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Objectives: 1) To show how to exploit the information contained in the 
trajectories of time-varying patient clinical data for dynamic predictions 
of mortality in the ICU; and 2) to demonstrate the additional predictive 
value that can be achieved by incorporating this trajectory information.
Design: Observational, retrospective study of patient medical records 
for training and testing of statistical learning models using different 
sets of predictor variables.
Setting: Medical ICU at the Yale-New Haven Hospital.
Subjects: Electronic health records of 3,763 patients admitted to the 
medical ICU between January 2013 and January 2015.
Interventions: None.
Measurements and Main Results: Six-hour mortality predictions for 
ICU patients were generated and updated every 6 hours by applying 
the random forest classifier to patient time series data from the prior 
24 hours. The time series were processed in different ways to create 
two main models: 1) manual extraction of the summary statistics used 
in the literature (min/max/median/first/last/number of measurements) 
and 2) automated extraction of trajectory features using machine 
learning. Out-of-sample area under the receiver operating charac-
teristics curve and area under the precision-recall curve (“precision” 
refers to positive predictive value and “recall” to sensitivity) were used 
to evaluate the predictive performance of the two models. For 6-hour 

prediction and updating, the second model achieved area under the 
receiver operating characteristics curve and area under the precision-
recall curve of 0.905 (95% CI, 0.900–0.910) and 0.381 (95% CI, 
0.368–0.394), respectively, which are statistically significantly higher 
than those achieved by the first model, with area under the receiver 
operating characteristics curve and area under the precision-recall 
curve of 0.896 (95% CI, 0.892–0.900) and 0.905 (95% CI, 0.353–
0.379). The superiority of the second model held true for 12-hour 
prediction/updating as well as for 24-hour prediction/updating.
Conclusions: We show that statistical learning techniques can be used 
to automatically extract all relevant shape features for use in predictive 
modeling. The approach requires no additional data and can potentially 
be used to improve any risk model that uses some form of trajectory infor-
mation. In this single-center study, the shapes of the clinical data trajec-
tories convey information about ICU mortality risk beyond what is already 
captured by the summary statistics currently used in the literature.
Key Words: hospital mortality; informatics; machine learning; 
prognosis; statistical models; time-dependent covariates

The ability to automate data extraction from electronic 
health record (EHR) systems opens the door for dynamic 
mortality warning indicators for ICU patients. This has 

spurred recent efforts to use machine learning to predict individ-
ual patient mortality risk (1–8), with an eye toward improving on 
existing illness severity scores like Acute Physiology and Chronic 
Health Evaluation (APACHE), Mortality Probability Model, and 
Simplified Acute Physiologic Score (9–12). These prognostic scores 
use static information taken at a fixed point in time (e.g., 24 hr after 
ICU admission) to identify patients at high risk of dying during an 
ICU visit. However, they ignore potentially valuable information 
conveyed by the changes in the measurements over time.

Recognizing this limitation, a number of studies use summary 
statistics of the trajectories of the EHR measurements as inputs 
for mortality prediction. Some do this by recalculating the scores 
at regular intervals using the most recent values of the measure-
ments (13), whereas others (1, 14, 15) recalculate the Sequential 
Organ Failure Assessment (SOFA) score (16) using the worst 
values in the earlier 24 hours. Sometimes, unstructured text data 
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from patient clinical notes are also used as inputs, with features 
extracted from the text that have accumulated up to the current 
point in time (4, 7).

Another approach in the literature is to calculate a score at 
just one point in time, but using more trajectory inputs such as 
the minimum, maximum, and mean values in the prior 24 hours 
(5). Additional features like the first and last values, and also the 
number of measurements taken during the period, have also been 
used before (17). Indeed, there is a seemingly unlimited num-
ber of additional features that one can use to further describe 
the shape of the trajectories, such as curvature and arc length. 
Like text data, the trajectory curve is an unstructured object from 
which we wish to extract as much information as possible to use 
for prediction.

