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TtllS review higlghts key aspects of cortico-
tropin releasing hormone (CRH) biology of
potential relevance to the sexual dimorphism of
the stress response and immune/inflammatory
reaction, and introduces two important new
concepts based on the regulatory potential of the
human (h) CRH gene: (1) a proposed mechanism
to account for the tissue-specific antithetical
responses of hCRH gene expression to glucocorti-
colds, that may also explain the frequently
observed antithetical effects of chronic gluco-
corticoid administration in clinical practice and
(2) a heuristic diagram to illustrate the proposed
modulation of the stress response and immune/
inflammatory reaction by steroid hormones,
from the perspective of the CRH system.
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Introduction

Experimental support fbr the hypothesis that
adrenocorticotropin (ACTH) secretion was con-
trolled by hypothalamic factors, was obtained in
1955.2’3 In 1981, a 41 amino acid C terminal ami-
dated peptide from ovine hypothalami stimulat-
ing pituitary ACTH release in vitro was identified
and characterized.4 The biologically active form
of this peptide, designated corticotropin releasing
hormone (CRH), and also frequently referred to
as corticotropin releasing factor (CRF), was syn-
thesized and found to have potent ACTH-releas-
ing actions in vivo.5 CRH is the only permissive
factor for the anterior pituitary release of ACTH
known in man5’6 and acts in synergy with argi-
nine vasopressin (AVP) and, perhaps, other
factors, to regulate pituitary ACTH secretion, and,
therefore ultimately the activity of the pituitary-
adrenal axis.7-9

Since its discovery, it has become evident that
CRH has roles which are much wider than initi-
ally thought. Thus, coordination of the behavioral
and physical components of the stress response
and regulation of the immune/inflammatory reac-
tion were unravelled as major overall roles of this
neuropeptide.’ In addition, this peptide was
implicated in the pathophysiology of a large
range of diseases associated with dysregulation of

12the stress system and autoimmunity. Because of
the central roles of CRH in homeostasis and
pathogenesis of disease, knowledge of its gene
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and its regulation would be essential for further
progress. This brief review will outline the most
critical aspects of CRH biology, will summarize
the structure, function and regulation of the
human (h) CRH gene by steroid hormones, and
will introduce a tentative model to account for its
tissue-specific antithetical hormonal responses.
The implications of the regulatory potential of
the hCRH gene for the sexual dimorphism of the
stress response and immune/inflammatory reac-
tion will also be discussed.

Overview of CRH biology

CRH is synthesized as part of a prohormone, it
is processed enzymatically, and in addition
undergoes enzymatic modification to the ami-
dated form. Mammalian CRH has homologies
with non-mammalian vertebrate peptides
x CRH and sauvagine4 in amphibia (from frog
brain/spleen and skin, respectively), urotensin-I
in teleost fish5 and the two diuretic peptides
Mas-DPI and Mas-DPII from the tobacco horn-
worm Manduca sexta. 16’17 The vertebrate homo-
logues have been tested and found to possess
potent mammalian and fish pituitary ACTH-
releasing activity. In addition, they decrease peri-
pheral vascular resistance and cause hypotension
when injected into mammals.15’18’19

The amino terminus of CRH is not essential for
binding to the receptor, whereas absence of the
carboxy terminal amide abolishes CRH binding to
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its receptor. Oxidation of a methionine residue coordinate the overall stress response.4 High
abolishes the biological activity of CRH, and this doses of CRH cause behaviors characteristic of
may be a mechanism for neutralization of the anxiety, suggesting that the behavioral effects of
peptide in vivo.5 CRH bioavailability is also regu- CRH are dose-dependent, with low doses pro-
lated by binding to corticotrop_in releasing moting adaptation and high doses being mala-
hormone binding protein (CRHBP),2 with which daptive.12’42
it partially co-localizes in the rat central nervous There is a broad peripheral expression of CRH
system (CNS) and other tissues.21 The human and CRHR, including the peripheral nervous
CRHBP gene has been assigned to 5q11.2- system, lung, liver, gastrointestinal tract, immune
q13.3.22 In the pituitary, CRH acts by binding to cells and organs, gonads and placenta,m’’4 The
membrane receptors (CRHR) on corticotrophs, biological roles of extraneural CRH have not
that couple to guanine nucleotide-binding pro- been fully elucidated as yet, although it is likely
teins and stimulate the release of ACTH in the that it might participate in the auto/paracrine reg-
presence of Ca2 + by a cAMP-dependent mechan- ulation of [-endorphin production and analgesia,
ism.5’23’24 CRH stimulation of cAMP production and that it may modulate immune/inflammatory
increases in parallel with the secretion of ACTH responses and gonadal function. 12’41’44-46 The
in rat pituitary corticotrophs25 and human current consensus is that CRH produced in high
corticotroph cells.26 In addition to enhancing the amounts in inflammatory sites of both animals
secretion of ACTH, CRH also stimulates the de and humans, designated immune CRH, is promot-
novo biosynthesis of pro-opiomelanocortin ing inflammation by stimulating cytokine produc-
(POMC).25’27 CRH regulation of POMC gene tion by immune cells and/or by potentiating the
expression in mouse tumorous corticotroph AtT proinflammatory activities of cytokines and other

46 47 5320 cells, involves the induction of c-fos exlression mediators of inflammation.
by cAMP and Ca" * -dependent mechanisms.’a9 Intravenous administration of CRH in humans
Sequence analysis of hCRHR cDNAs isolated causes a prompt increase in the release of ACTH

from cDNA libraries prepared from human corti- into the blood, followed by the secretion of corti-
cotropinoma or total human brain mRNA, sol. The effect is specific for ACTH release and is
revealed homology to the G-protein coupled inhibited by glucocorticoids. High cortisol levels
receptor superfamily.’ The hCRHR cDNA reduce or abolish CRH action on the pituitary.
sequences of the tumour and normal brain were CRH has been used as a diagnostic tool to differ-
aligned and found to be identical. The hCRHR entiate causes of hypercortisolism and hypocorti-
gene has been assigned to 17q12-qter.2 The solism, but does not have an established
sequences of mouse and rat CRHR cDNAs were therapeutic role.24’54-56 The clinical applications
also reported recently.’ Human/rodent CRHR of CRH were recently reviewed extensively.
protein sequences differ primarily in their extra- The amidated active peptide form is stored
cellular domains. In particular, positively charged within secretory granules. Stress stimulates a
arginine amino acid(s) are present in the third variety of endogenous substances, which excite
and fourth positions of the extracellular amino the CRH neuron in the PVN12 and cause the
terminal domain of the rodent but not the release of CRH into the portal system by the
human CRHR peptide. This might be responsible classical mechanism of membrane fusion.5r

for the differential activity of the t-helical 9-41 Major intracellular signalling systems, such as the
CRH antagonist4 between rodents and primates cyclic adenosine monophosphate (cAMP)-depen-
(C. Kalogeras, personal communication), dent protein kinase A (PKA) [cAMP/PKAI and

Central sites of CRHR expression include the the diacyglycerol (DAG)-dependent protein
hypothalamus, the cerebral cortex, the limbic kinase-C (PKC)[DAG/PKC] pathways, appear to
system, the cerebellum and the spinal cord.5 be involved in the regulation of CRH biosynthesis
This may explain the broad range of neural and release.5 Theoretically, hormonal regulation
effects of intracerebroventricularly (i.c.v.) admi- of CRH biosynthesis and secretion, and CRHR-
nistered CRH, including arousal, increase of sym- mediated si0nal transduction may occur in any of
pathetic system activity, elevations in systemic many steps.
blood pressure, tachycardia, suppression of the
hypothalamic component of gonadotropin reg- hCRH gene structure and chromosomal
ulation (GnRH), suppression of growth and localizationinhibition of feeding and sexual behaviours

3642characteristic of emotional stress. Central The hCRH gene consists of two exons sepa-
injection of CRH in rats and monkeys thus rated by an intron in its 5’ untranslated region
induces complex physiological and behavioral (Fig. 1).59 The rat and ovine CRH genes have a

60 61responses, suggesting that central CRH pathways similar organization.’ The hCRH gene has
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FIG. 1. Physical organization of a 6.6 kb DNA region containing the hCRH gene. The bent arrow marks the start and points towards
the direction of transcription. The open boxes refer to the transcribed and untranslated mRNA sequences, the striped box to the trans-
lated prepro-hCRH mRNA and the small black box to the segment of the gene, coding the hCRH(1-41) peptide, which is derived from
the precursor hCRH protein by post-translational proteolytic cleavage. The 5’-flanking region of the gene is indicated by a thick black
line.

been mapped to the long arm of chromosome 8 Regulatory elements of the hCRH gene(8q13).62- The 3’ untranslated region of the
hCRH gene contains several polyadenylation CRE (cAMP-responsive enhancer, CREB enhan-
sites, which may be utilized differentially in a cer sequence/PKA activation). Activation of
potentially tissue-specific manner. CRH mRNA adenylate cyclase by various effector systems
polyA tail length is regulated by phorbol esters elevates intracellular cAMP and stimulates
in the human hepatoma CRH-expressing cell line protein phosphorylation by cAMP-dependent
NPLC, and this may have potential relevance for protein kinases and transactivation of genes with
differential stability of CRH mRNA in various the consensus palindromic sequence 5’-
tissues in vivo.63 Alignment of the human, rat TGACGTCA-3’ in their 5’ flanking regions.
and ovine CRH gene sequences has allowed the cAMP-response element-binding protein (CREB),
comparison of the relative degree of evolutionary is a member of the bZIP or leucine zipper
conservation of their various segments. These family of transcription factors, that is phos-
comparisons revealed that the 330 bp long phorylated by several protein kinases, including
proximal segment of the 5’ flanking region of the catalytic subunit of cAMP/PKA. CREB homo-
the hCRH gene had the highest degree of or heterodimerizes through its leucine zippers,
homology (94%), suggesting that it may play a binds to DNA as a dimer, and modulates tran-
very important role in CRH gene regulation scription of genes in response to hormonal sti-
throughout phylogeny, which is crucial for sur- mulation of the cAMP pathways.67-7 The gene
vival. A conserved polypurine sequence feature encoding CREB contains at least 11 exons span-
of unknown biological significance is present at ning over 40 kb and produces multiple CREB
-829 of hCRH,-801 of the ovine CRH gene, as isoforms by alternative splicing.71’72 This is in
well as in the -400 bp 5’ flanking region of contrast to other bZIP members (e.g., c-jun72

POMC,_ rat growth hormone and other hormone and C/EBPV3), which are encoded by intronless
genes.64 The sequence of a 3.7 kb stretch into genes.74 The latter proteins can heterodimerize
the 5’ flanking region of the hCRH gene was with some members of the CREB/ATF family of
also determined (Gene Bank accession no. proteins.75’76

x67661).65 A gene bank search for homologous CRH regulation by the PKA pathway is well
sequences identified a segment at position documented. Administration of cAMP increases
2213-2580 with greater than 80% homology to CRH secretion from perfused rat hypothalami,
members of the type O family of repetitive and forskolin, an activator of adenylate cyclase,
elements, and another at -2835 to -2972 with increases CRH secretion and CRH mRNA levels in
less homology to the 3’ terminal half of the primary cultures of rat hypothalamic cells.77 Reg-
human AluI family of repetitive elements. The ulation of the hCRH gene by cAMP has also been
rest of the sequence was found to be novel and demonstrated in the mouse tumorous anterior
specific to the CRH gene. A computer program pituitary cell line AtT-20, stably or transiently
was used to identify consensus recognition sites transfected with the hCRH gene.7e8 The hCRH
of DNA binding proteins involved in transcrip- 5’ flanking sequence contains a perfect consensus
tional regulation in this region of the hCRH CRE element that is conserved in the rat and
gene. The organization and spatial distribution sheep, and confers transcriptional activation to
of several putative responsive elements of poten- chloramphenicol acetyltransferase (CAT) repor-
tial relevance to CRH transcriptional regulation is ters in vivo, as demonstrated with both human

81 82shown in Fig. 2 65 and rat CRH promoter-driven CAT constructs.
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FIG. 2. Spatial distribution of putative regulatory features in the 3625 bp long hCRH 5’ flanking region. Tol. landmark restriction sites,
the two mRNA initiation sites (solid and broken bent arrows point to the direction of transcription), the type 0 member of repetitive
elements (solid box), and the partial Alul member of repetitive elements (broken box). Middl locations of TATA box [TAI:
5’TATAAA(+), 5"I-l-rATA(--)]; TATA box 2 [TA2: 5’TATAAT(+), 5’ATTATA(--)]; and CAAT box [5’CCAAT(+), 5’ATTGG (--)] consensus ele-
ments. Bottom: locations of CREB [5’ACGTCA(+), 5’TGATTCA(--), 5’TGACGTCA(+), 5’AGACGTCA(--)]; AP-1 [5’TGAAATCA(+),
5’TGATTCA(--), 5’TGAGACTT(+), 5’AAGTCTCA(--), 5’TGACTAA(+), 5’TTAGTCA(--), 5’TFAGTCAG(+), 5’CTGACTAA(--), 5’CTGACTAA(+),
5’TFAGTCAG(--); half palindromic ER sites (1/2 ERE) [5’GGTCA(+), 5’TGACC(--)]; and second half GR site (1/2 GRE) [5’TGTTCT(+),
5’AGAACA(--)] consensus elements. The (+) and (--) orientations of the elements are indicated by the arrow pointing above or below
the midline, respectively.

TRE (phorbol ester, I2-O-tetradecanoyl phorbol- that the CRE of the CRH promoter may, under
13-acetate (TPA)- response element or AP-I site/ certain conditions, elicit TRE-like responses thus
PKC activationS. Epidermal growth factor (EGF) conferring TPA responsivity to the CRE site.
and TPA elevate intracellular DAG and activate Further upstream into the 5’ flanking region of
PKC and the transactivation of genes containing the hCRH gene, eight perfect consensus AP-1
TPA response elements in their 5’ flanking binding sites have been detected.65 Their ability
regions.8TRE or AP-l-binding proteins are the to mediate TPA directed enhancement of hCRH
Jun and Fos families of the bZlP superfamily of gene expression has not been tested by con-
transcription factors. These proteins interact ventional reporter gene assays as yet. EGF,
through their carboxy-terminal leucine zippers however, has been shown to stimulate ACTR
and c-jun can form both homodimers with itself secretion in the primate and to directly stimulate
and heterodimers with c-fos, while c-fos can CRH secretion by rat hypothalamic organ cul-
heterodimerize with c-jun but cannot form tures in vitro.87

homodimers. TPA and the activation of PKC
induce c-jun. This is due to positive autoregula- GRE (glucocorticoid response elemenO. Gluco-
tion mediated by binding of c-jun homodimers corticoids are the final effectors of the hypotha-
or c-jun:c-fos heterodimers to an AP-1 site within lamic-pituitary-adrenal (HPA) axis and partici-

84 85the c-jun promoter. pate in the control of whole-body homeostasis
TPA, an activator of PKC, stimulates CRH and the organism’s adaptive response to

mRNA levels and peptide secretion by 1.5- to 2- stress,m’l These hormones exert their effects
fold in primary cultures of rat hypothalamic through their cytoplasmic receptors. When in the
cells,v7 TPA also increases CRH mRNA levels by ligand-unbound/inactive state, these receptors are
almost 16-fold and CRH mRNA poly-A tail length in the form of a hetero-oligomer with a hsp90
by about 100 nucleotides in the human hepa- dimer and other proteins,s The ligand-bound
toma cell line NPLC. The proximal 0.9 kb 5’ receptors dissociate from the hetero-oligomer,
flanking the hCRH gene confers TPA inducibility homodimerize and translocate into the nucleus,
to a CAT reporter in transient expression where they interact with DNA to transactivate
assays.8 In the absence of a clearly discernible appropriate hormone-responsive genes that
perfect TRE in this region, it has been suggested contain the consensus sequence 5’-GGTA-
166 Mediators of Inflammation Vol 4 1995
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CANNNTGTTCT-3’, GRE, in their 5’ flanking GGTCANNNTGACC-3’) consensus sequences in
regions.89’9 The activated receptors also interact their 5’ flanking regions, respectively.9 The two
at the protein level with the c-jun component of ERE binding domains are exact palindromes, and
the AP-1 transcription factor, preventing this half palindromic EREs can also mediate E2
factor from exerting its effects on TRE/AP1- enhancement of gene expression.112 Unlike the
responsive genes.91’92 Consistent with the struc- GR, androgen and estrogen receptors (ERs) are
tural features of its promoter, the glucocorticoid not constitutively expressed and have a narrower
receptor (GR) gene is constitutively expressed in tissue distribution,n’’4 ER, although not
all or most tissues of the organism.9-9 Cellular studied as well as GR, appears to have similar
hsp90 content appears to be an important deter- hsp90-dependent activational characteristics.1’5

minant of a cell’s sensitivity to glucocorticoids It interacts with the c-jun and c-fos components
and the interaction of hsp90 with the unliganded of the AP1 binding proteins and thus also reg-
form of GR appears to be a modulator of the ulates gene expression from TRE sims in a nega-
glucocorticoid signal transduction cascade.97-12 tive or positive fashion.116’17 It is not known

Glucocorticoids play a key regulatory role in whether 1/2 GREs may in some cases confer weak
the biosynthesis and release of CRH.’m Gluco- androgen receptor-mediated transactivation by
corticoids down-regulate rat and ovine hypotha- analogy with the weak and delayed GR transactiva-
lamic CRH peptide and mRNA levels.61’4 Stably tion by glucocorticoids via the 1/2 GRE enhan-
introduced hCRH gene in AtT-20 cells is also cer.9’Some regions of the male brain possess
subject to negative glucocorticoid regulation,m5 aromatase activity to convert androgens to estro-
Adrenalectomy and dexamethasone administra- gens, which may then modulate CNS functions
tion in the rat elicits differential CRH mRNA through the more commonly expressed ERs in
responses in the PVN and the cerebral cortex, brain areas of both sexes.
stimulating and suppressing it respectively in the Human female hypothalami have higher con-
former, but not influencing it in the latter,m6 centrations of CRH than the male ones.8

Glucocorticoids can also stimulate hCRH gene Chronic estradiol treatment of ovariectomized
expression in other tissues such as the human rats stimulates PVN CRH peptide levels19 and
placentamv and the central nucleus of the amyg- increases ACTH and corticosterone secretion
dala.m8 A construct containing the proximal 900 basally and in response to stress.2 In addition,
bp of the 5’ flanking region of the hCRH gene rat PVN CRH mRNA levels increase in the after-
coupled to a CAT reporter has been transiently noon of proestrous, at the approximate time of
expressed in COS cells and found to confer the Ei-induced preovulatory surge of Ell. 121

negative and positive glucocorticoid effects, These findings indicate that gonadal steroids may
depending on the cotransfection of a GRcDNA have an effect on the CRH-secreting neuron and
expression plasmid.86 The molecular mechanism suggest bidirectional interactions between the
by which glucocorticoids regulate hCRH gene HPA and HPG axes through their final effectors.
expression is somewhat obscure. Glucocorticoid A direct E2 enhancement of the CAT reporter
suppression of hCRH gene expression might be was found by using two overlapping hCRH 5’
mediated by the inhibitory interaction of the acti- flanking region-driven CAT constructs in transient
vated GR with the c-jun component of the AP-1 expression assays. Furthermore, the two perfect
complex. On the other hand, glucocorticoid half palindromic EREs present in the common
enhancement of hCRH gene expression might be area of both CRH constructs, bound specifically
mediated by the potentially active half perfect to a synthetic peptide spanning the DNA binding

122GREs present in the 5’ flanking region of the domain of the human ER. These findings
gene.86- Half GREs have been shown to confer demonstrate that hCRH gene expression is under
delayed secondary glucocorticoid responses to direct E2 regulation.
another gene.19’1 Direct experimental demon-
stration would be required to substantiate the TATA. The TATA box is a highly conserved struc-
functionality of the 1/2 GREs present in the 5’ tural feature, present -20 to -30 from the tran-
flanking region of the hCRH gene. scfiption start site of many genes. This element

appears to position the transcription start site by
ERE (estrogen response element).. Gonadal ster- eukaryotic polymerase II, and participates in tran-
0ids are the final effectors of the hypothalamic- scfiptional control of gene expression.12 Most
pituitary-gonadal (HPG) axis. They control repro- genes that do not have a TATA box in their pro-
duction and sexual dimorphic physiology and moter region are constitutively expressed and
behavior.1 Androgens and estrogens (E2) act by have multiple transcription initiation sites.95 The
specific receptor-mediated processes to modulate hCRH gene has two proximal TATA boxes
the expression of genes with GRE or ERE (5’- located at -30 and-195 in its 5’ flanking region
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(Fig. 2). The promoter-like properties of the account for the obseeeed differences in placental
more distal TATA box were studied in vitro after expression of the CRH gene between these
deletion of the more proximal TATA box.86 species and primates.
These studies demonstrated that the-195 TATA Differential distribution of short and long
box was active in initiating transcription and was hCRH mRNA transcripts has been detected in
responsive to cAMP, TPA and glucocorticoids, several tissues and under varying physiological
The majority of hCRH transcripts in most conditions.8’24 Tissue-specific and/or stress-

tissues and cell lines studied initiate at + 1. dependent differential utilization of the two
However, transcripts starting at-163 and-130 hCRH promoters, may explain these observa-
have also been detected in some tissues and cell tions. Differential mRNA stability would then be a
lines, suggesting that the-195 TATA box is tran- particularly important feature in CRH homeo-
scriptionally active in vivo in a variety of sites of stasis, primarily in conditions of chronic stress,
CRH expression, contributing up to 30-40% of since in the latter case sustained production of
the total pool of cytoplasmic hCRH mRNA.80’124 eRR would be required and the long stable
Additional upstream, potentially active start sites mRNAs produced by activation of the distal
are present in this gene, and the ratio of tran- moter would be beneficial to the organism.

86pr
scripts initiati,ng at such sites might also be
tissue-specific.6 Regarding the physiological sig- Harmony in antithesis. Hormonalnificance of the longer transcripts, it was pro-
posed that these might have a higher degree of regulation of the hCRH gene

secondary structure and might be more stable Apparently, depending on its site of expres-
and long-lived than the short ones.86 sion, the hCRH gene responds antithetically to

65,77 107 108TATA boxes have also been implicated in tran- glucocorticoids. The antithetical gluco-
scriptional regulation by the p53 growth sup- corticoid effects on a hCRH promoter-drive CAT
pressor gene. More specifically, p53 appears to construct may be explained by the stimulation of
control cellular activity by suppressing the tran- the half GREs by high levels of ligand-bound GR,
scription of genes with a TATA box in their pro- which presumably override the blockade of tran-
moter region through direct interaction.25 The scription exerted by lower levels of the activated
region-1.7 to-3.3 kb flanking the hCRH gene GR through interaction with cjun-cfos, as dis-
has a total of eight additional TATA boxes, which cussed above. Is this mechanism physiologically
might also interact with p53 and influence CRH relevant, particularly in view of the constitutive
gene expression.65 expression of the GR gene? Potentially yes, espe-

cially if one takes into account the heat shock
Other elements: Tissue-specific and other ele- proteins (hsp).
ments, potentially unique to the CRH gene, may Mthough the GR content of various tissues is

101.113be involved in the control of its expression, similar, their sensitivity to glucocorticoids
Their identification will require detailed analysis may vary substantially,125 suggesting that some
by both conventional and transgenic functional other cellular factor(s) is the principal modulator
assays, and their characterization will provide a of glucocorticoid effect. There is a high tissue-
better understanding of the control of the HPA specific fluctuation of hsp90 supporting a corre-
axis. lation between tissue hsp90 content and the sen-

sitivity of this tissue to glucocorticoids.m For

Tissue-specific and stress-related instance, tissues with high hsp90 content appear

expression of the hCRH gene to be quite sensitive to glucocoricoids in con-
trast with tissues with a low hsp90 content,m’28

As discussed above, the CRH gene is widely and as hsp90 content increases one would
expressed throughout the body, suggesting that expect a parallel increase of the effective con-
its product may have autocrine or paracrine centration of tissue GR.97’] The relatively small
actions. Strong evidence for the presence of fluctuation of hsp90 levels during immobilization
tissue-specific enhancers in the human and stress,m2 on the other hand, suggests that the
primate CRH gene is its expression in the pla- other proteins of the unbound GR hetero-oligo-

126 Gcenta and decidua, auch expression is absent mer99 might also participate in the control of the
in the placenta of rodents,127 suggesting that sensitivity of tissues to glucocorticoids during

01these enhancers may be carried in a segment of stress. