay kit (Thermo Scientific). The result was expressed as micromoles of p-nitrophenol formed per minute per 
microgram of total protein (1 μ mol/min/mg protein).

Staining to measure ALP activity. MC3T3-E1 cells (4 ×  104) were added to 24-well plates and cultured 
with cell-differentiated solutions for 14 days. ALP activity was determined using an ALP Enzymatic Activity 
Staining kit (Beyotime), which indicated ALP activity by the blue colour of the substrate (5-bromo-4-chloro-
3-indolylphosphate/nitro-blue tetrazolium). Images were obtained under light microscopy (IX71; Olympus, 
Tokyo, Japan).

Staining with alizarin red. MC3T3-E1 cells (1 ×  105) were added to six-well plates and cultured with 
cell-differentiated solutions for 21 days. The capacity for cell mineralisation was measured using Alizarin Red 
Staining kits (Sigma–Aldrich USA), which indicated cell mineralisation by changing the colour of the substrate 
to red. Images were obtained under light microscopy (IX71; Olympus).

Staining of cytoskeleton proteins. MC3T3-E1 cells (2 ×  104) were added to glass coverslips in 24-well 
plates. After 24 h, extracts were added to each well to replace the culture medium for an additional 12 h. Then, 
cells were fixed with 4% paraformaldehyde for 10 min. Cells were permeabilised in permeabilisation buffer (0.2% 
Triton X-100) for 5 min. Then, coverslips were placed on a piece of Parafilm® in a humid chamber and 200 μ l 
of 100 nM rhodamine phalloidin (Cytoskeleton, Denver, CO, USA) added, followed by incubation in the dark 
for 30 min at room temperature. DNA was counterstained for 30 s with 200 μ l of 4′,6-diamidino-2-phenylindole 
(DAPI; 100 nM; Dojindo) in PBS. Coverslips were rinsed in PBS and inverted on a drop of Antifade mounting 
media on a glass slide. Excess media were removed gently with a tissue and sealed on each side with nail pol-
ish. Images were taken with a fluorescence microscope (BX53; Olympus) to observe the cytoskeleton protein 
F-β -actin.

Immunofluorescence staining. MC3T3-E1 cells (2 ×  104) were inoculated in glass coverslips. The cul-
ture medium, extracts of Li/CPC-100, and culture medium containing Wnt3a (R&D Systems, Minneapolis, 
MN, USA) were added to corresponding 24-well plate wells for 6 h. Cells were fixed in 4% paraformaldehyde for 
15 min, and permeabilised in 0.2% Triton X-100 for 10 min. Cells were blocked with 1% bovine serum albumin 
in PBS for 1 h and incubated with monoclonal anti-β -catenin antibody (Abcam, Cambridge, UK) overnight at 
4 °C. Subsequently, cells were incubated with anti-rabbit IgG (H +  L; Invitrogen, Carlsbad, CA) for 1 h at room 
temperature. After washing in PBS and incubation in DAPI for 2 min, cell morphology was examined under a 
fluorescence microscope (BX53; Olympus).
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Gene expression by real-time RT-PCR. Expression of osteogenesis-related genes was evaluated using 
RT-PCR. MC3T3-E1 cells (5 ×  104) were added to 12-well plates, and cultured by cell-differentiated solutions for 
3 and 7 days. Total RNA was isolated using TRIzol® reagent (Invitrogen) and reverse transcription for mRNAs 
carried out using a Transcriptor First Strand cDNA Synthesis kit (Thermo Scientific) according to manufacturer 
instructions. Relative mRNA expression was determined using a SYBR Green qPCR kit (Toyobo, Osaka, Japan) 
and employing β -actin as the reference control. Expression of target mRNA was calculated from delta–delta Ct 
values. β -actin was used as an internal control. Primer sequences are listed in Table 1.

Western blotting. Cultured MC3T3-E1 cells were harvested in lysis buffer (Beyotime) after different extracts 
had been supplemented with 100 nM dexamethasone, 0.2 mM ascorbic acid, and 10 mM β -glycerophosphate for 
48 h. Protein concentration was measured using a BCA kit (Thermo Scientific). Total protein (80 μ g) was sepa-
rated on 8% polyacrylamide gel and transferred onto polyvinylidene difluoride membranes (Merck Millipore, 
Billerica, MA, USA). Membranes were blocked for 2 h at room temperature in 5% non-fat powdered milk in 
Tris-buffer, followed by incubation at 4 °C with primary antibodies to β -actin (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA), β -catenin, p-β -catenin, Runx2 (Cell Signaling Technology, Danvers, MA, USA), GSK-3β , and 
p-GSK-3β  (Abcam, UK). Bound primary antibodies were recognised by horseradish peroxidase-linked second-
ary antibodies (Santa Cruz Biotechnology). Protein bands were visualised using an enhanced chemilumines-
cence substrate kit (Millipore) and exposed to a ChemiDoc™  XRS chemiluminescence imaging system (Bio-Rad 
Laboratories, Hercules, CA, USA).

Osteoporosis model in rats. Animal experiments were undertaken in accordance with guidelines 
outlined by the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (SIAT-IRB-
160304-YYS-PHB-A0220) in Shenzhen, China, and approved by the Committee on the use of Live Animals in 
Teaching and Research of the same institute. Bilateral OVX was conducted on 6-month-old female Sprague–
Dawley rats according methods described previously43. The BMD, BV/TV, Tb.N, Tb.Th, Tb.Sp and Conn.D 
of trabecular bone at proximal tibiae was analysed by micro-CT (1176; SkyScan, Kontich, Belgium) 3 months 
post-OVX.

Material implantation. A second surgical procedure was carried out 3 months after establishment of the 
OVX model to create bone defects at the medial aspect of the tibial shaft, below the tibial plateau, bilaterally. 
Routine shaving and aseptic procedures were done. An incision was made to expose the tibia, creating a bone 
defect (diameter, 2.5 mm; depth, 4 mm) which was filled with Li/CPC-100 or CPC. The incision was closed with 
sutures. Animals were killed 4 and 8 weeks postoperatively.

Micro-CT. Was done to evaluate the ultrastructure and morphology of defects. Raw images were reconstructed 
in 3D and converted to binary images with adaptive local thresholding. The new BV/TV at various distances from 
the cement surface (6 and 12 pixels; 1 pixel ≈ 18 μ m) was calculated.

H&E staining. Specimens of proximal tibia were fixed in 4% paraformaldehyde, decalcified in 10% ethylene-
diamine tetraacetic acid, and dehydrated in a graded series of ethanol solutions (70, 80, 90 and 100%). Specimens 
were embedded in paraffin and sectioned (thickness, 5 μ m). H&E staining was used to observe regenerated osse-
ous tissue and monitor specific tissue responses to implanted materials under light microscopy (BX53; Olympus). 
Five sections of each specimen were produced.

Giemsa staining. Specimens were fixed in 4% paraformaldehyde and dehydrated in a graded series of 
ethanol solutions (70, 95, and 100%). Specimens were immersed in xylene and embedded in methyl meth-
acrylate (Merck, Kenilworth, NJ, USA). Specimens were cut into sections (thickness ≈ 300 mm) by a hard 
tissue microtome (310 CP Band System; Exakt, Norderstedt, Germany). Five sections of each specimen 

Name Sequence Gene bank

Col1a1
5′ -GCTCCTCTTAGGGGCCACT-3′ 

NM_007742
3′ -CCACGTCTCACCATTGGGG-5′ 

Bglap
5′ -CTGACCTCACAGATCCCAAGC-3′ 

NM_007541.3
3′ -TGGTCTGATAGCTCGTCACAAG-5′ 

OPG
5′ -CAGCATCGCTCTGTTCCTGTA-3′ 

NM_011613.3
3′ -CTGCGTTTTCATGGAGTCTCA-5′ 

Runx2
5′ -AGAGTCAGATTACAGATCCAGG-3′ 

NM_001145920.2
3′ -TGGTCTTCTTACTGAGAGAGG-5′ 

β -catenin
5′ -ATGGAGCCGGACAGAAAAGC-3′ 

NM_007614.2
3′ -CTTGCCACTCAGGGAAGGA-5′ 

β -actin
5′ -GGCTGTATTCCCCTCCATCG-3′ 

NM_007393.5
3′ -CCAGTTGGTAACAATGCCATGT-5′ 

Table 1.  Primer sequences used for RT-PCR. Collagen type I alpha 1 (Col1a1), bone gamma-
carboxyglutamate protein (Bglap), osteoprotegerin (OPG), runt-related transcription factor 2 (Runx2).
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were produced. Then, a micro grinding system (310 CP; Exakt) was applied to polish the sections down to a 
thickness of 30–40 mm. Giemsa staining (Merck) was used to observe regenerated osseous tissue under light 
microscopy (BX53; Olympus).

Statistical analyses. Data are the mean ±  SD of triplicate experiments. Statistical analyses were done using 
Students’t-test. P <  0.05 was considered significant. SPSS v21.0 (IBM, Armonk, NY, USA) was used in the study.
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