This article has two aims. The first is to show how a branch 
of machine learning called “functional data analysis” (18) can be 
used to incorporate the entire trajectory of a frequently measured 
variable into dynamic predictions of near-term mortality (updated 
regularly during ICU stay). Second, we demonstrate that there is 
predictive value in incorporating this extra trajectory information: 
For periodically updated predictions of mortality over a 6-hour 
window in the ICU, our approach provides statistically signifi-
cant improvements to both the area under the receiver operating 
characteristic (AUROC) curve and area under the precision-recall 
curve (AUPRC) over using trajectory features manually selected 
from the “same” dataset. In other words, this increase in accuracy 
comes at no extra cost (aside from negligible computational ones), 
and the same result is seen for 12- and 24-hour prediction win-
dows as well. The functional data analysis method automatically 
extracts features from the trajectory. These features capture infor-
mation about all aspects of the curve and can be fed as inputs into 
any predictive mortality model. Thus, the method can potentially 
be used to improve any risk score that uses some form of trajec-
tory information.

MATERIALS AND METHODS

Setting
Our study was a retrospective review of de-identified patient 
records approved by the Yale University Institutional Review 
Board using data on 4,557 unique patients admitted to the medi-
cal ICU (MICU) of the Yale-New Haven Hospital between January 
2013 and January 2015. A total of 5,505 hospitalization episodes 
and 6,113 MICU visits were recorded. To replicate the trajec-
tory inputs used in the literature (5, 17), which are defined over 
a trailing window of at least 24 hours, we removed MICU visits 
that lasted less than 24 hours. This is in line with both APACHE 
and SOFA, which wait for 24 hours after ICU admission before 
being calculated. We ended up with 3,763 unique patients who 
were admitted to the MICU, a total of 4,945 times (across 4,472 
episodes of hospitalizations).

For each ICU visit, we generated (overlapping) observational 
units every 6 hours, where a unit is defined as a 24-hour window 
during the visit. For example, an ICU visit that lasted 39 hours 
generates the observational units (0, 24] hours, (6, 30] hours, 
and (12, 36] hours (Supplemental Fig. 1, Supplemental Digital 

Content 1, http://links.lww.com/CCX/A11). In total, we have 
74,067 units of observations, and for each unit, the outcome of 
interest is death within 6 hours of the end of the interval. The 
observations are used to build a predictive model that updates 
mortality forecasts every 6 hours after the initial prediction at 
hour 24. We feel that the 6-hour prediction window trades off the 
tension between giving physicians enough advance warning to 
intervene on patients at imminent risk of dying, but not so much 
time that too many patients are flagged as at risk of dying within 
an overly wide time window, thus making it difficult for physicians 
to prioritize. We also provide similar results for 12- and 24-hour 
prediction windows.

Data Collection
In addition to patient demographic data, the EHR also provided 
records for six different types of physiologic measures that were 
sampled periodically during the ICU stay. In addition, records on 
26 types of laboratory values and 18 types of prescribed medica-
tions were also included. A summary is provided in Table 1. We 
also made use of a metric that is relatively unique to the Yale-New 
Haven Hospital, the Rothman Index (RI). This is an EHR-based 
measure of patient acuity that is continuously updated throughout 
an episode of hospitalization. The RI score is a composite mea-
sure updated regularly from the electronic medical record based 
on changes in 26 clinical measures including vital signs, nursing 
assessments, Braden score, cardiac rhythms, and laboratory test 
results (shown in Supplemental Table 1, Supplemental Digital 
Content 2, http://links.lww.com/CCX/A12). This score is inde-
pendent of diagnosis, and it was developed to be used for any 
inpatient (i.e., medical or surgical patients including critical care 
patients). With a theoretical range from –91 to 100, the majority 
of patients on a general medical or surgical unit fall within the 
range from 0 to 100, with lower scores indicating poorer condition 
(19). The RI has previously been shown to have predictive power 
in forecasting 24-hour in-ICU mortality (20). Eleven of the clini-
cal measures in Table 1 overlap with the components of the RI. 
Although the exact calculation of the RI is proprietary, the main 
idea is to calculate a 1-year mortality risk function for each of the 
26 features selected by stepwise logistic regression. These univari-
ate functions were then combined together in an additive manner 
to produce the RI score.

