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Cytological screening plays a vital role in the diagnosis of cancer from themicroscope slides of pleural effusion specimens. However,
this manual screening method is subjective and time-intensive and it suffers from inter- and intra-observer variations. In this
study, we propose a novel Computer Aided Diagnosis (CAD) system for the detection of cancer cells in cytological pleural effusion
(CPE) images. Firstly, intensity adjustment and median filtering methods were applied to improve image quality. Cell nuclei were
extracted through a hybrid segmentation method based on the fusion of Simple Linear Iterative Clustering (SLIC) superpixels and
K-Means clustering. A series of morphological operations were utilized to correct segmented nuclei boundaries and eliminate any
false findings. A combination of shape analysis and contour concavity analysis was carried out to detect and split any overlapped
nuclei into individual ones. After the cell nuclei were accurately delineated, we extracted 14 morphometric features, 6 colorimetric
features, and 181 texture features from each nucleus. The texture features were derived from a combination of color components
based first order statistics, gray level cooccurrencematrix and gray level run-lengthmatrix. A novel hybrid feature selectionmethod
based on simulated annealing combined with an artificial neural network (SA-ANN)was developed to select the most discriminant
and biologically interpretable features. An ensemble classifier of bagged decision trees was utilized as the classification model for
differentiating cells into either benign or malignant using the selected features. The experiment was carried out on 125 CPE images
containing more than 10500 cells. The proposed method achieved sensitivity of 87.97%, specificity of 99.40%, accuracy of 98.70%,
and F-score of 87.79%.

1. Introduction

Pleural effusion or pulmonary effusion (PE) is the patho-
logic accumulation of fluid in the pleural cavity, between
the visceral and parietal layers surrounding the lung, as
demonstrated in Figure 1 [1, 2]. Normally, the pleural space
is lined by a thin layer of mesothelial cells and contains
about 5-10 ml of clear fluid for lubrication during respiratory
movement. When cancer cells grow or spread to the pleura,
they cause malignant pleural effusion (MPE). Half of all
cancer patients have a high possibility of developing MPE.
Both primary and metastatic cancers can lead to a diagnosis
of MPE. Mesothelioma, a rare form of cancer, is the primary

cancer of the pleura. Lung cancer and breast cancer are the
most frequent metastatic cancers inmale and female patients,
respectively. Both malignancies are responsible for about 50-
65% of MPE. Lymphoma, tumors of the genitourinary tract,
and gastrointestinal tract are responsible for 25%. Tumors of
unknown primary account for 7-15% of all MPE [3]. From
statistics, as mentioned earlier, MPE is mostly caused by the
invasion of metastatic cancer to the pleura. Metastatic cancer
is the major cause of cancer morbidity and mortality. It is
estimated that metastasis is responsible for about 90% of
cancer deaths. Although cancer in the pleural effusion is seen
in advanced stages ofmalignancy and leads to rapidmortality,
the survival time can be prolonged by earlier diagnosis
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Figure 1: The presence of pleural effusion in the pleural cavity [2].

together with prompt and effective treatment to slow cancer
progress. Currently available tools for detecting the presence
of MPE in the pleura are cytology, cytometry, and imaging
modalities such as X-ray, Ultrasound, Computed Tomog-
raphy (CT), and Magnetic Resonance Imaging (MRI). For
the assessment of malignancy, cytological examinations are
widely used by pathologists because they are simple, cheap,
less invasive, and highly useful tools [4].

In a cytological examination, fluid from the malignant
pleural effusion is collected and smeared on cytological
glass slides using the staining methods. Then, cytologists or
pathologists visually examine for morphology changes and
visual abnormalities in every single cell under a microscope
to determinemalignancy prevalence [5].Manual screening of
cytology slides is tedious and subjective to inter- and intra-
observer bias. Since the presence of MPE implies advanced
malignancy and reduced survival, it is crucial to diagnose
malignancy in MPE as early and speedy as possible. Thanks
to recent improvements in medical technology, automated
image analysis has the potential to allow for earlier and
faster diagnosis with more accurate and objective diagnosis
results. Hence, reliable CAD systems using CPE images are
in high demand. They can serve as an essential tool to
assist cytologists in the assessment of malignancy; however,
complex and unusual cases still require further examination
by cytologists. The benefits of CAD systems are that they
accelerate the diagnosis process, make diagnosis objective,
and reduce any diagnostic divergence resulting fromdifferent
observers. Consequently, they allow for the early and speedy
diagnosis and prognosis of cancer cells and help oncologists
in making effective treatment plans promptly.

Few researchers have researched the analysis of CPE
images for the automatic detection of cancerous cells from
CPE specimens. In 2001, F. Chen et al. [6] proposed the
automated classification of adenocarcinoma and healthy cells
(especiallymesothelial cells and lymphocytes) inCPE images.
Morphology and wavelet features were used as inputs to
a backpropagation neural network to discriminate between
adenocarcinoma and benign cells. Their study was based
on 60 adenocarcinoma cells and many (the number was
not specified numerically) benign cells. Unfortunately, the

authors did not provide a method for segmenting nuclei
nor an evaluation of classification performance. L. Zhang
et al. 2006 [7] introduced a fuzzy recognition method to
classify four types of cells, namely, healthy cells, cancer cells,
mild dyskaryotic cells, and severe dyskaryotic cells. Otsu
thresholding and fuzzy edge detection were used to segment
the cells. Seven morphological features were extracted from
each segmented cell and fed as input into a fuzzy recognition
system to classify those four types of cells. However, there was
a lack of clarity in the evaluation process in [4, 5]. This has
encumbered the reproduction of these methods for practical
use. A.B. Tosun et al. 2015 [8] presented the automated
detection of malignant mesothelioma using nuclei chromatic
distribution. Firstly, the nuclei were extracted using a semi-
automatic approach in which the initial contour of cell nuclei
was manually segmented under the guidance of cytologists,
and level setmethodwas utilized to finalize the contour of cell
nuclei. For each extracted nucleus, its linear optimal transport
(LOT) was computed and subjected to linear discriminant
analysis based on k-nearest neighborhood algorithm classi-
fier to differentiate between mesothelioma and benign cells.
Their experiment was based on 1080 cell nuclei containing
590 mesotheliomas and 490 benign nuclei and obtained
100% accuracy. Unfortunately, their method was not fully
automated since cell segmentation was manually performed.
Moreover, none of the methods mentioned above deals with
the overlapped cell problem. Decomposing overlapped cells
into their constituents would enhance analysis performance
and robustness. As such, the approaches mentioned thus
far focus on detecting specific types of cancer cells such
as adenocarcinoma or mesothelioma cells in CPE images.
Meanwhile, an early and essential task in clinical practice
is to differentiate between benign cells and cancer cells
regardless of specific cancer types.This may then be followed
by classifying cancer cells into the different types (i.e., lung
carcinoma, mesothelioma, breast carcinoma, and so on). In
practice, a tool that can detect malignant cells from all MPE
cases is in high demand. Despite being linked with high rates
ofmorbidity andmortality, research efforts for the automated
analysis ofMPE are still limited compared to other areas such
as cervical cancer, breast cancer, lung cancer, and so on.Thus,
automated analysis of pleural effusion samples remains to be
widely researched.

To advance the utilization of MPE analysis, we propose
a novel CAD system based on the analysis of CPE images
which can classify cells as either benign or malignant. The
main distinction of the proposed method from previous
literature is that it can detect malignancy in all MPE cases.
Our newly designed system is a fully automated system that
addresses the overlapped cell and unbalanced-data problems
which have so far been left unsolved. In addition, the pro-
posed method takes advantage of the selection of dominant
features using a hybrid metaheuristic method. Our system
includes seven main stages: preprocessing, cell nuclei seg-
mentation, postprocessing, overlapped cell nuclei isolation,
feature extraction, feature selection, and classification. The
preprocessing stage aims to improve the quality of the images.
In the segmentation stage, our developed hybrid superpixel-
driven K-Means clusteringmethod, known as SLIC/K-Means
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hybrid, was used to extract cell nuclei regions. Then, a
series ofmorphological operationswere employed to improve
segmented cell nuclei boundaries and eliminate any false
findings. Subsequently, the combination of the shape-based
analysis and concavity analysis was applied to isolate any
overlapping nuclei into individual ones. After the cell nuclei
were segmented, a total of 201 features from morphometric,
colorimetric, and textural features were extracted to create an
initial feature set. Our novel hybrid SA-ANN feature selection
approach was employed to obtain the optimal feature set
that encompasses the most discerning features. The optimal
feature set was fed as input to an ensemble classifier of bagged
decision trees to classify benign and malignant cells.

This paper is divided into five sections. In this section
we have presented an introduction to the diagnosis of
malignancy inPE and outlined relatedworks.Thedescription
of the studied dataset is given in Section 2. Section 3 describes
the methodology used by the proposed CAD system. Sec-
tion 4 discusses the experimental results. Section 5 concludes
and presents the scope for future work.

2. Dataset Description

To date, there is no publicly available dataset of CPE images.
Thus, we prepared the local dataset through the cooperation
with experts from the Department of Pathology, Faculty of
Medicine, Srinakharinwirot University, Thailand. The local
dataset is based on the microscope images captured from
the archival cytology glass slides of pleural effusion samples
from the university mentioned earlier. Firstly, all samples
were stained on the glass slides with a classical Papanicolaou
(Pap) staining method which can provide good cellular
morphology when inspected by the optical microscope [9,
10]. Then, two skilled and certified cytologists captured the
digitized cytology images from the glass slides through a
digital camera mounted to a light microscope with 40x
magnification. Thereafter, they analyzed every single cell
within the collected images and annotated the regions of the
interest (i.e., cancer cells), which were used as the ground
truth. The dataset with associated ground truth consists of
125 CPE images containing benign and malignant cells. The
images have resolutions of 4050 x 2050 pixels and 4080 x 3702
pixels and are stored in 8-bit RGB space.

3. Methodology

The framework of the proposed CAD system is presented
in Figure 2. The method involves seven major stages: (a)
preprocessing, (b) nuclei segmentation, (c) postprocessing,
(d) identification and isolation of overlapped cell nuclei, (e)
feature extraction, (f) feature selection, and (g) classification.

3.1. Preprocessing Stage. During the staining of PE samples
and digitalizing of CPE images, there is usually a degradation
in quality, which includes uneven staining, uneven lighting,
poor contrast, and the presence of additive noise. Therefore,
preprocessing is essential in dealing with image quality prior
to the main analysis. Firstly, the images were resized into

1024 x 1024 pixels in order to achieve image normalization,
standardization, and computation time reduction.Then, each
image was enhanced using an image intensity adjustment
method that increases the contrast between the foreground
(region of interests) and background [11]. In order to reduce
noise without losing cell-edge clarity, R, G, and B compo-
nents were separated from the original RGB image. Then,
a median filter [12] was applied to each color component
independently. Finally, the filtered RGB image was obtained
by combining the filtered R, G, and B components together.
The visual results before and after applying preprocessing to
different images are depicted in Figures 3(a) and 3(b).

3.2. Segmentation of Cell Nuclei Using a Novel Hybrid SLIC/K-
Means Algorithm. Segmentation is one of the most essen-
tial processes in biomedical image analysis. Most of the
image analysis in cytology and histology is focused on
nuclei segmentation since cell nuclei providemore significant
diagnostic value than other cell parts. To determine cell
malignancy, the cell nucleus needs to be segmented from
the background (i.e., cytoplasm, red blood cells). Then,
malignancy is predicted based on certain features extracted
from each nucleus. Since the results of nuclei segmentation
have a high impact on all subsequent analysis, it is crucial that
the nuclei are accurately extracted.

Few researchers have studied the automated segmenta-
tion of cells or nuclei in CPE images. E. Baykal et al. 2017
[13] introduced an active appearancemodel to segment nuclei
from the background in CPE images and compared it with
color thresholding, clustering, and graph-based methods.
They obtained 98.77% accuracy. However, their approach was
designed to segment an image with only one cell. It is hard
to use this in practice since there may be up to a million
cells in one image. In [14], they investigated the detection of
cell nuclei using supervised learning approach.The approach
is based on the combination of Haar filter and AdaBoost
classifier.Three images with a total of 178 nuclei were used for
testing. A True Positive Rate of 89.32% and False Positive Rate
of 5.05% were obtained. Their framework performed well
with an independent cell nucleus; however, it showed limi-
tations when it came to segmenting overlapped cell nuclei.
Moreover, it required extensive prior knowledge to train
the classifier. In our previous works [15], we have proposed
several alternative nuclei segmentation methods such as Otsu
thresholding approach, K-Means clustering approach [16],
and supervised pixel classification using ANN [17] on a small
dataset (24 CPE images). Recently, we collected more images
and built a new dataset containing 35 CPE images. Using
that new dataset, we employed twelve segmentation methods:(1) the Otsu method, (2) an ISODATA thresholding method,(3) a maximum entropy thresholding method, (4) cross-
entropy thresholding, (5) minimum error thresholding, (6)
fuzzy entropy thresholding, (7) adaptive thresholding, (8) K-
Means clustering, (9) fuzzy C-means clustering, (10) mean
shift clustering, (11) Chan-Vese level set, and (12) graph cut
methods to extract the cell nuclei from CPE images, and
we compared the results attained [18]. From the comparison
results, Otsu, K-Means, mean shift clustering, graph cut
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Figure 2: System framework of the proposed CAD system.

method, and a Chan-Vese level set method provided promis-
ing segmentation results. Although Otsu provided promising
results with low computational time, the segmentation accu-
racy of Otsu showed degradation in images with a high level
of noise because Otsu is sensitive to noise. The images in the
studied dataset (124 images) have a great deal of noise. K-
Means, mean shift, Chan-Vese, and graph cut methods were
found to be computationally expensive especiallywith images
containing a high population of cells. For machine learning
based segmentation methods, prior knowledge is required
to train a learning model. Thus, there are still opportunities
for further enhancements in the nuclei segmentation of CPE
images. Reliable nuclei segmentation stays challenging due

to the high population of cells and high diversity of cell
appearance. In this study, we present a hybrid novel SLIC/K-
Means based nuclei segmentation method in which SLIC
superpixels are used as a presegmentation step to minimize
the computational time of K- means clustering.

The first step of the hybrid SLIC/K-Means method is to
perform superpixel segmentation as a presegmentation step.
Superpixels fragment the image into a set of structurally
meaningful segments where the boundaries of each segment
take into the consideration the edge information from the
original image. Superpixels are used in the preprocessing
stage for object recognition andmedical image segmentation.
Among the various superpixel segmentation techniques, we
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Figure 3: Visual results of segmenting cell nuclei from CPE images: (a) original image, (b) preprocessed image, (c) superpixels segmentation
using SLIC, (d) K-Means based unsupervised color segmentation on SLIC superpixels, and (e) postprocessed image (refinement of nuclei
boundary and elimination of false findings).

opted for a SLIC algorithm because SLIC generates compact
superpixels with a more regular shape (R. Achanta et al. [19]).
By breaking the image into regularly shaped superpixels, it
is easier to distinguish between the nuclei and background
depending on the superpixel shape. Moreover, SLIC is simple

to implement. It requires only the number of desired super-
pixels as the input parameter and needs a low computation
time compared to other superpixel techniques [20]. SLIC
generates compact, uniform superpixels by clustering pixels
based on their color similarity and proximity. This is done



6 BioMed Research International

by using a combined 5-dimensional space [labxy], where l,
a, b constitute the pixel color vector in LAB color model
and xy denotes the x and y positional coordinates of the
pixel position (x, y coordinates). SLIC takes as input the
desired number of approximately uniform superpixels. Once
SLIC generated the superpixels, we determined the median
color feature of each superpixel region in the L∗a∗b∗ color
space. K-Means clustering [21] was then utilized to classify
the color feature of each compact superpixel into nuclei or
non-nuclei, rather than having to perform clustering over
the full original image pixels. Since representing the image
as SLIC superpixels can give more accurate boundary infor-
mation than representing the image by pixels, performing
presegmentation using SLIC superpixels before K-Means
clustering allows us to preserve the natural shape of cell
nuclei. Also, it can reduce the complexity of the algorithm
dramatically.This happens because the number of superpixels
is much smaller than the number of pixels. Hence, applying
K-Means clustering on SLIC superpixels, rather than on
pixels, can improve the algorithm efficiency and lead to rapid
computation. The visual results of nuclei segmentation on
different images are illustrated in Figures 3(c) and 3(d).

3.3. Postprocessing Stage (Boundary Refinement of Cell Nuclei
and False Findings Elimination). After the segmentation
stage, spurious regions such as blood cells or artifacts still
existed in the image. It is essential to remove these false
findings for better accuracy and robustness. A series of
morphological operations (MO) were used to eliminate these
false findings as well as to refine the boundaries of the
segmented nuclei. A morphological opening method was
applied to eliminate false findings that were smaller than a
predetermined structuring element (SE). After performing
this opening operation, the boundaries of cell nuclei often
hold an irregular shape. A morphological closing operation
was subsequently utilized to refine the shape or boundary of
the cell nuclei.

An important consideration when applying MO is the
size and shape of SE. SE identifies the pixels in the image
being processed and also designates the neighborhood to
be employed in the processing of each pixel. There are two
parameters (shape and radius) of SE to be specified. In our
algorithm, both opening and closing operations are achieved
by using a disk shape with an SE radius of “n”. The SE
radii “n” should be determined according to the size of
the undesired objects to be removed [22]. However, it is
difficult to set SE radii of “n” that can work well across
all images in a dataset or across different nuclei within
an image. The optimal radius should be closely related to
the size of the false findings that need to be eliminated.
Setting too large structuring element size oversimplifies the
image, while using too small SE undersupplies the images
(blood cells or noise remain). Hence, we applied a multiscale
approach. This means that each image was processed with
different SE radii. For the opening operation, we adapted
the SE radii range to be n {7, 8, . . . . ., 15}, which corresponds
approximately to the expected range of undesired objects in
the pleural effusion cell nuclei. For the closing operation, a

small SE (half the SE radii of the opening operation) size was
adopted. The morphological opening and closing operations
are mathematically formulated as follows:

𝑆𝑒𝑔𝑏𝑖 ⋅ 𝑆𝐸 = (𝑆𝑒𝑔𝑏𝑖 ⊖ 𝑆𝐸) ⊕ 𝑆𝐸 (1)

𝑆𝑒𝑔𝑏𝑖 ⋅ 𝑆𝐸 = (𝑆𝑒𝑔𝑏𝑖 ⊕ 𝑆𝐸) ⊖ 𝑆𝐸 (2)

where 𝑆𝑒𝑔𝑏𝑖 and 𝑆𝐸 denote the binary image and structuring
element, respectively. ⊖ and ⊕ represent erosion and dilation,
respectively.The visual results of this postprocessing are given
in Figure 3(e).

3.4. Identification and Isolation of Overlapped Cell Nuclei.
Most of the pleural effusion images in this study con-
tain nuclei that overlap to different degrees. Isolation of
overlapped cell nuclei is essential for optimal segmentation
performance since the size and shape of cell nuclei need
to be determined accurately for quantitative analysis. To
the best of our knowledge, the isolation of overlapped cell
nuclei in CPE images has only previously been addressed
in our previous works mentioned above. In our previous
studies, we employed watershed variants such as marker-
controlled and distance transform watershed methods to
split overlapped cell nuclei. Unfortunately, these methods
suffered from oversplitting and did not perform well on
images with a great deal of overlapped cells. Existing splitting
methods for overlapped objects can be broadly grouped into
watershed methods and contour concavity analysis. With
these methods, the points to be separated are searched
across all objects in an image, and it is then determined
whether to split them or not. In contrast, we now propose
the integration of shape analysis and concavity analysis to
identify and split overlapped nuclei for better accuracy and
robustness.The proposedmethod contains two substages: the
identification of overlapped cell nuclei and their separation
into individual ones, the details for which are given in
Sections 3.4.1 and 3.4.2. Before any splitting process occurs,
shape analysis is performed to judge whether nuclei are
single or overlapped. If any overlapped nuclei are detected,
a splitting process based on concavity analysis is carried out
only on overlapped cell nuclei rather than on all nuclei in the
image. This process can reduce computation time and also
prevent oversplitting and undersplitting.

3.4.1. Identification of Overlapped Cell Nuclei Using Shape-
Based Analysis. During this step, we aimed to develop a
shape-based predetermination mechanism to identify the
presence of overlapped cell nuclei. Identification of over-
lapped cell nuclei was performed in two consecutive steps:
(i) key features were extracted from cell nuclei and (ii) the
cell nuclei were classified into two classes: single nucleus
or overlapped nuclei. It is our general observation that
shape features are useful in helping to differentiate between
individual and overlapped cell nuclei. Hence, we extracted
a set of shape features, containing solidity, eccentricity,
equivalent diameter,major axis length, andminor axis length.
The formulation of shape-based features is explained and
shown in Figure 4. The extracted key features given in
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Figure 4: Formula of extracted features.

Table 1: Extracted shape based features and their equations.

No. Features Formula

(1) Solidity 𝐴𝑟𝑒𝑎𝐶𝑜𝑛V𝑒𝑥𝐴𝑟𝑒𝑎
(2) Eccentricity 𝐹1𝑎
(3) Equivalent

Diameter √4 ∗ 𝐴𝑟𝑒𝑎𝑝𝑖
(4) Major axis

length 2 ∗ 𝑎
(5) Minor axis

Length 2 ∗ 𝑏

Table 1 were utilized as input to SVM classifier [23] to
classify and discriminate between single and overlapped cell
nuclei. SVM classifier is a supervised learning mechanism
that requires training with prelabeled training data. A trained
SVM classifier was applied to identify overlapped cell nuclei
in the image.

