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We examine two important measures that can be made in bioarcheology on the remains of human and vertebrate animals. These
remains consist of bone, teeth, or hair; each shows growth increments and each can be assayed for isotope ratios and other chemicals
in equal intervals along the direction of growth. In each case, the central data is a time series of measurements. The first important
measures are spectral estimates in spectral analyses and linear system analyses; we emphasize calculation of periodicities and growth
rates as well as the comparison of power in bands. A low frequency band relates to the autonomic nervous system (ANS) control of
metabolism and thus provides information about the life history of the individual of archeological interest. Turning to nonlinear
system analysis, we discuss the calculation of SM Pinus’ approximate entropy (ApEn) for short or moderate length time series. Like
the concept that regular heart R-R interval data may indicate lack of health, low values of ApEnmay indicate disrupted metabolism
in individuals of archeological interest and even that a tipping point in deteriorating metabolismmay have been reached just before
death. This adds to the list of causes of death that can be determined from minimal data.

1. Introduction

Big data sets are revolutionizing science. They promote in-
sights, facilitate comprehension, and order priorities for fur-
ther studies using models and powerful computers. In the
past decade important advances have been made using big
data sets; they range from astronomy to climate change and
from biology to geology. Bioarcheology, however, has not
benefited from this trend, seemingly, because big data in bio-
archeology are difficult to obtain.

Bioarcheology, as defined here, is cross-disciplinary re-
search encompassing the study of human and animal re-
mains. The best preserved tissues are bones, teeth, and occa-
sionally hair.

Here we show that such archived materials provide suf-
ficient data to model life’s activities such as metabolism,
growth, and biologic rhythms of individuals who have died
decades or even millennia ago.

Many preserved tissues have growthmarks left during life
which reflect the rates of growth and by extension metab-
olism. For example, there are “scale like” markings on hair
shafts which occur at more or less regular intervals which can
be measured (Figure 1). Similarly on teeth surfaces or bone

sections growth lines can easily be discerned. For all of these
we use the term repeat intervals (RIs) from Bromage et al. [1]
to denote the histological evidence on archived remains that
betray life’s activities such as metabolism and growth.

We hypothesized that the growth lines (GL) in hair,
measured by microscopy as a time series, provide direct
measurements of hair growth rate, which in turn depends
on metabolism and therefore is a proxy for that individual’s
metabolism during life [1, 2]. By analogy heart rate time series
variability provides insight into autonomic nervous system
(ANS) function and can hint at diseased states [3, 4].

In death, forensic time series have been linked to ANS
function andmay reflect on the individual’s life history; these
time series include the repeat intervals between growth lines
(RIs) in scalp hair expressed as sizes of hair scales measured
by microscopy. Also the repeat intervals between Perikymata
Grooves (PG) or Striae of Retzius (SR) in the enamel in human
teeth and growth lines in archosaur teeth provide other time
series [1, 2, 5]. In addition, there are time series of osteocyte
density in bone [6]. Oxygen, hydrogen, or carbon isotope
ratios as well as other chemicals in hair measured along fixed
intervals in the direction of growth provide time series. Here
we use spectral analysis of such time series as proxies of
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Figure 1: Human hair with repeat intervals (RIs) marked in green,
50 𝜇m vertical bar in white.

metabolism, which provide insight into dynamic processes in
operation in the individual’s past life.

2. Materials and Methods

The annual growth rate can often be computed in the time
domain.

2.1. Annual Growth Rate and Preprocessing Forensic Time
Series. The forensic time series may be discrete time 𝑌

𝑖
, 𝑖 =

1, . . . , 𝑁, as in the growth lines in bone and teeth or for the
scale sizes in hair, or a sample 𝑌

𝑖
= 𝑌(𝑡

𝑖
), 𝑖 = 1, . . . , 𝑁, and

𝑡
𝑖
= 𝑖Δ𝑡 from a continuous time process such as chemicals

measured in successive sections of bone of equal length Δ𝑡.
For the discrete time process takeΔ𝑡 = 1, so that in both cases
we have a discrete time series {𝑌

𝑖
} of sample size (length)𝑁.

