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Could inhibition of metalloproteinases be used to block the
process of metastasis?
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Abstract

Metastasis is a multisequential process that allows tumor cells to migrate to tissues

distant from the primary tumor. Only a small number of cells escape from the

primary tumor; however, the metastases generated are responsible for more than

90% of cancer deaths. Many metastatic processes initially require the total or partial

start‐up of a program for the transformation of tumor epithelial cells into

mesenchymal cells (EMT). The launching of the EMT program is stimulated by

cytokines and other elements produced by the diverse types of cells composing the

tumor stroma. In parallel, a process of destabilization of the extracellular matrix

(ECM) takes place by means of the synthesis of proteases of the matrix

metalloproteinases (MMPs) family. EMC degradation allows the exportation of

some tumor cells as mesenchymal cells to the circulatory system and their

subsequent implantation in a tissue distant from the primary tumor. The blocking

of these both processes appears as a hypothetical stop point in the metastatic

mechanism. The present review deals with the different options to achieve the

inhibition of MMPs, focusing on MMP7 as a target given its involvement in the

metastatic processes of a wide variety of tumors.
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1 | INTRODUCTION

Cancer comprises more than 180 different diseases which are

the result of a wide variety of complex molecular interactions.

The systematization of common features started in 2000 with the

publication of “Hallmarks of Cancer”1 allowed to identify the six

characteristic features of a malignant tumor, among which the

capacity to invade tissues and create metastasis stands out. In

2011, the same authors performed an update2 which included two

new features.

Although the use of innovative technologies has led to an

increased knowledge of the biological mechanisms that result in the

formation of a primary tumor; however, the knowledge of the

invasion‐metastasis mechanism is limited by the lack of specific

technologies able to differentiate each of the different stages of the

process.3

The capacity to invade the surrounding tissues and the spread of

tumor cells to other organs, their settlement in those new tissues, and

the formation of secondary tumor masses or metastasis is a

multisequential process.3–5 All the properties gained initially by
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tumor cells combine to furnish capacities that enable them to

abandon the primary tumor and settle in another tissue. In this sense,

it can be said that seven of the eight features acquired serve to

provide tumor cells with the properties that will enable their evasion

and the subsequent formation of metastasis.1,2 Regardless of the way

in which tumor cells evade, individually or forming clusters, only a

reduced number of cells will be able to complete the process and

settle on tissues away from the primary tumor. This process is rather

ineffective3; however, metastasizing of a tumor worsens notably the

prognosis from the clinical point of view6; it is known that the

metastasis process is responsible for 90% of deaths by cancer.7

The beginning of a metastatic process involves the activation of

two apparently simultaneous mechanisms that have been the subject of

study and interest. One of them refers to the transformation of tumor

epithelial cells into a mesenchymal phenotype by the implantation of the

molecular program termed epithelial–mesenchymal transition (EMT).8

Many authors suggest that the EMT program is a prerequisite within the

metastatic mechanism.9,10 The other process is the degradation of the

tissue adjacent to the tumor by the destruction of the extracellular

matrix (ECM), which enables the evasion of the tumor cells to the

lymphatic system in search of the metastasizing spread.