3.4.2. Splitting Overlapped Cell Nuclei Using Concavity Anal-
ysis. When overlapped nuclei were identified via shape
analysis, we separated the overlapped nuclei regions from
the single nucleus regions. Then, contour concavity analy-
sis (CCA), introduced in [24], was utilized to isolate the
overlapped cell nuclei into individual ones. CCA includes
contour evidence extraction and contour estimation. Con-
tour evidence extraction involves two subprocesses: contour
segmentation and grouping. In contour segmentation, canny
edge method was utilized to extract the edge map. Then,
curvature scale space (CSS) method based on curvature
analysis was applied to detect the concave points representing
the corner points of the object boundaries. Once the contour
segments were obtained through the detection of concave
points, the contour segments belonging to the same object
were merged through a grouping process. The grouping
process was performed using the properties of fitted ellipse. It
groups contour segments of objects composed of an elliptical
shape. When contour evidence was acquired, the contour
estimation was carried out using a stable direct least square
fittingmethod.Thevisual result of identification and isolation
of overlapped cell nuclei is illustrated in Figure 5.

3.5. Features Extraction. After the cell nuclei were accurately
delineated, feature extraction was established to extract the
features that reflect the observation of cytologists. In the
literature of cytology and histology image analysis, the

dominant features for the diagnosis of malignancy used by
cytologists are related to morphometric, colorimetric, and
textural features [25–29]. In keeping with other cytological
images, CPE images are also rich in various features like
color, shape, and texture. In this study, 201 features related
to themorphometric, colorimetric, and textural features were
extracted and combined to obtain a robust, information-rich,
and discerning feature set.

3.5.1. Morphometric Features. There are certain differences
in morphology between benign and cancer cell nuclei in
CPE images. For instance, excessive growth of cell nuclei
size and a significant variation of cell nuclei size in an
image are suggestive of malignancy. Moreover, cell nuclei
shape irregularities such as unsmooth nuclei margins occur
in malignant cases. Thus, in this study, 14 morphometric
features were extracted to evaluate nucleus size and shape
irregularity. The description of these features is given in
Table 2 and coded as F1-F14.

3.5.2. Colorimetric Features. The usage of colorimetric fea-
tures has tremendously increased in computer vision tasks
due to their discriminative ability across different types of
objects. Color provides useful information to determine
malignancy. According to the cytological study, if any partic-
ular nuclei are affected by disease, the nucleus region changes
in color. For instance, malignant cell nuclei become darker in
color. In order to capture color features,means of R,G, B,H, S,
and V components were extracted independently from RGB
and HSV models. These features were coded in the range of
F15 to F20.

3.5.3. Textural Features. In cytological pleural effusion
images, malignant and cancer cell nuclei differ heavily in
their distribution of color and chromatin. For instance, the
frequent appearance of a distinct mass in a nucleus may be
suggestive of malignancy. Texture features have been widely
adopted in literature to exploit color and chromatin distribu-
tion. In this study, three statistical textural descriptors: first
order statistics (FOS), gray level occurrence matrix (GLCM),
and gray level run-length matrix (GLRLM)were employed to
extract the textural features.

(1) Color Component Based First Order Statistics (CCFOS).
FOS describes the distribution of pixel intensities within a
nucleus region [30]. In related literature, the combination
of color and FOS features has achieved better accuracy
compared to conventional FOS features [31, 32]. Thus, seven
FOS features for seven color components (namely, gray, R, G,
B, H, S, and V from RGB and HSV model) were extracted
for each nucleus. The extracted features were named by color
component based on FOS (CCFOS) and encoded from F21
to F69. The reason for extracting seven color components
was to obtain FOS textures from the view of different
color components. Different color components describe the
different defined textures as given in Figure 6. The details of
these extracted features are given in Table 3 and coded from
F21 to F69.
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Figure 5: Visual demonstration of identification and splitting of overlapped cell nuclei.
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Figure 6: Individual color components of RGB and HSV color models in the segmented cell nuclei of CPE images.
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Table 2: List of morphometric features and their associated equations.

Code Feature Name Equation

F1 Area
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑆(𝑖, 𝑗)
F2 Perimeter 𝐸V𝑒𝑛 𝑐𝑜𝑢𝑛𝑡+√2 (𝑜𝑑𝑑𝑐𝑜𝑢𝑛𝑡)
F3 Roundness, circularity 4𝜋 ∗ 𝐴𝑟𝑒𝑎𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
F4 Solidity 𝐴𝑟𝑒𝑎𝐶𝑜𝑛V𝑒𝑥𝐴𝑟𝑒𝑎
F5 Equivalent circular

diameter √4 × 𝐴𝑟𝑒𝑎𝜋
F6 Compactness 𝐴𝑟𝑒𝑎𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
F7 Eccentricity 2 ∗ (√(𝑚𝑎/2)2 − (𝑚𝑖/2)2)

𝑚𝑎
F8 Diameter 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2𝜋
F9 Major axis length (𝑚𝑎) √(𝑥1 − 𝑥2)2 − (𝑦1 − 𝑦2)2
F10 Minor axis length (𝑚𝑖) √(𝑥2 − 𝑥1)2 − (𝑦2 − 𝑦1)2
F11 Elongation ma/perimeter
F12 MaxIntensity max(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
F13 MinIntensity min(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
F14 MeanIntensity mean(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
𝑆(𝑖, 𝑗) is the segmented image of rows 𝑖 and columns𝑗. 𝑚𝑎 and𝑚𝑖 are the major axis and minor axis of the nucleus, respectively. 𝑥1, 𝑦1 and 𝑥2, 𝑦2 are the end
points of the major axis and minor axis.

Table 3: List of CCFOS features and their associated equations.

Feature Name Equation

Mean (𝜇) 𝐿−1∑
𝑖=0

𝑖𝑝(𝑖)
Standard
deviation(𝜎)

𝐿−1∑
𝑖=0

(𝑖 − 𝜇)2 ∙ 𝑝(𝑖)
Smoothness 1 − (11 + 𝜎2)
Variance

𝐿−1∑
𝑖=0

(𝑖 − 𝜇)2 𝑝(𝑖)
Skewness 𝜎−3 𝐿−1∑

𝑖=0

(𝑖 − 𝜇)3 𝑝(𝑖)
Kurtosis 𝜎−4 𝐿−1∑

𝑖=0

(𝑖 − 𝜇)4 𝑝 (𝑖) − 3
Energy

𝐿−1∑
𝑖=0

𝑝(𝑖)2
𝑝(𝑖) is the number of pixels with gray level 𝑖, and L represents the number of
gray-level bins set for 𝑝.

(2) GLCM and GLRLM. FOS captures features only on
individual pixels. It ignores the spatial relationship between
neighboring pixels. In order to capture texture features that
take into account the spatial relationship between neighbor-
ing pixels, GLCM [33, 34] and GLRLM [35] based higher

order statistic features were considered. GLCM represents
the distribution of cooccurring intensities in a nucleus at
a specific given distance and orientation. When extracting
GLCM features, it is required to define three parameters:
distance (d) and orientations (𝜃) that determine the offset
and angle between adjacent pixels, and the number of gray
levels (NG) in the image. In this study, d and NG were set
to 1 and 8, respectively. 𝜃 was adopted for four orientations
0∘, 45∘, 90∘, 135∘ in order to take into account the rotation
of the image. Thus, 22 GLCM features for four different
orientations were extracted. GLRLM represents the length of
homogeneous runs for each gray level in a definite direction.
Similar to GLCM, GLRLM is constructed at four orientations
and 8 gray levels. 11 GLRLM features in four different
orientations (0∘, 45∘, 90∘, 135∘) were extracted. Tables 4 and
5 describe the lists of GLCM and GLRLM feature and their
associated equations. Finally, a feature vector was generated
by combining 14 features of form morphology and 6 color
features and 181 textural features from CCFOS, GLCM, and
GLRLM.The list of extracted features is given in Table 6. The
class of each nucleus is labeled as either positive or negative
class under the guidance of cytologists.

3.6. Feature Selection. The initial feature set contains 201
features related to morphometry, colorimetry, and texture.
Directly utilizing all candidate features for classification may
cause redundancy and irrelevancy. Redundancy can lengthen
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Table 4: List of GLCM features and their associated equations.

Features Equations

Autocorrelation ∑
𝑖

∑
𝑗

(𝑖 ∙ 𝑗) 𝑝(𝑖, 𝑗)
Contrast ∑

𝑖

∑
𝑗

|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
Correlation I ∑

𝑖

∑
𝑗

(𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑝(𝑖, 𝑗)𝜎𝑥𝜎𝑦
Correlation II ∑

𝑖

∑
𝑗

(𝑖 ∙ 𝑗) 𝑝 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝜎𝑥𝜎𝑦
Cluster Prominence ∑

𝑖

∑
𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)4 𝑝(𝑖, 𝑗)
Cluster Shade ∑

𝑖

∑
𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3 𝑝(𝑖, 𝑗)
Dissimilarity ∑

𝑖

∑
𝑗

𝑖 − 𝑗 ∙ 𝑝(𝑖, 𝑗)
Energy ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)2
Entropy −∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗) ∙ log (𝑝 (𝑖, 𝑗))
Homogeneity I ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|
Homogeneity II ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|2
Maximum Probability 𝑚𝑎𝑥𝑖,𝑗𝑝(𝑖, 𝑗)
Sum of square ∑

𝑖

∑
𝑗

(𝑖 − V)2𝑝(𝑖, 𝑗)
Sum average

2𝐿∑
𝑖=2

𝑖 ∙ 𝑝𝑥+𝑦(𝑖)
Sum energy − 2𝐿∑𝑝𝑥+𝑦(𝑖) ∙ log (𝑝𝑥+𝑦 (𝑖))
Sum variance

2𝐿∑
𝑖=2

(𝑖 − 𝑆𝑢𝑚 𝑒𝑛𝑔𝑒𝑟𝑦)2 ∙ 𝑝𝑥+𝑦(𝑖)
Difference variance

𝐿−1∑
𝑖=0

𝑖2 ∙ 𝑝𝑥−𝑦(𝑖)
Difference entropy −𝐿−1∑

𝑖=0

𝑝𝑥−𝑦(𝑖) ∙ log(𝑝𝑥−𝑦 (𝑖))
Information measure of correlation I

(−∑𝑖 ∑𝑗 𝑝 (𝑖, 𝑗) ⋅ log (𝑝 (𝑖, 𝑗))) − (−∑𝑖∑𝑗 𝑝 (𝑖, 𝑗) ⋅ log (𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗)))
max (−∑𝑖 𝑝𝑥 (𝑖) ⋅ log (𝑝𝑥 (𝑖)) , −∑𝑖 𝑝𝑦 (𝑖) ⋅ log (𝑝𝑦 (𝑖)))

Information measure of correlation II (1 − exp[−2((−∑
𝑖

∑
𝑗

𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗) ⋅ log(𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗))) − (−∑
𝑖

∑
𝑗

𝑝 (𝑖, 𝑗) ⋅ log(𝑝 (𝑖, 𝑗))))])
1/2

Inverse Difference Normalized ∑
𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|2/𝐿
Inverse difference moment normalized ∑

𝑖

∑
𝑖

𝑝(𝑖, 𝑗)
1 + (𝑖 − 𝑗)2/𝐿

𝑝(𝑖, 𝑗) is the (𝑖, 𝑗)𝑡ℎ entry of the cooccurrence probability matrix, and 𝐿 represents the number of gray levels used, while 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥, 𝜎𝑦 are the mean and
standard deviation of the 𝑝.

computation time. In turn, irrelevancy may cause poor pre-
dictive accuracy. To handle these problems, feature selection
was performed in advance of classification. Feature selection
is often applied in computer vision when many features

get extracted. It improves the prediction performance and
generalization capability and provides a faster andmore cost-
effective model. Feature selection is generally divided into
two techniques: filter and wrapper [36]. In filter techniques,
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Table 5: List of GLRLM features and their associated equations.

Features Equations

Short run emphasis (SRE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑗2
Long run emphasis (LRE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑗2

Low gray-level run emphasis (LGRE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑖2
High gray-level run emphasis (HGRE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑖2

Short run low gray-level emphasis (SRLGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑖2 ∗ 𝑗2
Short run high gray-level emphasis (SRHGE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑖2
𝑗2

Long run Low gray-level emphasis (LRLGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑗2
𝑖2

Long run high gray-level emphasis (LRHGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗)∗ 𝑖2 ∗𝑗2

Gray level nonuniformity (GNU) 1𝑛𝑟
𝐺∑
𝑖=1

[ 𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)]
2

Run length nonuniformity (RNU) 1𝑛𝑟
𝑀𝐺∑
𝑗=1

[ 𝑅∑
𝑖=1

𝑔(𝑖, 𝑗)]
2

Run percentage (RP)
𝑛𝑟𝑛𝑝

𝑔(𝑖, 𝑗) denotes the number of runs of pixels of gray level 𝑖 and the run length 𝑗,𝐺 is the number of gray levels in the image, 𝑅 is the number of different run
lengths in the image, 𝑛𝑟 is the total number of runs, and 𝑛𝑝 is the number of pixels in the image.

Table 6: List of various features extracted from each nucleus.

Name of Feature sets Number of Features Ranges
Morphometric Features 14 F1-F14
Colorimetric Features 6 F15-F20
CCFOS (Textural Features) 49 F21-F69
GLCM (Textural Features) 88 F70-F157
GLRLM (Textural Features) 44 F158-201
Combined Feature Set 201 F1-F201

the features are chosen depending on their relevance ability
with respect to the target. Filter methods are computationally
fast and easy to implement.However, there is a possibility that
the chosen features might contain redundant information
since the selection process is carried out on the statistical
measure of each feature. Unlike the filter approach, the
wrapper approach depends on learning methods. It utilizes
the estimated accuracy of the learning method as a perfor-
mance measure to evaluate the usefulness of a feature. As
an extension of the wrapper approach, the hybrid approach,
which combines metaheuristics methods and supervised
learning methods as integral components of feature selection,
has been widely utilized in medical image analysis [37–
39]. Experiments have found that hybrid methods are more

efficient in finding optimal solutions compared to filter and
wrapper methods. The main benefit of the hybrid methods
is the ability to avoid being stuck in the local optima. In
this study, a novel hybrid feature selection method based on
hybridizing simulated annealing, one of the metaheuristics
methods, with an artificial neural network, one of the popular
machine learning methods, was developed to select the most
relevant and informative features. The proposed method is
known as a hybrid simulated annealing coupling artificial
neural network (SA-ANN) feature selection. The details of
SA-ANN are given in the subsection below.

3.6.1. Hybrid SA-ANNFeature Selection. Simulated annealing
is a global optimization algorithm that is inspired by the
natural annealing process inmetallurgy. Itmodels the anneal-
ing process of heating material and then gradually cooling
it by lowering the temperature at a controlled rate, thus
minimizing system energy [40]. It is typically used to search
for the global minimum in a high-dimensional data space.
The main advantage of SA is that it allows up-hill moves in
the iteration to avoid being stuck at a local minimum. SA
has been widely used as a supervised or unsupervised feature
subset selectionmethod in datamining techniques, especially
for microarray gene classification in biomedical data analysis
[41–43]. Inspired by those works, in this study, we developed
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Input: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡,𝑀𝑎𝑥𝐼𝑡, 𝑇𝑒𝑚𝑝, 𝑎𝑙𝑝ℎ𝑎
Output: 𝑆𝑏𝑒𝑠𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑢𝑏𝑠𝑒𝑡 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡)𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑁𝑁(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑢𝑏𝑠𝑒𝑡)𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐹𝑜𝑟 (𝑖 = 1 : 𝑀𝑎𝑥𝐼𝑡)𝑁𝑒𝑤𝑠𝑢𝑏𝑠𝑒𝑡 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝐶𝑜𝑠𝑡(𝑆𝑖), 𝑆𝑖 ← 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑁𝑁(𝑁𝑒𝑤𝑠𝑢𝑏𝑠𝑒𝑡)
𝑖𝑓 (𝐶𝑜𝑠𝑡(𝑆𝑖) ≤ 𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑖
𝑒𝑙𝑠𝑒𝑖𝑓(𝐸𝑥𝑝(𝐶𝑜𝑠𝑡𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡𝑆𝑖𝑇𝑒𝑚𝑝 ) > 𝑅𝑎𝑛𝑑 ())

𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑖
𝐸𝑛𝑑𝑖𝑓 (𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 𝐶𝑜𝑠𝑡(𝑆𝑏𝑒𝑠𝑡)𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑑𝑇𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝 ∗ 𝑎𝑙𝑝ℎ𝑎

𝐸𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆𝑏𝑒𝑠𝑡)
Algorithm 1: The main loop of hybrid SA-ANN based feature
selection.

a novel hybrid feature selection method by hybridizing SA
with an artificial neural network (ANN). ANN is a machine
learning algorithm that mimics the structure of the biological
brain. During feature selection via hybrid SA-ANN, the cost
value of SA based search space was computed depending on
the number of samples correctly predicted by ANN. Firstly,
the random initial feature subsets were created.These subsets
were assessed using a 3-layer ANN trained by a Levenberg-
Marquardt (LM) backpropagation algorithm [44] containing
a fixed number of hidden neurons. The features with the
most minimal cost were initialized as the best feature set. At
each iteration of SA, the neighboring subset was randomly
generated by implementing a neighborhood function. Then,
in a similar manner to the first stage, a 3-layer ANN trained
by LM backpropagation algorithm was used to evaluate the
cost of the neighboring subset. If the neighboring subset had
a lower cost than the initial subset, we would then change
the initial subset to its neighboring subset. Alternatively, if
the neighboring subset had a higher cost, then the individual
would move to that subset only if the acceptance probability
condition was fulfilled. Otherwise, the individual remained
in the initial subset. By accepting individuals that increase the
cost, the algorithm avoids getting stuck by a local minimum
in early iterations and explores globally for better solutions.
As the algorithm progresses, the temperature is reduced
causing individuals to converge towards the subset with a
minimum cost and hence an optimal point. Hybrid SA-ANN
feature selection can be summarized using the pseudocode
in Algorithm 1, wherein feature set, MaxIt, Temp, and
alpha are the candidate features, maximum numbers of
iteration, initial temperature, and the temperature reduction
rate, respectively. S best is the output that represents the
corresponding optimal feature set.The selected features in the
optimal feature set were utilized for training and testing the

classifier. The code implementation of proposed hybrid SA-
ANN feature selection is based on theMatlab implementation
available in [45] and modified as necessary.

3.7. Classification. The selected features were utilized as input
to the classifier to differentiate between benign andmalignant
cells. In cytology and histology image analysis, classification
models revolve around Support Vector Machine (SVM)
[26, 27], Naı̈ve Bayes (NB) [27], artificial neural network
(ANN) [28], K-nearest neighborhood (KNN) [8, 27], Logistic
Regression (LR) [29], Linear Discriminant Analysis (LDA)
[8], Decision Tree (DT) [46], and Ensemble Classifier (EC)
[31].The selection of a classification model for medical image
analysis depends on the type and size of the dataset to be
classified. Our dataset of cell nuclei was large and highly
unbalanced wherein the class of cancer nuclei was limited
while the class of benign nuclei was abundant. Ensemble
classification has yielded preferable results for classification
of skewed data [47, 48]. Thus, to deal with the unbalanced-
data distribution, we adopted an ensemble classifier that
employs bootstrap aggregation (bagging) decision trees and
is termed as ECBDT [49, 50]. The core idea of using ECBDT
was to develop multiple bootstrap data-samples and to build
multiple base classifiers for each bootstrapped sample. One
hundred decision trees were used as the base classifiers. The
final prediction of ECBDT was obtained through major vot-
ing. The block diagram of the ECBDT classifier is depicted in
Figure 7. The classifier was trained in 5-fold cross-validation.

4. Experiments

4.1. Experimental Setup. The proposed CAD system pre-
sented here was developed in a Matlab environment using
a PC with Intel� Core i7, CPU@3.40 GHz, RAM@16.0
GB. The study was based on 125 cytology pleural effusion
images containing around 10500 cells. The studied dataset
was randomly partitioned into training and testing sets in an
80-20% ratio. 80% of the images were allocated to the training
dataset to train the classifier and 20% to the testing dataset
to validate the trained classifier. Training and testing datasets
were disjointed (i.e., the same image was not assigned to
represent both training and testing datasets). It is noteworthy
that all the experiments carried out in this study are based on
the same experimental setting and environment.

4.2. Experimental Results and Discussion. To obtain a com-
prehensive discussion, the experimental results are discussed
in two phases. The first phase is the segmentation phase,
which encompasses preprocessing, the segmentation of cell
nuclei, postprocessing, and the isolation of cell nuclei. The
second phase is the classification phase, which comprises
feature extraction, feature selection, and classification.

4.2.1. Segmentation Phase. Intensity adjustment and median
filter methods were employed to enhance image contrast
and suppress the noises, respectively. Then, a novel hybrid
SLIC/K-Means segmentation method was developed to seg-
ment the cell nuclei from the entire image. In SLIC/K-Means,
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Figure 7: Block diagram of ensemble classifier of bagged decision trees (ECBDT) used in this study.

Table 7: Comparison of time complexity in segmentation methods
using testing images.

Segmentation methods Average processing time
Classical K Means 66.6 seconds
Proposed Method 5.8 seconds

the SLICmethod is firstly performed to presegment the image
into the small compact superpixels.Then,K-Means clustering
is carried out to cluster each superpixel into two groups
by using the extracted features from superpixels. Features
extracted over the uniform and compact SLIC superpixels
tend to be more discriminative, helping K-Means to produce
better segmentation. Good adherence to the image bound-
aries exhibited by SLIC superpixels results in smoother and
more accurate segmentation.UtilizingK-Means clustering on
superpixels can shorten computation because the number of
superpixels is significantly lower than the number of pixels. It
scales up linearly in computational cost and memory usage.
The proposed segmentation method extracts cell nuclei at a
lower computational cost and preserves the natural shape of
the cell nuclei while achieving excellent segmentation results.
In the hybrid SLIC/K-Means segmentation method, we need
to specify two parameters: the number of superpixels for
SLIC and the k clusters for K-Means. The desired number
of superpixels was set to 500. According to our previous
work, k was set at 2 because cell nuclei are segmented in
a straightforward way when k is 2. False findings such as
artifacts or blood cells may present obstacles to accurate
segmentation. These undesired regions were filtered out
with a series of morphological operations. Subsequently,
the boundaries of cell nuclei were furthered refined. The
visual results of the proposed SLIC/K-Means n and classical

Table 8: Comparison of time complexity in splitting methods using
testing images.

