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Abstract: Unmanned aerial vehicles represent an effective technology for indoor search and rescue
operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or
dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and
mapping approach using either local or global approaches. Both approaches suffer from accumulated
errors and high processing time due to the iterative nature of the scan matching method. Moreover,
point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost
novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a
hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This
algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired
from video streaming broadcast process. The algorithm depends on the iterative closest point
algorithm during the lack of linear features which is typically exhibited in unstructured environments.
The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the
algorithm, the mapping performance and time consumption are compared with various algorithms in
static and dynamic environments. The performance of the algorithm exhibits promising navigational,
mapping results and very short computational time, that indicates the potential use of the new
algorithm with real-time systems.

Keywords: scan matching; SLAM; laser range finder; point registration; least squares; line tracking;
PCA; ICP; UAV; key frame

1. Introduction

In recent decades, unmanned aerial vehicles (UAVs) have become an active area of research and
development because of their ability to extend human capability that allows them to execute dangerous
tasks safely, saving time, and, more importantly, saving lives. Furthermore, their increasing relevance
stems from the potential diversity of their use both outdoors and indoors. Beyond mere observation
and surveillance tasks, UAVs are increasingly being used as part of search and rescue operations,
providing real-time mapping of the environment, locating victims and hard-hit areas after a natural
disaster. In conjunction with UAVs, recent advances in hardware and software have made it possible
to conduct accurate mapping without using costly, high-end data acquisition systems. Low-cost laser
scanners and navigation systems provide accurate mapping if properly integrated at the hardware
and software level. As such, UAVs have emerged as an aerial mapping platform providing additional
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economic and practical advantages, and thus increasing the reliability and accuracy of mapping
applications [1]. To do this effectively, however, the automation of UAVs requires improvements of
the vehicles’ navigation parameters. Vehicle autonomy is commonly defined as the capability of a
vehicle to make decisions using sensor observations without human intervention. Hence, vehicle
localization is the main step in achieving autonomy and remains a fundamental challenge for operation
in unknown indoor environments.

In addition to the localization problem, unmanned vehicles encounter several navigation hurdles,
including, but not limited to: (a) the necessity of building a map of the environment during flight so
the map is built from different positions. Afterward, these partial representations require assembly in
order to construct a coherent map, in turn requiring the unmanned vehicle to know its position which
is a challenge in indoor environments, and (b) the problem of feature extraction in sensory processing.
Specifically, correct data association, used to estimate the transformation between two consecutive
frames, suffers from contaminated raw measurements caused by random noise.

Therefore, navigation of a vehicle in an unknown, indoor environment is addressed by
simultaneous localization and mapping method (SLAM) methods [2]. This method is a system
for constructing a map of an unknown environment while concurrently estimating the position of a
moving object within that environment. Typically, SLAM approaches that utilize laser range finders
depend on the scan matching method of the successive scans. Scan matching is a method that has been
adopted to estimate the relative transformation parameters between consecutive scans. It is performed
by matching the current scan frame with either the previous scan frame or the partially built map,
namely local and global scan matching, respectively [3,4]. Both approaches suffer from accumulated
errors and high time consumption [5]. Many research works and implementations such as [6,7] have
been published in local and global scan matching respectively.

Current approaches such as Iterative Closest Point (ICP) [8], Iterative Matching Range Point
(IMRP) [9], Iterative Dual Correspondence (IDC) [9], Polar Scan Matching (PSM) [3], and Iterative
Closest Line (ICL) [10] handle the scan matching problem in an iterative fashion, significantly
impacting the amount of time spent on the task. Moreover, the solution convergence is not guaranteed,
especially in cases of aggressive manoeuvers or rapid movement due to harsh assignment of correct
correspondences [11]. Furthermore, these approaches suffer from error accumulation over time as well.
Typically, a loop closure approach is used to mitigate this error [12].

Even though the SLAM method addresses the problem of navigating in unknown environments,
it encounters essential mapping challenges, for example, in unstructured, dynamic, or large scale
environments [13]. Indeed, the complexity increases when working in unknown unstructured dynamic
environments. The environment is deemed to be dynamic when it contains objects, other than the
unmanned vehicle that move and change their position over time even periodically or in random
motions [14].

In dynamic environments, mapping and localization are a challenging task because the unmanned
vehicles must be able to cope with the changing position of the moving objects, and furthermore,
eliminate their impacts during modeling the environment [15]. People are typical examples of moving
objects. There are different approaches dealing with dynamic environments [14]. First, the parameters
of the moving objects are added in the state vector, then their locations are estimated. However,
this approach will insert burden to the computational process. Second, much simpler approach, the
dynamic entities are excluded as they are treated as noise. Third, probabilistic approaches, such as
occupancy grid, are utilized due to their capability to deal with sensor noise. However, their drawback
arises from the time taken to reveal that a cell is not occupied. Memory space is also a fundamental
aspect in the occupancy grid, this space is proportional to the grid cell dimension [16].