Usually this series will need to be preprocessed before it can
be considered stationaryGaussian, the typical assumption for
its spectral analysis.

Examining the plot 𝑌 versus time 𝑡, that is, 𝑌
𝑖
versus 𝑖, it

may show a nonzero mean, a trend over time, or an obvious
annual cycle. We detrend the series if necessary by fitting
a regression line �̂�

𝑖
= 𝑏 + 𝑚𝑡

𝑖
and replacing the series 𝑌

𝑖

by its residuals 𝑌
𝑖
− �̂�
𝑖
thereafter. The mean of the series is

subtracted; the mean corresponds to the power at the zero
frequency on the spectra, but our interest in spectral analysis
sets aside consideration of the mean for separate analysis.

The next step in standardizing the time series {𝑌
𝑖
} is

to divide by its standard deviation. This preserves all the
frequency content of the series and makes two different time
series (perhaps even with different units of measurement)
comparable. The situations where we would not standardize
both series to variance = 1 is when our interest is the
comparison of the variability (variances or the power in
specified frequency bands) between the series.

If examination of the plot 𝑌 versus distance 𝑡 along the
hair shows an obvious annual cycle, then we can proceed
directly to computing the annual growth rate of the hair.

Example 1 (mammoth). Thehydrogen isotope ratiomeasure-
ments (𝑑𝐷) at multiples of 0.3 cm are taken along a hair from
a mammoth [7, 8]. There is a partial annual sinusoid evident,
whose periodicity is 52 weeks.

Fitting the annual sinusoid as well as a trend yields
the function of length along the hair in cm: Predicted 𝑑𝐷
= −158 −0.727 ∗ cm + 8.69∗ sin (−0.196 ∗ cm + 3.98) as
reported in [7]. The frequency of the sinusoid is 0.196
radians/cm. Converting radians to cycles we have frequency
= (0.196 radians/cm)/(2𝜋 radians/cycle) = 0.0312 cycles/cm.
This times the annual growth rate (cm/year) gives the number
of cycles per year, which is equated to 1 cycle/year. Thus

growth rate = 1

(freq) (period)

=
1

(0.0312 cycles/cm) (1 year/cycle)

= 32 cm/yr.

(1)

This is the growth rate reported in Sharp et al. [7].

2.2. Computing Periodicities by Spectral Analysis of Forensic
Time Series. To identified periodicities that are more fre-
quent than annual and less frequent than daily we compute
the power spectrum of the discrete time standardized ver-
sion of our annually adjusted time series using SAS PROC
SPECTRA and the Fast Fourier Transform [9]. The mean
is removed because it corresponds only to the power at
frequency = 0, which is not our interest. Dividing each
series by its own standard deviation (SD) removes the last
difference in units between series, which is appropriate if we
are not interested in comparing variances. In other settings
the comparison of means or variance may be the goal, so this
information is retained for such an analysis. Note that 𝑡-axis
is no longer measured in cm but in the number of Δ𝑡, just as,
in the mammoth Example 1 where Δ𝑡 = 0.3 cm. Now we give
the spectral parameter definitions.

To be explicit, let the discrete time, stationary, Gaussian
time series representing a series of measured intervals be
{𝑌(𝑡), for 𝑡 = 1, . . . , 𝑁}with continuous spectral density𝑓(𝜆),
where 𝜆 is the frequency on the𝑥-axis.Then the periodogram
𝐼(𝜆) is an estimate of 𝑓(𝜆). One has

𝐼 (𝜆) =
1

2𝜋𝑁



𝑁

∑

𝑡=1

𝑌(𝑡)𝑒
−𝑖𝜆𝑡



2

, for − 𝜋 < 𝜆 ≤ 𝜋. (2)

Note that each sinusoid 𝑒𝑖𝜆𝑡 as a function of 𝑡 has a fre-
quency 𝜆 (radians per unit of 𝑡; in this case, radians per
observation) and a corresponding period 2𝜋/𝜆. Dividing𝜆 by
2𝜋 radians per cycle gives a unit of cycle per observation as
an alternative scale. For heartbeat, the frequency unit would
be cycles per RR interval. For teeth, frequency units would
be cycles per PG deposition (SR, Lines of Anderson (LA),
or GL deposition). For the mammoth hair, the frequency
units would be cycles per Δ𝑡 increment. The units of the
periodogram (and the spectral density) can be seen from
the fact (proof not shown) that the sum of 𝐼(𝜆

𝑗
)Δ𝜆
𝑗
is the
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variance of the 𝑌(𝑡)’s. The unit for power density on the 𝑦-
axis is the measurement unit squared divided by the unit of
the 𝑥-axis.

There is a well-known problem with the periodogram as
an estimator of the spectral density; it is not consistent; it
does not become better as the sample size𝑁 gets larger.Thus,
the usual (and better) estimate of 𝑓(𝜆) is the spectral density
estimator 𝑓(𝜆), which is a smoothed and locally weighted
average of the periodogram [10, 11]. One has

𝑓 (𝜆
𝑖
) =

2

𝑁

[𝑁/2]

∑

𝑗=1

𝑊(𝜆
𝑖
− 𝜆
𝑗
) 𝐼 (𝜆

𝑗
) ,

for 𝜆
𝑗
=
2𝜋𝑗

𝑁
, 𝑗 = 1, . . . , [

𝑁

2
] .

(3)

The symbol [𝑥] represents the integer part of 𝑥. Spectral
density 𝑓(𝜆) is symmetric about 𝜆 = 0 by definition (defi-
nition not shown) and 𝐼(𝜆) is symmetric. Since 𝑊, called
the spectral window, is taken to be symmetric, the estimated
spectral density is symmetric, which allows one to plot the
spectral density only for the nonnegative frequencies 0 ≤

𝜆
𝑗
≤ 2𝜋. Note that 4𝜋/𝑁 = 2Δ𝜆

𝑗
, where the extra 2 repre-

sents the sum over the negative 𝜆 and the 𝑦-axis should also
be scaled by dividing by 2𝜋, and finally that (4𝜋/𝑁) ÷ 2𝜋 =

2/𝑁 is the coefficient in (2).
Let us return to the mammoth example; the estimate of

the spectral density of the standardized series in Figure 2(b)
is Figure 2(c).

There are high frequency (0.42) and a low frequency
(0.15) spectral peaks. Rearranging (1) above and includingΔ𝑡
provide the formula for computing periodicity. One has

period = Δ𝑡

(freq) (growth rate)
. (1


)

For the low frequency peak, we compute a periodicity of
3.25 weeks. Consider

Period = Δ𝑡

(freq) (growth)

=
0.3 cm/obs

(0.15 cycles/obs) (32 cm/52wk)

= 3.25wk/ cycle,

(4)

where each observation represents onemeasurement interval
with Δ𝑡 = 0.3 cm/obs.

Similarly, the periodicity of the high frequency peak is 1.2
weeks.

2.3. Nyquist Folding Frequency. There is a remaining issue;
forensic time series are not measured continuously and the
use of Δ𝑡 affects the computed spectral density; one cannot
hope to measure frequencies higher than a certain value
taking place within an interval of length Δ𝑡. Furthermore,
the spectral density is folded over at the Nyquist folding
frequency 𝜔

𝑁
with the high frequency content above 𝜔

𝑁

being added to the low frequency content below 𝜔
𝑁
. For the

Smithsonian mammoth hair,
Nyquist folding frequency

𝜔
𝑁
=
.5

Δ𝑡
=
.5 cycles/obs
0.3 cm/obs

= 1.67 cycles/cm.
(5)

This folding frequency times the growth rate gives a fre-
quency of 1.03 cycles/week with a corresponding periodicity
of 1/1.03 or approximately 1.0 week. Since we are not exam-
ining periodicities this low or lower, there may be no fold-
back contamination in the above results. We have excluded
the daily cycles from our interest; a much smaller Δ𝑡 would
have been necessary for this purpose. Though we are not
examining the daily cycles directly, it could be folded back
and contaminate our spectral density computation. The high
frequency that folds back to a low frequency is called an alias.
The aliasing problem sometimes requires a detailed discus-
sion. The aliases of a given frequency 𝜆 are 𝜆 + 2𝑘𝜔

𝑁
, where

𝑘 = ±1, ±2, ±3, . . .. The daily frequency is 7 cycles/week,
and for 𝑘 = −3, it is the alias of +0.82 cycles/week, but
the observed peak is at 1/1.2 = 0.83 cycles/week. Now we are
uncertainwhether the observed high frequency peak is real at
a periodicity 1.2 weeks or it is a contamination from the daily
cycle at 1/7 weeks. See discussion. It is clear that one should
formally consider the effect of the Nyquist folding frequency.

2.4. Low Frequency–High Frequency Ratio. To compute the
power in a given band of frequencies, the spectral density is
integrated over the band; that is, the spectral density timesΔ𝜆
is summed over the frequencies 𝜆

𝑗
in the band.

Thus, the total power or power in frequency bands is
obtained as areas under the curve where the units of the 𝑥-
axis cancel. While the computation of power as areas (AUCs)
under the spectral density from (2) above is typical, we
also wish to compute the asymptotic standard error of such
estimates. The formulae for power in a frequency band are
adapted from Priestley [12, page 427]. One has

AUC = ∑

𝜆𝑗 in band
2𝑓 (𝜆

𝑗
) Δ𝜆
𝑗
,

Variance = ∑

𝜆𝑗 in band
4𝑓
2
(𝜆
𝑗
) Δ𝜆
2

𝑗
, where Δ𝜆

𝑗
=
2𝜋

𝑁
,

SE = √Variance.
(6)

Again the factor of 2 represents the negative frequencies.
When the time series is standardized, these formulae are
dimensionless and can give a measure of the spectral shape.
With these asymptotic means and SEs, one can compute
a 𝑡-statistic and 𝑃 value for the comparison of two AUCs.
Note that these formulae in Priestley were developed for
the periodogram 𝐼(𝜆) instead of the locally smoothed peri-
odogram, the estimated spectral density function𝑓(𝜆

𝑗
). Both

are approximately equal to the spectral density function𝑓(𝜆).
Koopmans [13] uses the estimated spectral densities𝑓(𝜆

𝑗
) for

these formulae.
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Figure 2: (a) Hydrogen isotope measured in 0.3 cm intervals of a hair of a Siberian mammoth loaned from the Smithsonian and published
in [7]. (b) Standardized hydrogen isotope data in Figure 2(a) computed as the residuals of fitting the annual sinusoid, which have been
standardized to mean = 0 and SD = 1. (c) Hydrogen isotope spectra of Smithonian mammoth (red line) hair measured every 0.3 cm. Series
standardized to mean = 0 and SD = 1. The low frequency peak marked at 0.15 and high frequency peak at 0.42 are marked. Frequency axis
(radians/observation) is divided by 2𝜋 radians/cycle to obtain cycles/observation. (d) Hydrogen isotope spectra of Smithonian mammoth
(red line) and of Jarkov mammoth (blue line) hair measured every 0.3 cm. Series standardized to mean = 0 and SD = 1. Frequency axis is
divided by 2𝜋; multiplying 𝑦-axis by 2𝜋maintains AUCs; multiplying 𝑦-axis by 2 represents contribution from negative frequencies.

2.5. Distribution of Estimates. The distribution of the AUC
estimator is based on the distribution of single estimated
spectral densities 𝑓(𝜆

𝑗
), which in turn depends on the

effective degrees of freedom (EDF) of spectral window𝑊(𝜆);
see Koopmans [13, Table 8.1, page 279]. The standard result
is 𝑟(𝑓(𝜆)/𝑓(𝜆)) ≈ 𝜒

2

𝑟
, where the random variable on the

left hand side is chi-square-distributed with 𝑟 = EDF. Now
we write the random AUC ≈ ∑

𝜆𝑗 in band(2𝑓(𝜆𝑗)Δ𝜆𝑗/𝑟)𝑋𝑗,
where 𝑋

𝑗
are independent 𝜒2

𝑟
, chi-square random variables.

Since 𝐸𝑋
𝑗
= 𝑟, the expected value of the random AUC

is the targeted AUC. The variance of the random AUC is
the targeted variance in (3). We now model the complicated

distribution of the random AUC, a weighted sum of chi-
square random variables, as a single distribution ≈ 𝑐𝜒2

𝑅
by the

standard method of equating moments. One has estimates

𝐸 (𝑐𝜒
2

𝑅
) = 𝑐𝑅, Var (𝑐𝜒2

𝑅
) = 2𝑐

2
𝑅. (7)

In terms of the moments in (3) we have

𝑟
𝑓 (𝜆)

𝑓 (𝜆)
is approximately distributed as 𝑎 𝜒2

𝑟
,

chi-square random variable;

AUC ≈ 𝑐𝜒
2

𝑅
, where
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𝑐 =
1

2

Var (AUC)
𝐸 (AUC)

and 𝑅 = 2 𝐸
2
(AUC)

Var (AUC)
with

𝐸 (AUC) ,Var (AUC) computed as the

moments of AUC in (3) .
(8)

Example 2. Let us compute the 95% confidence intervals for
the low frequency power for the Smithonian mammoth (red
line, Figure 2(d)). First for the low frequency band, 0.07 ≤
𝜆 < 0.27, we have AUC

2
= 0.587, 𝑉

2
= 0.064. Second, 𝑐 =

.5∗ .064/.587 = 0.0545,𝑅= .587/.0545 = 10.8.Third, the upper
and lower critical values for the 𝜒2

𝑅
distribution are 3.7 and

21.6. Since 𝑐∗21.6 > 1, we compute the one-sided confidence
interval with critical value 4.45. Finally, 𝑃[𝑐 ∗ 4.45 < AUC] =
0.95 and [0.24, 1.0] is the 95% one-sided confidence interval
for the power in this low frequency band. The upper bound
is 1.0 since the area under the whole curve is 1.0 for the
standardized series.

Example 3. Now the ratio (LF/HF) = AUC
2
/AUC

3
= 0.587/

0.322 = 1.82. Is this different than 1.0? Here, the high fre-
quency band is 0.27 < 𝜆 < 0.5 with a width of 0.23, which
introduces a bias relative to low frequency band width of
0.20.We could rerun our statistics for the comparable interval
0.30 < 𝜆 < 0.5, but we modify our estimate of AUC

3

to be (0.20/0.23)∗ 0.322 = 0.28 and LF/HF = 2.10. So, we
develop the following two-tailed𝐹-test. In spectral theory, the
two AUCs are based on disjoint frequencies and are nearly
independent.Theywould bemore independent if the spectral
windows did not overlap. We have already computed 𝑐 =
0.0545 and 𝑅 = 10.8 for the statistic AUC

2
.

For the modified AUC
3
, we have 𝐸(AUC

3
) = 0.28 and

variance 𝑉
3
= 0.0102. Second, 𝑐

3
= 0.5∗ 0.0102/0.28 = 0.0182

and 𝑅
3
= 0.28/0.0182 = 15.4. Third, the distribution of

AUC
2

AUC
3

≈
𝑐
2
𝜒
𝑅2

𝑐
3
𝜒
𝑅3

=
𝑐
2
𝑅
2

𝑐
3
𝑅
3

𝐹
𝑅2 ,𝑅3

,

𝑐
2
𝑅
2

𝑐
3
𝑅
3

=
0.0545 ∗ 10.8

0.0182 ∗ 15.4
= 2.10,

(9)

where 𝐹 = 𝐹
𝑅2 ,𝑅3

is an 𝐹-statistic. Finally, 𝑃[𝐹 > 2.1] = 0.09
and the two-sided 𝑃 = 0.18.

For an example of comparison between two spectra,
we add the data for a hair sample from a Jarkov Siberian
mammoth (Figure 2(d), in blue). For the frequency band 0.07
≤ 𝜆 < 0.27, including the low frequency peaks, we have AUC

2

= 0.587±0.253 (SE) for Smith and AUC
2
= 0.527±0.199 (SE)

for Jarkov.
A test of the difference shows no difference:

𝑡 =
AUCSmith − AUCJarkov

√SE2Smith + SE2Jarkov
=

0.587 − 0.527

√.2532 + .1992

=
0.06

0.322
= 0.19, 𝑃 = 0.85.

(10)

Comment. For a spectral analysis, these sample sizes are
small: 𝑁 = 33 and 𝑁 = 44. For chemical analyses these can
be larger.

2.6. Tipping Points and Telogen Duration (Quiescence in
Growth). Longer quiescence in hair growth (telogen [14])
indicates disrupted metabolism (longer intervals of oscilla-
tions of the system) and may be a marker of the tipping
point in metabolism before complete cessations of rhythmic
oscillations that are the hallmarks of biological systems.
Here we compute the quiescent period in a basic model
of reduced annual growth rate in hair. In normal human
hair the telogen phase lasts approximately 3 months divided
into approximately 4 periods. Hair grows for approximately
8 years and then, normally, falls out (metabolism ceases in
this particular hair). Stress is known to lengthen the telogen;
hormonal levels, age, andmetabolism also affect the duration
of the telogen. We cannot know at the time of modeling of
the hair growth in what stage each hair is at the time of
death.The basic model assumes (1) hair growth rate after the
telogen continues independently of the telogen preceding it
and independent of the telogen duration and (2)metabolism
continues during the telogen phase as it was before and
after, but since the hair is not growing, information about
metabolism is missing in the hair record.

Let𝑄 be the annual quiescence periodmeasured in weeks
and let 𝐺 and𝐺 be the reference and reduced annual growth
rates of the hair, respectively. 𝐺 is reduced because of the
augmented quiescence period 𝐴𝑄. The relationship is

𝐺

=
52 − 𝐴𝑄

52 − 𝑄
𝐺, and conversely, 𝐴𝑄 = 52 −

𝐺


𝐺
(52 − 𝑄) .

(11)

If𝐴 = 1 then𝐺 = 𝐺 and𝐺 is not reduced; if𝐴 > 1 then𝐺 <
𝐺 and 𝐺 is reduced. For normal human hair growth, 𝑄 =

13 weeks. The augmented quiescence period 𝐴𝑄 can only be
computed by comparison of the reduced 𝐺 to a reference 𝐺
unless direct observation can be made in life.

Example 4. For the 16th century Spanish royals at the end
of life, King Ferrante had an annual hair growth rate of
12 cm/year andQueen Isabella had a growth rate of 2 cm/year.
Thus assuming 𝐺 = 16 cm/year, the augmented quiescence
periods were𝐴𝑄 = 52− (12/16)(52−13) = 52−29.25 = 22.7

weeks for Ferrante and𝐴𝑄 = 52−(2/16)(52−13) = 52−4.88 =

47.2 weeks for Isabella. These are longer than the normal
13 weeks and Isabella’s is extreme. The historical record may
contain information about metabolism; for example, Isabella
had marked hair loss before she died. However, since direct
measurement of quiescence was unlikely to be recorded,
computations based on comparison of growth rates give
information on quiescence periods as illustrated above.

We now show graphically how the quiescence period 𝐴𝑄
in our basic model affects the observed sinusoid representing
the annual growth cycle. We will also check whether 𝐴𝑄
affects the observed low frequency sinusoid representing
autonomic neural system (ANS) control. Normal annual
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Figure 3: (a) Distance (cm) along a hypothetic hair (blue) that grows continuously for 52 weeks to a length of 20 cm as though there were
no quiescence periods; now the quiescence periods are superimposed and marked (red). (b) Incremental weekly growth of the hypothetic
hair (blue) with quiescence periods (red), mathematically obtained as the derivative of (a). (c) Observable incremental weekly growth for 39
weeks out of the year, periodic but not a sinusoid though a sinusoid of periodicity 39 weeks fits very well (not shown). (d) Distance (cm) along
the observable hair for 39 weeks for an observed length of approximately 16 cm for the year, mathematically obtained as the integral of (c).

hair growth rate measured in hair growth is approximately
16 cm/year. Thus we begin with growth of 20 cm/year when
there is no quiescence period (𝑄 = 0 and 𝐴𝑄 = 0) and
weeklymeasurements that average 0.385 cm (see Figure 3(a)).
The annual sinusoid as a function of weeks is followed by
differentiation (see Figure 3(b)). Now three (3) months of
quiescence are marked as missing (red) in Figures 3(a) and
3(b).

However the quiescence periods are not observed; thus
the observable result is in Figures 3(c) and 3(d).

When the periodic function in Figure 3(c) is identified
as an annual cycle, computations would consider the cycle as

though on a 52-week 𝑥-axis. Thus, the annual growth rate is
computed as 16 cm/year. We have shown how a growth rate
of 20 cm/year becomes 16 cm/year in our basic model with
𝑄 = 3months out of the year.

2.7. Nonlinear Time Series Analysis. We have examined spec-
tral analysis in the frequency domain, which can be consid-
ered as linear systems analysis. There are also methods for
nonlinear time series analyses and their application to chaos
in dynamical systems [15]. The name most associated with
this field is Takens [16]. The field provides measure of chaos,
which can arise from nonlinear dynamical equations. There
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is also a more purely mathematical analysis [17]. We illustrate
just one practical method from this large field.

2.7.1. Approximate Entropy Measure. Approximate entropy
(ApEn) as described by Pincus et al. [18, 19] quantifies regu-
larity in time series data. ApEn and othermeasures have been
used extensively in the analysis of biological time series [20].
In heart rate variability the low frequency/high frequency
ratios reflect the autonomic nervous system (ANS) control of
the activity of the cardiac pacemaker; in our analysis these
ratios reflect the ANS pacemaker of metabolism and thus
the ANS control of metabolism. In heart rate variability,
disease such as diabetes decreases the variability; the heart
rate is fixed at a higher rate but the variability in heart rate is
reduced, a sign of ANS failure due to the disease. Conversely,
high variability in ApEn reflects the robustness of the system.
Bone, teeth, and hair also reflect metabolism and as such
reflect ANS control.

ApEn depends on three parameters: the length of the
time series (𝑁), the width of the window that defines the
patterns (𝑚), and the tolerance that defines the closeness
of the patterns (𝑟). ApEn measures how the pattern (𝑚)
repeats itself within tolerance (𝑟) over the course of the time
series. ApEn(𝑚, 𝑟) is a statistic that estimates the logarithmic
difference for𝑚 and𝑚+ 1 in the conditional probability that
runs of patterns that are close for previous repetitions remain
close. Consequently, a large ApEn corresponds to an irregular
time series and a small ApEn corresponds to a regular time
series. ApEn for lengths of 𝑁 > 50 has been found to be
reproducible, but the literature suggests it can also be used
with 𝑁 ≤ 50. The pattern matching window can vary, but
values between 1 and 3 are generally used. We used 𝑚 = 2

and 𝑚 + 1 = 3. A small tolerance value (𝑟) corresponds to
a fine pattern matching and a large 𝑟 value corresponds to a
coarser comparison. Our 𝑟 was selected to be scale invariant
as a percentage of the standard deviation of the time series
being analyzed. We found values of 𝑟 between 60% and 70%
discriminated best for our analysis.

Thus, we use ApEn to measure the logarithmic likelihood
that similar patterns of data length (𝑚) that are similar remain
so within a tolerance (𝑟) on the next incremental (𝑚 + 1)
comparison. In this analysis smaller values of ApEn indicate
greater regularity in the data. Larger values are indicative of
greater irregularities, more chaotic systems.

Example 5. The “Zweloo woman” was exhumed from a bog
in Netherlands in 1951.

We examined six scalp hairs, 2000 years after her death.
The approximate entropy (ApEn) was computed for the
repeat intervals (RIs) defined by the sizes of hair scales along
the length of the hair and for each of her six hairs separately;
with 𝑁 = 64–105 repeat intervals, pattern width 𝑚 = 2 and
tolerance 𝑟 = 80% of the total standard deviation of the time
series.ThemeanApEn for Zweloo’s hairs was 0.84±0.05 (SD).
Since tolerance (𝑟) and, to a limited extent, pattern (𝑚) are
“free” parameters, these choices can be partially validated by
comparison to a control group using the same parameters.

Here a control group of 4 individuals had a mean ApEn of
0.71 ± 0.10.

3. Results and Discussion

For themethods outlined above, some operational aspects are
now considered.

The Nyquist folding frequency probably is not a problem
for measured RIs, since generally they are not sampling from
a more continuous series. The RIs for hair are deposited
in multiple of whole days with the multiple of days being
related in an algometric fashion to the species’ body mass;
the whole days for periodic deposits to tooth enamel were
1 day for smallest bodied primates to 11 days for largest
bodied primates and 8 days for humans [1]. Thus the daily
cycles are not explicitly present in the RI data. This is not so
for the continuous chemical record. The usual engineering
solution to theNyquist folding frequency problem is to design
so that there is no power for frequencies beyond 𝜔

𝑁
. This

is a consideration for the chemical times series, since the
sampling rate Δ𝑡 may be under the experimenter’s control.
Even if this is not an option open to us, this spectral peak
could still be real (uncontaminated), provided we knew the
power of the daily cycle was low.

The data segments caused by missing values are pooled,
laid end-to-end. The laying short time series end-to-end
(concatenated) to form a longer series may cause difficulty.
However, this difficulty is handled automatically in a similar
situation for the spectral analysis of heart rate recordings
where gaps occur due to technical problems or are introduced
to eliminate periods of anomalous heartbeats for separate
consideration. We follow this convention unless the difficul-
ties become too large.

An important assumption for the distributions of spectral
estimates in the section so named is that the choice of
band width for the spectral window is wide enough for that
the smoothed estimate of each spectral density function is
consistent and narrow enough that estimates of adjacent
spectral densities are approximately independent. The series
length𝑁must be large enough that the two conditions on the
spectral window can be met.

Among several additional methods in use for nonlinear
time series analysis, there are generalizations of the two
basic methods (ApEn and FFT) used herein. First is the
replacement of the deterministic rules used in approximate
entropy (ApEn) with fuzzy logic rules yielding an improved
algorithm (fApEn) that could help with the choice of the
tolerance parameter (𝑟) [21, 22]. Second is the Hilbert-Huang
Transform (HHT) which is designed as a time-frequency
analysis of nonlinear, nonstationary time series [23]. Com-
pared to the spectral analysis using Fast Fourier Transform
(FFT), which is designed as a frequency analysis of linear
time series that are stationary in time, the HHT could help
with periodicity estimation.TheHilbert-Huang Transform is
implemented in a file exchange (hht) in MATLAB and in a
package (hht) in the R language.

For our basic model of quiescence, we assume that the
growth rate when the hair is growing is always constant
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and normal. Then the length of the quiescence intervals is
the major effect on the annual growth rate and the effect is
algebraic. If the disruption in metabolism affects both 𝑄 and
the growth rate when the hair is growing, then we would
need a model that connects increased quiescence to change
(lowering) in the (instantaneous) growth rate when growing.

Does quiescence affect the frequency (periodicity) of the
low frequency peak, the peak most related to autonomic
nervous system (ANS) control? No doubt it does in the
samemanner that quiescence affects the annual growth cycle.
Nonetheless, the computation of the periodicity of the low
frequency peak is from the same hair growth record where
we compute the growth rate usually reported. As such, it is
comparable and useable on its face.
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