Data Processing
Time Series Data. Among the physiologic measures in Table  1, 
those that were sampled often enough to provide a usable time 
series during an ICU stay (updated hourly) include systolic blood 
pressure, diastolic blood pressure, heart rate, and the RI. To auto-
matically extract features from each time series that characterizes 
its evolution, we fitted a continuous trajectory to each series in 
each observational unit. The basis functions that were used to 
interpolate the time series data points were cubic B-splines with 23 
evenly spaced interior knots, and they were fitted using penalized 
least squares (21). Supplemental Figure 2 (Supplemental Digital 
Content 3, http://links.lww.com/CCX/A13) displays the 27 basis 
functions that are each weighted and summed together to form 
the spline fits, and Supplemental Figure 3 (Supplemental Digital 
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Content 4, http://links.lww.com/CCX/A14) displays an example 
of one such fit to RI time series data. Because this approach is sum-
marizing the time series using a collection of functions, the fitted 
coefficients capture information about the shape of the time series. 
We can then use these coefficients as features of the trajectory in 
our estimation model. To compare against the use of summary 
statistics that are manually selected from the trajectory in the lit-
erature, we also calculated the minimum, maximum, median, first 
value, last value, and the number of samples for each time series. 
We call these variables the “standard trajectory summaries.”

Other Physiologic Measures. For the less frequently sampled 
physiologic measures, we used summary statistics for the mea-
surements within each observational unit (maximum, minimum, 
and median) to represent their trajectories.

Laboratory Work. For infrequently performed laboratory tests, 
we used the latest measurement in the trailing 48 hours as the rep-
resentative value for each observational unit. If a laboratory value 
was not available in the last 48 hours, it was treated as missing and 
was handled using the approach described below. The choice of 48 
hours was taken from the protocol used in RI to handle laboratory 
values (19).

Medication Records. We consolidated patient medication 
records into two categories: a variable for the number of vasopres-
sors and inotropes administered during the period, and an indi-
cator variable that tracked whether a patient was on antibiotics, 
antifungals, or antivirals during the period. These variables serve 
as markers of shock and infection, respectively, and relate to dis-
ease processes.

Time in ICU. We also created a variable to record how long 
each patient had already spent in the ICU at the start of the obser-
vational unit.

Missing Values. For nontime series variables, missing values 
were handled in the following way. Since the range for the non-
missing values across all variables was substantially bounded 
away from –1,000, we encoded a missing value with this number 
to instruct our tree-based estimation algorithm to treat it differ-
ently. For time series data, an observational unit that had fewer 

than 12 measurements was considered to have a missing func-
tional data point (the time series). Therefore, the coefficients for 
the 27-spline functions are all encoded as –1,000. Supplemental 
Table 2 (Supplemental Digital Content 5, http://links.lww.com/
CCX/A15) reports the amount and percentage of missing data for 
each variable of interest.

Model Construction
The prediction variables that were created above for each obser-
vational unit can be fed into any classifier to estimate the prob-
ability of death within the next 6 hours in the ICU (or indeed, 
any number of hours). We use the random forest classifier (22) as 
our platform for investigating the use of trajectory data because 
it is a popular nonparametric method that consistently ranks as 
one of the top performing prediction tools. Employing this to 
estimate the probability of death, we assess the performance gains 
resulting from using our proposed trajectory variables in lieu of 
the standard trajectory summaries defined earlier. We do this by 
comparing four nested random forest models M1–M4 (Table 2 for 
details). In brief, M1 uses the most current values of all predictor 
variables aside from RI. M2 appends the additional statistics that 
make up the standard trajectory summaries used in the literature. 
M3 also adds the standard trajectory summaries for RI. Finally, 
M4 replaces all summaries with spline coefficients that capture the 
shape of the entire trajectory.

Model Evaluation
Subsequently (17), we used Monte Carlo cross validation to evalu-
ate the performance of the four models: We performed 20 random 
splits of our set of unique patients into training (70%) and validation 
(30%) sets. Having 20 different splits of the data reduces the bias that 
could arise from any one particular split. For each split, we fit a ran-
dom forest classifier to the observational units in the training set. The 
model was then used to predict the probability of death within the 
next 6 hours for each observational unit in the validation set.