Moreover, the probabilistic occupancy grid assumes that each individual cell of the grid is
independent from its neighbors [17]. Each occupancy cell probability is based on information from
previous observations, as well as new observations from the sensors. Unfortunately, all sensors are
influenced by several sources of noise, thereby affecting their measurement accuracy. Thus, Bayesian
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reasoning is employed for estimating the posterior probability of the cell in order to accommodate
such sensor noise [18].

Unstructured environments are characterized by no specific pattern for the environments [19].
Extracting features is exacerbated when the environment is unstructured, and often feature-to-feature
methods fail to treat such environments [20].

This paper is organized as follows: Section 2 describes the origin of the idea and the overview
structure of the proposed algorithm. Section 3 explains the methodology used. The experimental
results are presented and discussed in Section 4. Finally, the conclusions are given in Section 5.

2. Overview of the Proposed Algorithm

The key frame concept, in a video streaming broadcast process, is based on reducing the
bandwidth load and extracting valid information from the video [21,22]. This is achieved by sending
keyframes in different intervals, that provide a full summary of the video content while the in-between
frames contain the update pixels only as shown in Figure 1.
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Figure 1. The structure of the key frame concept.

From the same perspective, the proposed algorithm extracts lines from the laser range finder
point cloud because line matching is more robust than point matching, and furthermore, lines are
robust to the disruption of the moving objects in the dynamic environments [23]. Therefore, two
non-parallel lines are chosen from the extracted lines to be the mapping reference lines as described
in Section 3.2. These two reference lines play the role of the initial reference key frame of the map.
Thereafter, the two reference lines are successively matched in the in-between scan frames in order to
compute the transformation between the current scan frame with the reference key frame. Due to the
vehicle’s movement, the existing reference lines of the current key frame might not be detectable all the
time. Therefore, another reference key frame is created with two new reference lines which marks the
beginning of new transformation. The transformation parameters between the old and new reference
lines are computed every transition. Consequently, the last transformation parameters are computed
relative to the first reference key frame. As a result, the proposed algorithm does not depend on the
transformation history, and further, the effect of rotation error at any epoch between two successive
frames will disappear in the upcoming transformation. Therefore, the proposed algorithm mitigates
the accumulated errors by using reference lines method. Finally, the ICP algorithm is applied as a
fine tuning process for the global scan matching. In case of lines outage period, due to navigating
in corridor or unstructured environment, the proposed algorithm will alternate to the ICP algorithm
alone. The ICP algorithm is performed for local and global scan matching as well for map consistency.
Implementation of the ICP algorithm, during the lines outage period, also decreases the sensitivity
of the proposed algorithm to the thresholds values because accepting reference lines depends on
thresholds, discussed later, and tuning the thresholds is an important process but deploying the ICP
algorithm reduces the thresholds tuning process.

Figure 2 depicts the alternating structure between the RKF and ICP methods. As long as the
proposed algorithm can choose two reference lines from the detected lines of the current scan frame,
the RKF method is implemented. Otherwise, the ICP method is performed. If reference lines are
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detected once more in both previous and current scan frame, the proposed algorithm alternate back to
the RKF method.Sensors 2017, 17, 1060 4 of 28 
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Figure 3 shows the overall structure of the proposed algorithm. The lines are extracted from
every two successive scan frames. The availability of selecting two non-parallel lines as reference
lines is checked. If the reference lines are detected, the lines matching process will be implemented
to determine the matched reference lines in the current scan frame. Thereafter, the transformation
parameters are computed with respect to the last reference key frame. After transformation to the
mapping frame, the ICP algorithm is utilized with the previous mapping scan frame. Finally, the
current mapping and position are computed. On the other hand, if the reference lines are not detected;
the ICP algorithm is executed alone as a lines outage period.
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3. Methodology

3.1. Line Extraction

The line-tracking (LT) algorithm [24] is used for clustering the point cloud, provided by the
laser scan rangefinder, into groups per threshold (Tmax), as shown in Figure 4. This algorithm is
characterized by low time complexity, an important factor in real-time systems.
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The threshold (Tmax) is chosen depending on the sensor’s precision of the laser scanner range
finder and the characteristics of the environment such as bricks, tiling, and painted wall. Since all the
experiments are performed using a low-cost laser scanner range finder, its specifications are described
in Section 4. Thus, sensor calibration process is accomplished to estimate the standard deviation (σ)

of the sensor in different detection range. Table 1 lists different standard deviations of the used laser
scanner range finder pursuant to the detection range. As a result of many experiments and for more
confidence, it is preferable to use (2σ) in the determination of the threshold (Tmax), and adding the
environment effect.

Table 1. Standard deviations of the laser scanner range finder according to the detection range.

Detection Range [m] Standard Deviation (œ) [cm]

Less than 1 0.34
Less than 2 0.73
Less than 3 1.79
Less than 4 3.27
Less than 5 3.92
Less than 6 5.44

Figure 5 shows the detection behavior of the laser scanner range finder in a static mode for the
same wall, of about 2 m in length, and from detection distance, of about 3 m. This strange behavior is
due to the distance resolution and is approximately 1% of the detection distance. Therefore, the same
wall detection will be represented as successive lines with a separation distance equal to the 1% of the
detection distance; 3 cm in this example.
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Figure 6 depicts the workflow of the line tracking algorithm. The algorithm is executed in 250 ms.
Figure 7 demonstrates an adjusted line-tracking algorithm for reducing time complexity down to
4 ms to be appropriate for a real-time system. The algorithm will not build a line for every new point
added, unless the orthogonal distance is more than the threshold (Tmax). In this case, a new line is
built from all previous points, and so the algorithm checks the threshold condition again (Tmax), and,
if the condition is valid, then a new point is successively added to the previous line. If the condition is
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Line fitting is implemented using principle component analysis (PCA) [25]. This statistical
procedure concerns itself with the interpretation of the covariance structure of a dataset in order to
identify in which principle direction the data varies. The first principle component has the largest
variance, and successive principle components possess variances in descending order. From this,
Eigenvalues and Eigenvectors of the covariance matrix of the data set are computed. As the data set
is 2D, it has two principle components; the eigenvector (v1) of the biggest eigenvalue represents the
principle component—the line fitting the data set, and; the second eigenvector (v2) represents the
robustness of the line (line uncertainty), as shown in Figure 8.
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The line availability in indoor environments has been evaluated using various data sets offered
by different research groups. The results show that the mean number of line availability is ranging
from 4.10 to 8.86 lines per scan. Figure 9 presents the tested data sets that comprise of MIT Killian
Court, MIT CSAIL Building, Intel Research Lab Seattle, ACES Building at the University of Texas, and
building 079 University of Freiburg, respectively [26].
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Figure 9. Maps for different data sets are used: (a) MIT Killian Court; (b) MIT CSAIL Building;
(c) Intel Research Lab Seattle; (d) ACES Building at the University of Texas; (e) building 079 University
of Freiburg.

Figure 10 shows a histogram for the detected lines in the whole data set of the MIT CSAIL
Building, the mean number of the detected lines is 8.8.
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Figure 11 demonstrates the execution time of the lines extraction per scan in the MIT CSAIL
Building data set, the mean execution time is 7.5 ms.
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Table 2 lists the availability of lines and extraction time for different data sets. All the displayed
results are for extracted lines that are composed of more than seven points.

Table 2. Line availability and extraction time for different data sets.

Dataset Name MIT Killian MIT CSAIL Intel Lab ACES Building Freiburg Building

Number of scans 17,481 1989 13,632 7375 4496
Mean number of lines 4.24 8.80 4.10 4.21 8.86

Percentage of more than three lines 88.2% 99.9% 81.3% 84.8% 99.8%
Mean execution time [ms] 3.7 8.9 3.4 4.0 7.4

3.2. Reference Key Frame

Initially, two reference lines are chosen from the extracted lines of the first point cloud, which
represent the first key frame, in consonance with the following criteria: (a) the longest lines; (b) number
of the points building the line is not less than the threshold (minPcount); (c) the relative robustness
of the lines, and; (d) the inscribed angle between the two reference lines is not less than the
threshold

(
minangle

)
.

The threshold (minPcount) is selected depending on the value of the adjusted coefficient of
determination

(
R2

)
. Since the explanatory variables, (x, y), are fixed because the linear model is

dominated for the 2D environments and although the coefficient of determination
(

R2); which is equal
to the square of the correlation coefficient (r), provides an explained impression of the total variation
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in (y) by the linear relationship between (x) and (y). However, the coefficient of determination does
not include the impact of the number of the data points that builds the line. Therefore, the adjusted
coefficient of determination interprets the measure of fit considering the number of data points. The
accepted percentage of the adjusted coefficient of determination is 80%:

r =
σxy

σxσy
(1)

R2
= 1 −

(
1 − R2

) n − 1
n − (k + 1)

(2)

where
(
σxy

)
is the covariance between (x) and (y), (σx) and

(
σy
)

are the standard deviations of (x) and
(y) respectively, (n) is the number of the data points, and (k) is the number of explanatory variables.