Splitting methods Average processing time
Concavity analysis 10.2 seconds
Proposed method 6.8 seconds

K-Means, supplemented by the same preprocessing and
postprocessing approaches, are demonstrated in Figure 8.
Compared to classical K-Means clustering based segmenta-
tion, the proposed method performs better in preserving the
natural shape of the cell nuclei. Moreover, it is significantly
faster than classical K-Means in computation, as given in
Table 7.

Almost all the images in the studied dataset possessed
an overlapped cell nucleus to different degrees. Separating
them into individual ones was hence essential. In almost
all related literature, cell splitting is applied directly on the
entire segmented image.Thismeans that the splitting method
is processed not only on overlapped regions but also on
single cell nuclei regions. Such an attempt can lengthen
computation time. In contrast, we propose a sequential
combination of shape-based analysis and concavity analysis
to identify overlapped areas and isolate them into individual
ones. First, shape-based analysis was performed to determine
the overlapped cell nuclei and separate them from single
cell nuclei regions. Then, contour concavity analysis based
splitting is applied only on the identified overlapped nuclei,
rather than on all nuclei in the image. By identifying over-
lapped regions before applying the splitting method, one can
not only prevent over- and undersplitting but also shorten
computation time, as tabulated in Table 8. The visual results
of splitting overlapped cell nuclei are illustrated in Figure 9.
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(a) (b) (c)

Figure 8: Comparison results of nuclei segmentationmethods: (a) original image, (b) proposed method (SLIC +K-Means), and (c) K-Means
clustering based segmentation.

(a) (b) (c)

Figure 9: Comparison results of overlapped nuclei splitting methods: (a) segmented nuclei (input), (b) proposed splitting method based on
the combination of shape analysis and concavity analysis, and (c) contour concavity analysis (note that the yellow rectangular box indicates
the over- and undersplitting).

Figure 9(a) shows the segmented nuclei image. Figure 9(b)
represents the resulting images from our proposed splitting
methods (i.e., the combination of shape analysis and contour
concavity analysis) and Figure 9(c) depicts the resulting
images from classical contour concavity analysis. As shown
in Figure 9(b), employing a splitting method only on the
identified overlapped region can prevent the single cell
nuclei from oversplitting and overlapped cell nuclei from
undersplitting. This happens because the splitting method is
focused solely on the overlapped area. The yellow shading

box in Figure 9(c) is illustrated to highlight the over- and
undersplitting which result from using the classical concavity
analysis based splitting method.

4.2.2. Classification Phase. Once the nuclei were accurately
delineated, 201 features representing the morphometric, col-
orimetric, and textural features were extracted from each
nucleus. In order to avoid redundancy and irrelevancy, hybrid
SA-ANN feature selection was developed to choose the most
discerning and informative features. Promising features that
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Figure 10: Correlation matrix for the selected features using hybrid SA-ANN feature selection (note that correlation =1 (white) means the
highest correlation, -0 (black) no correlation).

Table 9: Description of selected features through hybrid SA-ANN feature selection.

No. Feature Code Feature Name Feature Set
(1) F37 Smoothness of B component CCFOS
(2) F163 Short run high gray-level emphasis GLRLM0
(3) F 51 Smoothness of S component CCFOS
(4) F 82 Sum of square GLCM0
(5) F 96 Cluster Prominence GLCM45
(6) F 55 Energy of S component CCFOS
(7) F 146 Homogeneity II GLCM 135
(8) F 19 Mean color of S component Colorimetric
(9) F 25 Skewness of R component CCFOS
(10) F 187 Long run high gray-level emphasis GLRLM 90
(11) F 88 Information Measure of Correlation GLCM0
(12) F 132 Difference Entropy GLCM 90
(13) F 2 Perimeter Morphometric
(14) F 12 MaxIntensity Morphometric
(15) F 183 High gray-level run emphasis GLRLM 90
(16) F4 Solidity Morphometric
(17) F 70 Autocorrelation GLCM 0
(18) F 28 Mean from G component CCFOS
(19) F 168 Run percentage GLRLM0
(20) F 128 Sum Entropy GLCM0

correctly map to the target are identified by supervised
ANN and used in the annealing process. The SA-ANN
algorithm was iterated 50 times with an initial temperature
(temp=10) and temperature reduction rate (alpha=0.99).The
algorithm was adapted to select a different desired number
of features (nf) such as 15, 20, 25, 30, 35, and 40. Based
on the experimental results obtained, it was deduced that

selecting more than 20 features resulted in slightly decreased
classification accuracy. Thus, the SA-ANN algorithm was
fixed to select 20 features out of 201 features. The list of
selected features and their correlation matrix are described in
Table 9 and Figure 10, respectively. By analyzing the selected
features, it was revealed that they included one or more
representative features from each group of features given in
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Section 3.5. Among 20 selected features, 16 features were
textural features. Thus, it is reasonable to conclude that tex-
tural features supply more diagnostic information than other
features. Moreover, the correlation matrix demonstrates that
proposed hybrid SA-ANN feature selection selected the most
significant features with less redundant information. The
selected features were used as input to the classification
model to predict malignancy. Classification model choice
depends on the size and the type of data to be predicted.
Our data is highly skewed, wherein the cell nuclei, belonging
to malignant (positive), were limited, and the cell nuclei

belonging to benign (negative) were abundant. Thus, we
adopted ensemble classification which provides preferable
results to the classification of unbalanced data. As mentioned
in Section 3.6, the dataset was firstly bootstrapped randomly,
and 100 decision trees were used as the base classifiers to
classify the bagged datasets. The final classification result was
obtained throughmajor voting. To evaluate classification per-
formance, we compared the ground truth and classification
results with respect to four performance metrics: sensitivity,
specificity, F-score, and accuracy. These four performance
measures are formulated in (3)-(8).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒) (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒) (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒) (5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 (6)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (7)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒)
(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒) (8)

To make a fair and objective comparison, a common
public dataset is required. By far, we are not aware of
any common publicly available dataset. Also, the diagnosis
schemes of CPE images in related literature are different
from the proposed diagnosis scheme.Thus, we built our own
experimental setup wherein the impact of using different
feature selection methods and different classification models
on classification performance was observed. In the first
three experimental scenarios, we compared the classifica-
tion accuracy achieved with and without features using
the proposed classifier (i.e., ECBDT). In the first scenario,
we compared the results between our proposed SA-ANN
approach and an “all features” approach (i.e., without feature
selection). Secondly, the result of the SA-ANN approach
was compared with the results of the SA approach. In the
third scenario, we established a comparison between the SA-
ANN approach and other robust hybrid feature selection
methods: PSO-ANN and GA-ANN approach. Furthermore,
in the fourth experimental scenario, we employed seven
alternative classifiers, namely, SVM [23], ANN [51], NB [52],
KNN [53], LR [52], LDA [54], and DT [55] classifiers, and
coupled them with the feature selection approaches. The
result achieved by the proposed synergy between SA-ANN
feature selection and ECBDT classification was compared
with the results obtained through various pairings.Therefore,
for each feature selection approach, the experimental results
are presented with respect to four performance measures and
eight classification models (including ECBDT). The results

from four experimental scenarios are shown in Table 10.
We clarify that hybrid SA-ANN coupling with an ECBDT
classifier (shaded in bold) is our proposed method. As
reported in Table 10, utilizing the feature selection methods
(i.e., SA-ANN, SA, PSO-ANN, GA-ANN, or SA) provided
better accuracy compared to the all features approaches (i.e.,
without feature selection) for all classifiers. The results also
demonstrate that, with the exception of coupling with SVM,
KNN, and LR classifiers, the proposed SA-ANN selection
marginally improves accuracy compared to the SA based
approach and yields better accuracy compared to PSO-ANN
and GA-ANN approaches when coupling with ANN, NB,
LD, DT, and proposed ECBDT classifiers. When coupling
with an SVM classifier, the PSO-ANN approach yields better
results compared to other selection approaches. Similarly, the
GA-ANN approach yields better accuracy compared to other
feature selectionmethodswhen couplingwithKNNclassifier.
Likewise, the SA approach yields better accuracy compared to
other feature selection methods when coupling with LR. The
superior feature selection method for each classifier is shown
in italic. It was observed that different classifiers perform
differently for different selected features. However, regardless
of the feature selection methods utilized, ECBDT (ensemble
classifier) consistently provided better accuracy compared to
other single classifiers. From the experimental results, it is
inferred that the synergy of hybrid SA-ANN coupling with
an ECBDT classifier outperformed other pairs of feature
selection approaches and classification models described
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Table 10: Comparison of classification performance achieved by different synergy between feature selection methods and classification
models.

Feature Selection (FS) Performance Metrics Classifiers
SVM ANN NB KNN LR LDA DT Proposed ECBDT

All features (No FS)

Sensitivity 72.18% 75.19% 66.17% 72.93% 71.43% 75.19% 71.43% 74.48%
Specificity 95.47% 94.48% 93.41% 95.51% 94.82% 95.12% 94.10% 96.11%
F-score 57.31% 55.25% 46.93% 57.91% 54.44% 57.64% 51.91% 61.73%
Accuracy 94.21% 93.44% 91.95% 94.29% 93.57% 94.05% 92.88% 94.98%

PSO-ANN

Sensitivity 73.65% 70.91% 69.16% 74.29% 69.23% 69.16% 71.83% 76.47%
Specificity 96.64% 96.11% 95.67% 96.72% 96.11% 95.67% 96.32% 97.09%
F-score 76.29% 77.33% 74.30% 75.96% 69.96% 74.30% 80.42% 80.28%
Accuracy 97.21% 97.25% 96.64% 97.21% 97.29% 96.64% 97.73% 97.73%

GA-ANN

Sensitivity 87.97% 86.47% 64.66% 87.97% 87.22% 64.66% 86.47% 86.47%
Specificity 97.22% 97.09% 99.44% 98.20% 97.31% 99.44% 98.63% 98.93%
F-score 74.29% 72.78% 74.14% 80.14% 74.36% 74.14% 82.14% 84.25%
Accuracy 96.72% 96.52% 97.57% 97.65% 96.76% 97.57% 97.98% 98.26%

SA

Sensitivity 85.71% 86.47% 90.23% 84.21% 84.96% 90.23% 84.21% 87.22%
Specificity 97.22% 97.73% 97.60% 97.52% 98.37% 97.60% 99.14% 99.27%
F-score 73.08% 76.41% 77.67% 73.93% 79.58% 77.67% 84.53% 87.22%
Accuracy 96.60% 97.13% 97.21% 96.80% 97.65% 97.21% 98.34% 98.62%

Proposed SA-ANN

Sensitivity 85.71% 72.93% 72.93% 84.21% 79.70% 72.93% 86.47% 87.97%
Specificity 97.22% 99.70% 99.66% 97.52% 98.16% 99.66% 99.27% 99.40%
F-score 73.08% 81.86% 81.51% 73.93% 75.18% 81.51% 86.79% 87.79%
Accuracy 96.60% 98.26% 98.22% 96.80% 97.17% 98.22% 98.58% 98.70%
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Figure 11: Comparison of accuracy using different pairs of feature selection methods and classifiers.

above in terms of classifying cells in CPE images. To get
clear comparison results, we further plotted the comparison
of accuracy and F-score as illustrated in Figures 11 and 12,
respectively. Moreover, a Receiver Operating Characteristics
(ROC) curve for different classifiers coupling with SA-ANN
feature selection is depicted in Figure 13. It shows that
the ROC curve of the proposed method is on the left
upper corner and has higher classification rate stability when
compared to other methods in the study. The visual results
of detected malignant nuclei (both correct and failed cases)
are depicted in Figure 14. Figure 14(a) shows annotated
malignant cell nuclei labeled by two experts inwhich blue and
green represent the two experts. Figure 14(b) describes the

diagnostic results of the proposed CAD system wherein the
red bounding boxes represent the detected malignant cells.
Even though the proposed method yields promising results,
there are still some failures especially when the malignant
characteristics of a cell occur in the cytoplasm. Therefore, it
remains for future work to detect for malignancy based on
the combined analysis of cell nuclei and cytoplasm.

5. Conclusion

In this study, we presented a novel CAD system to detect
cancer cells on CPE images. Firstly, intensity adjustment
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Figure 13: ROC curve for the performance of SA-ANN feature selection by blending with eight different classifiers.

and median filter methods were employed to enhance image
contrast and suppress noise, respectively. Then, the cell nuclei
were extracted using a novel hybrid SLIC/K-Means seg-
mentation method followed by postprocessing. Overlapped
nuclei regions were then identified through shape-based
analysis. Subsequently, concavity analysis was utilized to
isolate the detected overlapping regions into individual ones.
After the cell nuclei were accurately delineated, 201 features
that comprise the morphometric, colorimetric, and textural
features were extracted fromeach nucleus. A feature selection
framework based on a hybrid SA-ANN was developed to
select the most significant and informative features from the
initial feature set containing those 201 features. The chosen
features were used as input into ECBDT classifier to predict
for malignancy. The proposed method can achieve 87.97%
sensitivity, 99.40% specificity, 98.70% accuracy, and 87.80%
F-score. The results achieved were compared with the results
gained through an “all features”, SA, PSO-ANN, and GA-
ANN approaches by coupling with eight different classifiers,
namely, ECBDT, SVM, ANN, NB, KNN, LR, LDA, and DT.

The comparison results demonstrated that the hybrid SA-
ANN approach significantly improves accuracy compared to
the “all features” approach for all classifiers. It marginally
improves accuracy compared to the PSO-ANN, GA-ANN,
and SA methods for most classifiers. Furthermore, the
ECBDT classifier consistently improves classification perfor-
mance compared to other individual classifiers: SVM, ANN,
NB, KNN, LR, LDA, and DT. The proposed CAD system
based on the synergy between SA-ANN feature selection and
an ensemble classifier outperformed all other combinations
conducted in this study. Nevertheless, there were still some
failures, especially when the malignant characteristics of a
cell occur in the cytoplasm. Hence, the future work of this
research is to extend the combined analysis of cytoplasm and
nuclei and further classify the detected malignant cells into
different types, such as lung carcinoma, breast carcinoma,
mesothelioma, and lymphoma. There is also a potential of
adapting the proposed CAD system to the same kind of
cytopathology images captured from other body fluid types
such as the peritoneal, cerebrospinal, and synovial fluid.
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(a) (b)

Figure 14: Visual demonstration of diagnostic results using the proposed CAD system to detect malignant cells in CPE images: (a) the
original image with ground truthmalignant cells annotated by two experts (blue and green circles represent the two experts) and (b) detected
malignant cells through the proposed CAD system.
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