Receiver operating characteristics (ROCs) plots are commonly 
used to assess the performance of binary classifiers. However, they 

TABLE 1. Raw Variables
Category Variable Names

Rothman Index Rothman Indexa

Physiologic Diastolic blood pressurea,b, systolic blood pressurea,b, temperatureb, Glasgow Coma Scale score, pulse (heart 
rate)a,b, and total respiratory rateb

Laboratory values Sodiumb, potassiumb, chlorideb, creatinineb, glucose, glucose meter, calcium, magnesium, phosphorus, WBC 
countb, hemoglobinb, hematocrit, international normalized ratio, lactate, bilirubin total, bilirubin direct, alanine 
transaminase, aspartate transaminase, alkaline phosphatase, albumin, prealbumin, troponin T, fibrinogen level, 
pH arterial, Po2 arterial, and Pco2 arterial

Medication Vasopressors/inotropes: dobutamine, dopamine, epinephrine, norepinephrine, vasopressin, and phenylephrine

Antibiotics/antivirals/antifungals: acyclovir, ceftriaxone, ciprofloxacin, doxycycline, ertapenem, fluconazole, 
gentamicin, moxifloxacin, vancomycin, valacyclovir, ampicillin-sulbactam, and piperacillin-tazobactam

Demographic Age, gender, race, height, and weight

Chronic disease Dialysis, chronic obstructive pulmonary disease, and HIV
aTime series data.
bA component of Rothman Index.

http://links.lww.com/CCX/A14
http://links.lww.com/CCX/A15
http://links.lww.com/CCX/A15


Ma et al

4 www.ccejournal.org 2019 • Volume 1 • e0010

can be misleading in situations where the outcome classes are 
highly imbalanced (23–25). Such is the case here since the number 
of observational units with a mortality event (1.2%) is much lower 
than the number of units without. For imbalanced outcomes, 
simulation studies (23–25) suggest that the precision-recall plot 
is more informative where “precision” refers to positive predictive 
value (PPV) and “recall” refers to sensitivity. In light of this, we 
calculated both the AUROC curve and the AUPRC averaged over 
the 20 splits for each model, along with 95% CIs. We ran paired-
sample t tests to compare average AUROC and average AUPRC 
between different models.

We also applied the Hosmer-Lemeshow test to each of the 
20 test sets to evaluate the calibration of the predictive model. 
Conceptually, if a well-calibrated model assigns (say) z% chance 
of a death event to each of 100 observational units, then about 
z out of the 100 should result in an actual death. The Hosmer-
Lemeshow test measures the discrepancy between the expected 
and observed death rates for the observational units, with the null 
hypothesis being that the two quantities agree. In performing the 
test, we followed the guidelines in (26) for analyzing large datasets. 
All calculations were performed in R (R Foundation for Statistical 
Computing, Vienna, Austria; https://www.r-project.org).

In addition to making mortality predictions over a 6-hour win-
dow, we also repeated the abovementioned analysis for 12- and 
24-hour windows. For 12-hour windows, predictions are made 
every 12 hours based on the trajectory of the measurements over 
the previous 24 hours. For 24-hour windows, predictions were 
made every 24 hours.

RESULTS
The mean age of patients was 63 years (sd, 17 yr), and 53% were 
male patients with mean weight of 179 lb (sd, 57 lb) and mean 
height of 5.5 ft. (sd, 0.4 ft). About 6.8% of patients had multiple 
ICU admissions, and 53% of ICU admissions occurred within 
24 hours of being admitted to the hospital. After removing ICU 
stays shorter than 24 hours, the average length of ICU stay in 
our final dataset was 3.9 days. Among all observational units, 
1.2% were followed by death within 6 hours (1.9% for 12 hr, 3.4% 
for 24 hr, and 17% were followed by death during the same ICU 
stay). Supplemental Table 3 (Supplemental Digital Content 
6, http://links.lww.com/CCX/A16) and Supplemental Table 4 
(Supplemental Digital Content 7, http://links.lww.com/CCX/

A17) provide the distributions for the number of ICU visits per 
episode of hospitalization, and also the number of observational 
units per ICU admission. Supplemental Table 5 (Supplemental 
Digital Content 8, http://links.lww.com/CCX/A18) shows how 
many ICU patients died in each 6-hour time interval and the cor-
responding hazard rate.

Table  2 compares the AUROC and AUPRC for 6-hour mor-
tality averaged over the 20 splits of the data for models M1–M4 
described in Table 3. The table encapsulates three findings, 
which hold for the 12- and 24-hour prediction windows as well 
(Supplemental Table 6, Supplemental Digital Content 9, http://
links.lww.com/CCX/A19). Supplemental Table 7 (Supplemental 
Digital Content 11, http://links.lww.com/CCX/A21) shows p val-
ues for paired-sample t tests between different models.