The inscribed angle
(

minangle

)
is chosen depending on the angle that minimize the distance of

the center uncertainty
(
dCenUncertainty

)
of the intersection between the two reference lines. v2 is the

second eigenvector that represents the line uncertainty:

dCenUncertainty =

∣∣∣∣∣ v2

sin(minangle)

∣∣∣∣∣ (3)

Figure 12 shows the inscribed angle between the two reference lines and its impact on the distance
of the center uncertainty. The red solid line represents the first reference line while the red dashed lines
present the line uncertainty. On the other hand, the green solid line represents the second reference
line and the green dashed lines represent the line uncertainty. The blue line represents the uncertainty
distance (second eigenvector) of the second reference line. The distance of the center uncertainty
will positively affect the selection of the two reference lines. Since the algorithm depends on two
non-parallel reference lines, assigning the min accepted inscribed angle depends on the environment
structure and the precision of the range finder sensor.
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Figure 12. Setting min angle between two reference lines.

Figure 13 illustrates the two reference lines of the first key frame. The main reference line is
represented by the red color and the green line is the second reference line, while the yellow color
presents the rest lines. The position of the laser range finder is represented by the red asterisk.

Table 3 lists the computed coefficient of determination, adjusted coefficient of determination,
number of data points that build each extracted line in the scan, and length of the extracted lines in the
first key frame as shown in Figure 13. Line number (1) is chosen to be the first reference line because it
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is the longest line, most robust line, and is built from the max points group. Although line number (3)
is selected to be the second reference line and this line is not the second robust line, but it is the second
longest line and is built from the second max points group, and further, it exceeds the min accepted
percentage of the adjusted coefficient of determination which is 80%.Sensors 2017, 17, 1060 10 of 28 
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Table 3. Computed parameters of the extracted lines of the first key frame.

Line Number
Coefficient of

Determination
(
R2) Adjusted Coefficient of

Determination
(

R2
) Number of Data Points Line Length [m]

1 0.9940 0.9937 51 5.7
2 0.9755 0.9706 13 1.0
3 0.8689 0.8631 48 5.4
4 0.9749 0.9722 22 2.8
5 0.9713 0.9598 8 1.8

The first two reference lines are the kernel for the mapping frame. Afterward, all the in-between
frames until receiving another key frame are sharing in constructing a coherent map using their directly
relation with the reference key frame, as shown in Figure 14.
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The vehicle’s absolute position with respect to the reference lines in the mapping frame is
determined by calculating the orthogonal distances from it to the reference lines at every period.
This helps compensate for any potential accumulated errors, especially given that other techniques
for determining relative position [27] have difficulties with error accumulation over time. Orthogonal
distances from the vehicle position to all the lines are calculated as well, and additionally, the
intersection points between the orthogonal lines and all the lines are computed.

3.3. Scan Matching

Representing each scan using a group of lines is more reliable than using a group of points
because correct data association for each point between two successive scans is quite a difficult process.
In contrast, matching lines is both reliable and robust. A line is considered to be matched after
accepting mutual compatibility with the previous scan line. Matching criteria, described hereafter,
are performed according to several computations, thereby ensuring a correct match. Thence, angles
between the previous scan lines and all current lines are computed using a vector dot product.
Candidate lines whose angle is less than a certain threshold

(
maxScanRotationAngle

)
are selected. The

threshold
(

maxScanRotationAngle

)
is opted according to the max rotation angle of the vehicle based on

its dynamic. Subsequently, the candidate line achieving the following two conditions is selected: (a)
it possesses the smallest orthogonal distance compared with the previous one, and; (b) it possesses
the smallest Euclidean distance of the current intersection points with the previous one. Finally, if the
smallest orthogonal distance is bigger than the threshold

(
maxOrthogonalShi f t

)
, there is no matching,

otherwise, matching does occur. The
(

maxOrthogonalShi f t

)
is selected depending on the max speed of

the vehicle based on its dynamic as well.
After the lines are matched, the new matched reference lines become the new reference lines and

a new position for the vehicle is determined. Thereafter, the angles between all matched lines in each
scan frame are computed. Using a specified threshold

(
minangle

)
angle, lines accepting this threshold

are selected, and intersection points for the selected lines are then calculated regardless of the physical
intersection of these line segments in the scan. These, then, become the corners for both previous and
current environments. To account for inherent uncertainties within detected corners, the covariance
of the corners is estimated using extracted line variances, as illustrated in Figure 15. The red ellipses
present the confidence ellipse regions for each detected corner, while the black dashed lines present the
precision of the lines that built around the matched lines using the second Eigenvalue. The intersection
points, between the position of the laser range finder and each detected line, are represented by the
black asterisks.
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Using least squares, the detected corners are used for estimating transformation parameters
(θ, xtr, ytr) between successive scans. These parameters are used to calculate an adjusted initialization
for the scan matching process. This method can be employed to match successive scans, but
it can also be used to support other iterative methods for achieve a more effective and faster
convergence. However, the detected corners sometimes decreased to be only one corner. Therefore,
the corners registration fails to compute the transformation parameters. Figure 16 demonstrates the
line registration algorithm using two non-parallel lines with one corner. The required rotation (θ) is
the angle that minimizes:

E(θ) = argmin
2

∑
i=1

∣∣Spi − Sci
∣∣ (4)

where
(
Sp

)
and (Sc) are the slope of the previous and current lines respectively. While the

translation (xtr, ytr) is computed from distance that minimizes the range between the detected
corners in the successive scans. Consequently, an adjusted corners registration is proposed to
estimate the transformation parameters using corners registration and further line algorithm for
one corner condition.
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Figure 16. Line registration algorithm.

The ICP is an algorithm employed for finding the transformation between two sets of point clouds
by minimizing the difference between them. In case of a 2D data set, the transformation possesses
three degrees of freedom (i.e., a combination of translation and rotation). The primary challenge for
the ICP algorithm is determining the correct data association between the two point clouds. While the
ICP algorithm encounters problems in data association during sharp rotation and/or fast movement,
the corners registration method helps the ICP improve data association even in harsh situations [28].
Occasionally there are no new references matched with previous ones, and in this case, swapping to
new reference lines occurs, creating new reference key frame.

3.4. Successive Key Frame

After a while the reference lines lessen due to the movement of the vehicle. In order to preserve
continuity of the reference lines occurrence, the successive key frames are created when the length
of the reference lines reaches a threshold. The goal here is to locate two new reference lines in the
previous scan frame, and matched lines in the current scan frame, while preserving the chosen line
criteria using the algorithm as outlined in Section 3.2. The transformation matrix between the old
reference lines and the new reference lines in the previous scan frame is then computed, and from this,
the transformation matrix from the new matched reference lines in the current scan frame and the
new reference lines in the previous scan frame, can be determined. Additionally, the vehicle’s relative
current position to the new matched reference lines in the current scan frame is computed.
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Figure 17 illustrates the swapping process between the old reference lines of the first key frame
and the new reference key frame, this process is formalized in Algorithms 1 and 2 as well. The old
reference lines of the first key frame are represented by the dotted lines either in the in-between frames
and the key frame, while the solid lines present the two new reference lines. Transformation 1 is the
relation between the old reference lines of the first key frame and the two new reference lines in the
in-between frames. Transformation 2 is the transition between the two matched reference lines in the
in-between frames and the key frame.Sensors 2017, 17, 1060 13 of 28 
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Algorithm 1: Pseudo-code of the swapping process between the old and new reference lines.

1: Setting: sort the previous lines in descending order according to their length
2: For each previous line from long to short
3: If this line has matching line in the current scan and composes from number of points more

than threshold
4: calculate the unit vector of this line (1st reference)
5: for each previous rest line from long to short
6: If this line has matching line in the current scan and composes from number of

points more than threshold
7: calculate the unit vector of this line (2nd reference)
8: calculate the intersected angle between the two vectors
9: If angle > 90
10: angle = 180−angle
11: End if
12: If absolute angle > threshold
13: swap the two old reference lines with the new ones
14: raise flag
15: End if
16: End if
17: End for
18: End if
19: End for

Algorithm 2: Pseudo-code of computing the relation between the old and new reference lines.

1: If flag is high
2: calculate the unit vector of the old 1st reference line
3: calculate the unit vector of the new 1st reference line
4: compute the intersected angle between the two vectors
5: compute the cross product of the two vectors
6: If the 3rd component of the cross-product result is less than zero
7: angle = −angle
8: End if
9: End if
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Figure 18 demonstrates the swapping result between the old reference lines of the first key frame
and the new reference key frame. It is obvious that the first old reference line, line number 8 in the
in-between frame, does not exist in the next frame. Therefore, a new key frame must perform in order
to select new reference lines for the next frames. The new first and second reference lines are numbered
by 5 and 4 respectively, in the key frame.Sensors 2017, 17, 1060 14 of 28 
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(RPLIDAR 360°, SlamTec, Zhangjiang, Shanghai, China) to reduce the cost of the system. This laser 

range finder is characterized by approximately short detection range, 6 m, max scan rate (rotation 
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3.5. Iterative Closest Point (ICP)

Finally, the ICP algorithm is used to approximate the current adjusted scan’s point cloud to the
previous one in the mapping frame in order to fine tune the mapping, and accurately determine the
vehicle’s new position. Using this algorithm by itself is problematic for two reasons: (a) the vehicle can
get lost in the case of rapid movement or sharp rotation, and; (b) the ICP algorithm uses an iterative
technique, and so requires significant amounts of time for scan matching convergence.

On the other hand, the ICP algorithm is solely performed during the lines outage period. During
this period the transformation parameters, in the laser scanner coordinate frame, are cumulatively
computed besides the transformation parameters of the global map. When the lines are detected over
again, the last reference lines are transformed to the current scan frame using the computed laser
scanner transformation. Thereafter, the relation between the new reference lines and the transformed
reference lines are calculated to overcome the reference lines discontinuity during the lines outage
period as shown in Figure 19.
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4. Experimental Results

All the experimental results are performed using a low-cost laser scanner range finder (RPLIDAR 360◦,
SlamTec, Zhangjiang, Shanghai, China) to reduce the cost of the system. This laser range finder is
characterized by approximately short detection range, 6 m, max scan rate (rotation speed), 7 Hz, and
angular resolution at the max rotation speed, 1.5◦. Figure 20 presents the aerial platform equipped
with the laser scanner range finder. All the datasets are collected in manual mode.Sensors 2017, 17, 1060 15 of 28 
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For the sake of comparison between different algorithms, all algorithms have been implemented
using the same computing platform (MATLAB) on a Lenovo ThinkPad, Intel core i7-4702MQ 2.2 GHz,
4G RAM, and 64-bit operating system. In order to validate and evaluate the proposed algorithm, the
mapping performance and time consumption of the proposed algorithm are compared with Hector
SLAM with different grid cell dimensions [29], iterative closest point (ICP), and feature to feature
registration such as corners, in static and dynamic environments. The environments include, but not
limited to, glass objects, bricks, longer corridors than the max detection range of the laser scanner and
aluminum curtains to create harsh scenarios as described in Table 4.

Table 4. The environment status and contribution for each experimental dataset.

Dataset Name Environment Status Contribution

Dataset I Static Corridors, loopback, glass objects
Dataset II Static Brick walls, glass objects, Corridors
Dataset III Static Aluminum curtains, Sharp rotation (180◦)
Dataset IV Static Glass objects, corridors
Dataset V Dynamic Glass objects, corridors, moving objects

4.1. Static Environment

4.1.1. Dataset I

Figure 21 represents the environmental structure of the dataset I; ENF building at University of
Calgary, and the performed trajectory is represented by the red line. The red circle presents the start
point of the trajectory and the red star represents the final destination of the trajectory. All the corridors
lengths are longer that the max detection range of the laser rangefinder.

Figure 22 illustrates Hector SLAM three level multi-resolution map representation result using
grid cell dimensions 20, 10 and 5 cm. Due to the existence of the long corridors, Hector SLAM fails
to estimate the longitudinal movement. Thus, it accumulates the point cloud of the successive scans
approximately at the same position. As a result, it fails to converge and build a representation for
the environment.
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Figure 22. Hector SLAM three level multi-resolution map representation result using grid cell
dimensions 20, 10 and 5 cm.

Figure 23 shows the mapping and position results using ICP algorithm. The red points present
the implemented trajectory. The ICP algorithm fails to correctly represent the environment because of
the corridors as well. Furthermore, it fails to determine the orthogonality behavior of the corners, this
is due to the aggressive maneuver causes incorrect estimation of the rotation parameter.

Figure 24 demonstrates the mapping and position results using the proposed algorithm alone
without using loop closure and/or external sensors. The blue points represent the mapping result
during the RKF method while the green points represent the mapping result using the ICP algorithm
during the lines outage period. The red points present the implemented trajectory. Although the
existence of the corridors and aggressive maneuvers, it is obvious that the proposed algorithm succeeds
to converge and build a map of the environment. It also achieves to represent the orthogonality
behavior of the corners. The shrink in some corridors is due to the dependence of the ICP algorithm
alone during the lines outage period. The mean execution time is 7 ms.
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Figure 24. Mapping and position results for the proposed algorithm.

4.1.2. Dataset II

Dataset II is collected at ENE building University of Calgary. Hector SLAM completely fails to
converge and build a map when using single level with grid cell dimension equal to 5 and 10 cm
because the algorithm is stuck in local minima as it is based on gradient ascent. However, it succeeds
with higher cell dimension such as 20 cm and more, as shown in Figure 25.
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Figure 25. Single level hector SLAM mapping results using different grid cell dimensions: (a) 10 cm;
(b) 20 cm.
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Figure 26 shows the execution time and the iterations number for single level hector SLAM using
20 cm grid cell dimension. The mean execution time is 0.11 s while the mean iterations number is 15.7.
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Figure 26. Single level hector SLAM using 20 cm grid cell dimension: (a) Execution time;
(b) iterations number.

Using Hector SLAM with single level grid cell dimension is potentially apt to get stuck in
local minima. Therefore, multi-resolution map representation is used to mitigate this problem [28].
However, these multiple map levels are memory and time consuming because they are keeping
different map levels in memory and simultaneously updating them, furthermore, each level takes
many iterations in order to converge. Figure 27 shows the mapping result of three level multi-resolution
map representation using grid cell dimensions 20, 10 and 5 cm. Although the high grid level aids
the low grid level to converge and build the entire map compared with Figure 25a but it also fails to
converge in different parts as presented by the red arrows in Figure 27.
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Figure 27. Three level multi-resolution map representation result using grid cell dimensions
20, 10 and 5 cm.

Figure 28 demonstrates the execution time and iterations number for three level multi-resolution
map representation with 20, 10 and 5 cm grid cell dimensions. It is obvious that the time consumption
and number of iterations are high compared with the single level grid cell dimension (1.15 s and
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47 respectively). Moreover, the processing time for the multi-resolution map representation is not
adequate for real-time systems.
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Figure 28. Execution time and iterations number for three level multi-resolution map representation
with 20, 10 and 5 cm grid cell dimensions. (a) Execution time; (b) iterations number.

Table 5 shows the mean execution time and number of iterations for multi-resolution map
representation with different levels and grid cell dimensions.

Table 5. Mean execution time and number of iterations for multi-resolution map representation with
different levels and grid cell dimensions.

Level Cell Dimension [cm] Mean Execution Time [s] Mean Iterations Number

1 20 0.11 15.7
2 10, 5 0.80 33.5
3 20, 10, 5 1.15 47

Figures 29 and 30 show the mapping and position results using ICP algorithm and adjusted
corners registration respectively. The red asterisk represents the trajectory of the vehicle. The ICP
algorithm succeeds to assign good correspondences because there are no aggressive manoeuvers. The
corners registration fails because sometimes the algorithm does not find two corners while the adjusted
corners registration succeeds. The mean execution time and number of iterations for the ICP algorithm
are 13 ms and 20, respectively, while the corners registration results for the mean execution time and
number of iterations are 9 ms and 17, respectively. The performance of the generated map is sensitive
to the maximum range detection of the sensor [30]. It is clear that both algorithms were prone to
bending in the corridor. However, they are still capable for vehicle’s navigation because the generated
map maintains a correct topology of the environment by reflecting the spatial structure of the corridor.
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Figure 30. Mapping and position results using adjusted corners registration.

Figure 31 presents the mapping and position results using the proposed algorithm. The mean
execution time and number of iterations for the proposed algorithm are 9 ms and 13.46, respectively.
It is obvious that the bending in the corridor is almost vanished because the proposed algorithm
depends on the transformation parameters between the reference lines of the current scan frame
with respect to the first reference key frame each time. Thus, if the transformation was incorrectly
estimated in t epoch, this would not affect the estimated transformation of t + 1 epoch. Furthermore,
the processing time of the proposed algorithm is proper for real-time systems.Sensors 2017, 17, 1060 20 of 28 
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4.1.3. Dataset III

Figure 32 illustrates three level multi-resolution map representation result using grid cell
dimensions 20, 10 and 5 cm. The mean execution time and number of iterations are 0.9 s and
38.35, respectively.
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Figures 33 and 34 show the mapping and position results using ICP algorithm and adjusted
corners registration respectively. The red asterisk represents the trajectory of the vehicle. Both
algorithms fail to assign good correspondences during the sharp rotation period. The mean execution
time and number of iterations for the ICP algorithm are 14 ms and 20, respectively, while the corners
registration results for the mean execution time and number of iterations are 10 ms and 17, respectively.
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Figure 36. One sigma ellipse of the scan matching error. 

Figure 34. Mapping and position results for the adjusted corners registration.

Figure 35 shows the scan matching result, between two successive scan frames, during aggressive
maneuver where the ICP algorithm has been trapped in local minima. The matching RMSE between
the matched points is 23.33 cm. Figure 36 shows the scan matching one (σ) error ellipse. However,
such misalignment has been corrected in the final solution using the proposed RKF approach as shown
in Figure 37.
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Figure 38. Three level multi-resolution map representation result using grid cell dimensions
20, 10 and 5 cm.

Figures 39 and 40 show the mapping and position results using ICP algorithm and adjusted
corners registration respectively. The red asterisk represents the trajectory of the vehicle. Both
algorithms fail to assign good correspondences during the sharp rotation period. The mean execution
time and number of iterations for the ICP algorithm are 9 ms and 20, respectively, while the corners
registration results for the mean execution time and number of iterations are 9 ms and 17, respectively.Sensors 2017, 17, 1060 23 of 28 

 

 

Figure 39. Mapping and position results for the ICP algorithm. 