2 | THE EMT PROGRAM

The EMT program is not only involved in the initial stages of

metastatic processes where, apparently, it could be a prerequisite for

intravasation.9 Post EMT is also involved in embryogenesis, wound

healing, fibrosis, and so on.9–15

EMT is a process that leads neoplastic or normal epithelial cells to

lose apico‐basal polarity, breaking the cell junctions (tight junctions,

gap‐junction, and adherence‐junctions).13 EMT implementation is

promoted by the action of peptides and molecular signals synthesized

in an autocrine way and by the different cell elements present in the

tumor stroma.16,17 Environmental hypoxia coupled with the presence of

cytokines and growth factors13,18 induces the expression of different

and specific transcription factors (EMT‐TF; (Twist, Snail, ZEB1 and

ZEB2, and others) that provoke a progressive loss of expression of the

epithelial phenotype markers, such as E‐cadherin, claudins, occludins,

cytokeratins α6β4, integrins, and others.19,20 Simultaneously, ETM‐TFs

also induce the increase of the expression of mesenchymal markers, like

N‐cadherin, vimentin, fibronectin, or β1 and β3 integrins (Figure 1).10,13

In “in vitro” cultures, epithelial cells advance throughout the

implementation of the EMT program turning progressively into a

mesenchymal phenotype, losing the expression of E‐cadherin, main

marker of the epithelial character.21 However, the cells subjected “in

vivo” to an EMT program seldom finish the program with a full

conversion into mesenchymal cells. In most cases, the program proceeds

through cells with mixed phenotypes that keep part of the epithelial

character and of the structure typical of the mesenchymal cells. This is

called partial EMT state.21,22 These cells adopt a migratory phenotype

characterized by its capacity to resist immunosuppression and

drugs23–25 and the evasion from apoptosis.26 It was also observed to

favor the inflammation associated with cancer progression and fibrosis.

In this sense, some evidence suggests that some cells under the EMT

program acquire properties of tumor stem cells (GSC).27,28 The fact that

some epithelial characters are preserved permits the reversible process

(mesenchymal–epithelial transformation) (MET) that starts after the

tumor cell has settled, enabling metastasis formation and the gain of

effectiveness.15,29

3 | CONSEQUENCES OF THE
IMPLEMENTATION OF THE EMT PROGRAM

The EMT‐program implementation may induce the synthesis of

different endo proteases that provoke ECM destabilization.17,30,31 In

this sense epithelial tumor cells partially converted into mesenchymal

cells contribute to ECM destruction. Also, secrete vascularization

factors that favor the synthesis of capillaries that may serve as an

escape way for metastatic cells.32 Angiogenesis is parallel to the

development of the EMT program. It is a comprehensive program,

because the production of vascular endothelial growth factor (VEGF)

and EGF‐receptor (EGFR) is associated with the Twist2 pathway and

to the reduction of the E‐cadherin expression.33,34 Also, the hypoxia

and acidity of the tumor environment produced by the accumulation

of lactic acid (Warburg effect) adds up to ECM destabilization.35,36

ECM and basal membrane degradations are critical for invasion

and metastasis and account for a poor prognosis in many types of

cancer.37 Simultaneously to the implementation of the EMT program,

migration of the tumor cells occurs, favored by the production,

secretion, and activation of the matrix metalloproteinases (MMPs).38,39

4 | MATRIX METALLOPROTEINASES

Excellent reviews have been published last years dealing with the

structure and enzymatic activity of the different MMPs, which

permitted their classification, and the knowledge of their specific cell

location and substrates, an aspect that generates its own classifica-

tion system.40,41

In a basal situation, the presence and production of the different

MMPs must be perfectly regulated, because the excess activity may

cause cellular chaos.30,42 In a natural way, the presence of the

different MMPs is strictly regulated at various levels; in this sense,

MMPs synthesis is modulated at transcription and transduction levels

and by post‐transductional modifications.41 Like nearly other pepti-

dases, MMPs are synthesized as inactive pro‐enzymes and are

activated by proteolysis when losing the peptidic element in the

amino‐terminal end.43 In their active center, MMPs have a highly

preserved sequence next to the C‐terminal called “cysteine

switch,” where cysteine residues bind in the catalytic site through

Zn2+, transforming MMP into a latent protein. The rupture of the

linkage means the pro‐domain loss and MMPs activation.44

Full activation is achieved through autocatalysis or by the mutual

and specific intervention of other MMPs.30,45

ALBA ET AL. | 601



MMPs proteolytic activity is controlled by four types of MMPs

inhibiting proteins (TIMPs) that bind the catalytic site in a specific and

reversible mode.46–48 Other peptides like α2‐macroglobulin or

thrombopodin1 can also inhibit the MMPs, but less effectively.49

The overexpression of the different MMPs is well documented

for many types of tumors,50–52 with a positive correlation between

tumor aggressiveness and protease expression.53 The diverse cells

composing tumor stroma secrete specifically the different MMPs;

however, many tumor cells express MMP7, apparently in parallel with

the implementation of EMT program.54 The rest of cells present in

the tumor stroma produce diverse MMPs that interact with each

other in a complex net of proteolytic processes that seem to

converge in the synthesis of MMP7, MMP2, and MMP9.45,53,55

MMP7 is the smallest matrix metalloproteinase with a molecular

weight of 27 kDa in its latent form and 19 kDa in its active form. This

suggests that it might be an end‐protein that is the result of many of

the MMPs‐activating mechanisms. In this sense, MMP7 is the most

specific of all MMPs with respect to target substrate, with a

particularly mighty action on MMP2 and MMP9.45,56 MMP7, also

known as Matrilysin, is a Zinc‐dependent endopeptidase consisting of

267 amino acids (Figure 2A). Unlike other MMPs, MMP7 lacks the

Hemopexin domain in the C‐terminal, and MMP7 expression is

regulated by the Wnt/β‐catenin pathway and can be stimulated by

TFG‐β.58,59 The implementation of EMT program by tumor cells and

MMP7 synthesis share the Wnt/β‐catenin pathway, as proved by the

simultaneous inhibition of the phenotype transformation and the

inhibition of MMP7 direct production by hydroxysteroid sulfotrans-

ferase 2B1b (SULT2B1b) or Thymoquinone.60–62

The increase of MMP7 expression in diverse types of tumors has

been shown in many studies. MMP7 can be considered a biomarker

in tumors of the digestive tract like colon,63,64 pancreas,65,66 or

gastric cancer.67 It also showed its utility in different tumors on

breast cancer,68 urogenital cancer,69,70 small cell lung cancer,71 or

melanoma.72 In all cases, MMP7 appeared as a necessary element in

invasion and metastasis mechanisms and may be considered not only

a diagnostic biomarker for a variety of tumors, but also a marker of

(A)

(B)

F IGURE 1 (A) Phases of the full or partial implementation of the EMT program. (B) Relationship of EMT program with MMPs synthesis and
subsequent remodeling of the extracellular matrix (ECM). Stromal cells: Cancer‐associated fibroblasts (CAFs), mesenchymal stem cells (MSCs),
and tumor‐associated macrophages (TAMs) release different cytokines that induce EMT implementation.17 Both stromal and tumor cells
generate micro RNAs (miRNAs) that get involved in MMPs synthesis too. EMT, epithelial–mesenchymal transition; MMP, matrix
metalloproteinase.
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poor prognosis. This last suggestion can extend to postsurgical

situations.73

These results suggest that a setting capable of modulating

the presence of MMP7 could be considered a therapeutic target, where

the inhibition of the activity, the cancellation of the synthesis, or the

expression of the protease could block metastasis process (Figure 2B).

5 | MMPs INHIBITION SYSTEMS

As previously commented, MMPs activities are naturally modulated

by the presence of a protein family known as tissue inhibitors of

MMPs (TIMPs). In human tissues, four types of TIMPs with a wide

MMPs inhibitory spectrum were detected.46,74 TIMP gets into the

active center, blocking the catalytic Zn2+ and removing the water

bound to the cation. It is a classic natural chelation mechanism that

blocks the proteolytic action of the different MMPs.41,47,75,76

Other strategies consisting in the chelation of the Zn2+ atom

present in MMPs active center served to design different chemicals

that might inhibit different MMPs, such as molecules with hydro-

xamic acids, carboxylates, thiols, or phosphonic acids with the ability

to block the endo protease activity. The highest inhibiting potential

was obtained with agents containing hydroxamate and carboxylate‐

based groups (Marimastat, Batimastat, and Ilomastat); however, the

inhibiting potential is little specific in the blocking of the different

MMPs, as happens with TIMPs. The cause is the structural similarity

of the active centers of the different endopeptidases. Implemented

clinical trials, some reaching level III, have been abandoned due

to their adverse musculoskeletal side effects and poor oral

bioavailability, but not due to their inhibiting effectiveness.30,77

The use of anti‐MMPs specific antibodies was proposed as an

alternative to Zn2+‐chelating agents and the blocking of MMPs active

center by TIMPs. The few studies performed so far confirm a reduced

specificity of the monoclonal antibodies used against MMPs antigenic

elements that show little variability.77,78

The simultaneity in the implementation of the EMT program and

the synthesis of MMPs requires the activation of transcription factors

that may be related or pass through common pathways. One strategy

arises in the search or design of inhibitory molecules of one of the

two programs that can also affect the other. It has been previously

described that both situations share upstream the activation of the

pathway Wnt/β‐catenin. In this sense, thymoquinone cancels the

invasion and metastasis in bladder cancer through the inhibition of

Wnt/β‐catenin.63 Inhibition of the same pathway by cinobufacine

(A)

(B)

F IGURE 2 (A) General structure of MMP family and MMP7. (B) Effect of MMP7 on ECM: MMP7 enhances the fibroblast isolation process
through a direct action on the C‐type lectin domain family 3 member A (CLEC3A) on the tumor surface, destabilizing the adhesive activity of the
cells.57 ECM, extracellular matrix; MMP, matrix metalloproteinase.
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and XAV939 is detected in colon cancer.66,79 Besides the implication

of Wnt/β‐catenin, apatinib appears as a potent inhibitor of invasion

and metastasis in liver cancer by reducing the flow through NFkB

signaling,80 a mechanism collateral to Wnt/β‐catenin. These results

are like those obtained with celastrol, which inhibits PI3/AKT

signaling pathway,64 another pathway adjacent to Wnt/β‐catenin.

Many microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs)

have been related to cancer, and its aberrant expression has been

detected in solid tumors and in hematological malignancies.81–83

Many of miRNAs or lncRNAs genes are located in genomic regions

associated with cancer or in fragile sites, which suggests an important

role in the disease evolution.84,85 In this sense, in recent years, the

two types of RNAs have emerged as extremely useful in disease

diagnosis.80,86 Moreover, some of the miRNAs or lncRNAs studied

are highly cross‐cutting, because their hyperproduction, and in some

cases their use can involve different tumor types, as happens with

miRNA‐21.87–90

Some miRNAs or lncRNAs have a bifacial character because in

addition to being shown as markers of malignancy in many tumors,

some can block the action of the counterpart. This last action sheds

light on the possibility of being used as blocking agents in the

expression of mRNAs, and therefore of tumor processes. The actions

can be through three different mechanisms: one would consist of the

blockade exerted by a specific miRNA on a lncRNA responsible for

tumor progress; another could be the use of a specific lncRNA as a

reservoir of miRNAs and the third mechanism would involve a

competition between lncRNA and miRNAs to bind to the target

mRNA.91–93 The use of miRNAs as blocking systems has been studied

in “in vitro” assays with different tumors. Among the stages of cancer

development, the involvement of miRNA as therapeutic remedy has

been more clearly observed during the EMT implementation program

and in the interruption of different functions of MMPs and ECM

remodeling.87,94,95 In this sense, it has been detected the inhibition of

EFGR and PI3K by miRNA‐34a that are lateral pathways to Wnt/β‐

catenin.96–98 Gastric tumor cells reduce drastically their invasion

capacity when treated with miRNA‐335‐5p, showing a remarkable

decrease in MMP7 levels.99–101 In hepatocellular cancer, there is a

direct action of miRNA‐298 upon the transcription of elements of the

Wnt/β‐catenin pathway, whose consequence is the full cancellation

of evasion and metastasis.102 The overexpression of miRNA‐335

causes the inhibition of migration and metastasis in osteosarcoma

reducing MMP7 synthesis and EMT‐TF cancellation by inhibition of

SN1P1.103 Similar results are obtained by different miRNA in breast

cancer,104 esophageal cancer105 or melanoma.106

Most of the results mentioned above were obtained in tumor cell

cultures and many of them have been confirmed in mouse models.

Regardless of the action on the metastatic process, other miRNA

families seem to verify similar inhibiting effects upon other tumor

process triggers, such as the action of miRNAs‐34 or miRNA‐200,

that act on tumor suppressors.86,107

The delivery of miRNA to the specific tumor cell is resolved when

its action is studied in cell cultures; however, study in whole animals

or in human medicine requires the correct identification of the target.

The first miRNA clinical trial on human patients used MRX34, a

liposome containing miRNA‐34 for patients with advanced liver

cancer. MRX34 is an RNA double helix identical to miRNA‐34

encapsulated in a liposomal nanoparticle.86,108 In this sense, the

recent advances developed with the vaccines against SARS‐COV‐2

have shed much light.

In the future, this technology can be assayed as the application of

blockage processes in the implementation of metastasis.57,109–111

6 | CONCLUSIONS

From the present review, it is concluded that the processes of

starting the EMT program and the synthesis of MMPs are

simultaneous in some types of cancer and are the necessary

requirement at the beginning of the metastasis mechanism. In

many types of tumors, both processes share common signaling

pathways, so an inhibitory process could affect the parallel. The

inhibition of the synthesis of MPP7 may be an objective that

would make it possible to control the metastatic phase of the

disease. The review provides data on different or probable

strategies to be carried out.
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