First, the AUROC and AUPRC for M4 (0.905 and 0.381, respec-
tively) are both higher than those for M3 (0.896 and 0.366), and the 
differences are statistically significant (p = 0.004 and 0.017, respec-
tively). In other words, the spline representation of the trajectories 
of time series data conveys additional predictive information that 
are not already captured by the standard trajectory summaries. 
Furthermore, using the Gini measure (27), Figure 1 shows that 
more than half of the 20 most predictive variables are the spline 
coefficients for RI and pulse, particularly the ones describing the 
most recent evolution of the times series (e.g., “pulse_27” is the 
coefficient for the last spline function in the 24-hour period in 
Supplemental Figure  2 [Supplemental Digital Content 3, http://
links.lww.com/CCX/A13]). This reflects the time decay in the pre-
dictive power of the time series data.

Second, the performance of M3 is in turn statistically signifi-
cantly better than M2 with AUROC of 0.896 versus 0.887 (p  < 
0.001) and AUPRC of 0.366 versus 0.350 (p = 0.002). That is, the RI 
conveys additional predictive information over the other variables 
used in M2, including 11 of the 26 components used to calculate 
RI. This is reinforced by Figure 1, which shows that eight of the 20 
most predictive variables are related to the trajectory of the RI.

Third, the difference in performance between M1 and M2 is 
small (0.883 vs 0.887 for AUROC and 0.342 vs 0.35 for AUPRC) 
and not statistically significant (p = 0.363 for AUROC and 
p = 0.236 for AUPRC). In other words, beyond the most recent 
measurement, the additional trajectory summaries employed in 
the literature do not add meaningful predictive power.

To make the performance measures more concrete, it is helpful 
to consider a single point on the precision-recall curve. Figure 2 

TABLE 2. Out of Sample Area Under the Receiver Operating Characteristic Curve and Area 
Under the Precision-Recall Curve for 6-Hour Mortality Prediction (95% CIs in Parentheses)

Model
Area Under the Receiver 

Operating Characteristic Curve
Area Under the Precision-

Recall Curve

(M1) Snapshot of variables without RI 0.883 (0.877–0.889) 0.342 (0.333–0.351)

(M2) Trajectory summaries without RI 0.887 (0.882–0.892) 0.350 (0.339–0.361)

(M3) Trajectory summaries with RI 0.896 (0.892–0.900) 0.366 (0.353–0.379)

(M4) Full trajectory 0.905 (0.900–0.910) 0.381 (0.368–0.394)

RI = Rothman Index.

https://www.r-project.org
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and Figure 3 display the precision-recall curves and ROCs aver-
aged over the 20 splits of the data for models M1–M4. At 50% 
recall (sensitivity), the average PPV for 6-hour mortality predic-
tion is 33% (compared with 21% for M1, 25% for M2, and 30% 
for M3). In other words, if the observational units flagged by our 
algorithm are to include half of those that resulted in death within 
6 hours, then one-third of all flagged cases will be correct. This 
seems like a low accuracy but compared with low rate of mortality 
in 6-hour windows it is informative. To elaborate, because 1.2% of 
the observational units were followed by death within 6 hours, this 
means that we can identify half of all potential deaths by focusing 
on just the top 1.2% × 50%/33% = 1.8% of observational units with 
the highest predicted probabilities of death. Supplemental Figure 
4 (Supplemental Digital Content 10, http://links.lww.com/CCX/
A20) shows the survival time distributions for the true positive 
predictions and for the false negatives produced by model M4.

Finally, the results of the Hosmer-Lemeshow test showed that 
our final model M4 is well calibrated: For the 20 test sets, the p 
values for only three of them were less than 0.20 with the small-
est one being 0.094 (Supplemental Table 8, Supplemental Digital 
Content 12, http://links.lww.com/CCX/A22). Thus, the null 
hypothesis was never rejected.

DISCUSSION
Most modern attempts to predict patient mortality acknowledge 
the value of incorporating information about changes in patient 
measurements over time. They use as predictors a number of man-
ually created summaries of the trajectory paths traced out by the 
measurements. Interestingly, our results suggest that these sum-
mary statistics add little predictive power over just using the most 
recent measurement value.