 

Figure 40. Mapping and position results for the adjusted corners registration. 

Figure 41 presents the mapping and position results using the proposed algorithm. The mean 

execution time and number of iterations for 8.9 ms and 13.5, respectively. 

 

Figure 41. Mapping and position results for the proposed algorithm. 

Figure 39. Mapping and position results for the ICP algorithm.



Sensors 2017, 17, 1060 24 of 29

Sensors 2017, 17, 1060 23 of 28 

 

 

Figure 39. Mapping and position results for the ICP algorithm. 

 

Figure 40. Mapping and position results for the adjusted corners registration. 

Figure 41 presents the mapping and position results using the proposed algorithm. The mean 

execution time and number of iterations for 8.9 ms and 13.5, respectively. 

 

Figure 41. Mapping and position results for the proposed algorithm. 

Figure 40. Mapping and position results for the adjusted corners registration.

Figure 41 presents the mapping and position results using the proposed algorithm. The mean
execution time and number of iterations for 8.9 ms and 13.5, respectively.
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4.2. Dynamic Environment

Dataset V

Figure 42 depicts three level multi-resolution map representation result in dynamic environment
using grid cell dimensions 20, 10 and 5 cm. The Hector SLAM does not afford the noise cells that arise
from the moving objects. Thence, the Hector SLAM fails to converge and construct the map. The mean
execution time and number of iterations for 1.2 s and 48.3, respectively.
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Figure 42. Three level multi-resolution map representation result using grid cell dimensions
20, 10 and 5 cm.

Figures 43 and 44 show the mapping and position results using ICP algorithm and adjusted
corners registration respectively. Although, both algorithms succeed to converge, that they have a scale
problem, which is clear in the second corridor. The bad data association due to the moving objects
affects the solution in both algorithms.
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Figure 44. Mapping and position results for the adjusted corners registration.

Figure 45 presents the mapping and position results using the proposed algorithm. The proposed
algorithm does not suffer from the moving objects because the extracted lines from the moving objects
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does not accept the reference lines selection criteria. Thus, the extracted lines from the moving objects
would not share the estimation of the transformation parameters. The mean execution time and
number of iterations for 9 ms and 13.5, respectively.
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4.3. Threshold Dependence

The proposed algorithm depends on a group of thresholds. The values of the thresholds are
computed according to sensor precision and/or dynamics of the vehicle as described above. However,
the proposed algorithm can achieve the exploration mission, even if the values of the thresholds are
altered around the right computed values of the thresholds. Nevertheless, the altered threshold values
depend on the environment of the exploration mission, and they will affect the sharing percentage
between the two methods (RKF and ICP) in the entire mission.

Figure 46 shows the mapping and position results for the proposed algorithm of the dataset V
after changing some values of the thresholds. It is clear that the environmental structure was not
affected by changing the values of the thresholds. The sharing percentage of the ICP algorithm for
the entire dataset is 5.4% while the sharing percentage before changing the values of the thresholds is
1.5%. The mean execution time is 8.1 ms.
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5. Conclusions

In this paper, a low-cost novel real-time scan matching algorithm, inspired by the video streaming
broadcast key frame technique, is proposed. The proposed algorithm depends on a sole laser scanner
range finder and does not need external aided sensors. The proposed algorithm endeavors to mitigate
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the accumulated errors that exist in the local and global scan matching, as the transformation matrix of
the proposed algorithm is computed with respect to the previous key frame and not with respect to
the previous scan. Initially, the proposed algorithm depends on selecting two reference lines from the
extracted lines which compose the first reference key frame. The transformation parameters of all the
consecutive frames are computed with respect to this first reference key frame, until new reference
key frame is chosen. Thus, two new reference lines are swapped, and furthermore, the transformation
parameters between the old and new reference lines are estimated. The transformation parameters of
the next frames are computed with respect to the first reference key frame but taking into consideration
the transformation parameters of the swapping process. For validating and evaluating the proposed
algorithm, the mapping performance and time consumption are studied under different algorithms
such as Hector SLAM, ICP, and feature to feature registration such as corners, in static and dynamic
environments. It was found that the time consumption of the proposed algorithm is approximately
reduced by 99%, 35.7%, 10% comparable with multi-level Hector SLAM, ICP, feature registration,
respectively. The computational time of estimating the transformation parameters between each two
successive scans is approximately 9 ms, which indicates the qualification of the proposed algorithm
for real-time system implementations.

Although the proposed algorithm depends on the availability of two non-parallel lines, it succeeds
to provide a solution in the corridors and unstructured environment by switching to the ICP algorithm.
The proposed algorithm is appropriate for dynamic environments, as the moving object features will
not satisfy the reference lines selection criteria. Therefore, the extracted lines from the moving objects
never compose a reference key frame.
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