To incorporate all information about the trajectory into a 
model, we show how functional data analysis can be employed 
to automatically extract predictor variables that capture the com-
plete evolution of the trajectory. We demonstrate that using these 
features improves the accuracy of mortality predictions over 6-, 

TABLE 3. Variables Used in the Nested Predictive Models
Model Variables Used

(M1) Snapshot of variables without RI Most recent values for time series data except RI (diastolic blood pressure, systolic blood 
pressure, and heart rate)

All other variables except RI

(M2) Trajectory summaries without RI Add standard trajectory summaries of time series data (except RI) to model M1

(M3) Trajectory summaries with RI Add standard trajectory summaries for RI to model M2

(M4) Full trajectory Replace standard trajectory summaries in model M3 with the spline coefficients that 
capture complete trajectories

RI = Rothman Index.

Figure 1. Top twenty most important variables for model M4. Rows are model 
variables and horizontal axis reports the mean decrease in Gini caused by 
each variable. RI = Rothman Index.
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12-, and 24-hour horizons when compared with using the stan-
dard trajectory summaries from the literature. Although there is 
an infinite number of different time horizons one can consider, we 
suspect that the same qualitative finding will hold for similar-sized 
time intervals.

Although the magnitude of the improvements is modest, it is 
important to bear in mind that the proposed trajectory features 
can be easily generated at negligible computational cost using 
popular open-source packages like R. Therefore, to not use them is 
to discard free information. Moreover, they can be substituted for 
the standard trajectory summaries in any model that uses some 
form of trajectory information. Thus, our work complements the 
burgeoning research on predictive mortality modeling in the ICU.

Several limitations of this study are worth noting. Our results 
are based on comparing the performances of using different sets 
of variables as input into the random forest algorithm. Should 
another machine learning algorithm be used, there is no guarantee 
that the proposed trajectory features will still outperform the use 
of standard trajectory summaries. However, because random for-
est is a nonparametric prediction method that consistently ranks 
as one of the top performing prediction tools, we suspect that our 
qualitative findings will carry over to other top-of-the-line predic-
tion methods. Evidently, further work is required to confirm this.

To replicate the trajectory inputs used in the literature (5, 17), 
which require 24–48 hours of measurements, we removed MICU 
visits that lasted less than 24 hours. Since 17% of deaths in our 
dataset occurred within the first 24 hours of ICU admission, this 
restricts the scope of our findings to ICU stays that last at least 24 
hours.

We did not have access to data on nursing assessments or code 
status. This was compensated to some extent by the inclusion of 
RI, which takes into account nursing assessments and cardiac 
rhythms. Although our results show use of the RI can be useful 
for predicting mortality, it is a proprietary product available only 

to select hospitals that subscribe to the service. Hence, we are also 
showing that scoring systems like the RI can be improved upon 
by using trajectory information. Last, our study is based on data 
from a single medical center, and as noted in Supplemental Table 
2 (Supplemental Digital Content 5, http://links.lww.com/CCX/
A15) for some variables we have a lot of missing values. Therefore, 
more work need to be done to validate our approach.

CONCLUSIONS
We have shown that using trajectory information of clinical data 
can improve the accuracy of mortality predictions. This benefit 
is apparent for both an approach that uses trajectory summary 
statistics and an approach that uses an algorithmically generated 
functional representation of the trajectory. Mortality over short-
time horizons is a very rare event even for acutely ill patients, 
which makes it difficult to predict. Our approach indicates how 
making fuller use of the available clinical data can help address 
this difficulty. One would expect that this approach would also 
benefit predictions of other outcomes for which trends in patient’s 
health performance could be useful indicators such as readmis-
sion or response to specific treatments.

Any short-time horizon mortality prediction method has the 
potential to be the basis for a clinical warning system. Nursing 
units have acuity-based nurse to patient ratios standards because 
nurses need to be able to give sufficient attention to patients. 
A mortality prediction method provides a risk assessment for 
each patient that can help direct limited nursing resources to 
the patients most in need. To truly assess if a warning system is 
useful in this setting it is necessary to determine if the warning 
would identify high mortality risk cases that: 1) are not already 
known to the nurses and physicians and 2) could be aided by an 
intervention. Such an assessment would require a different kind 
of study.
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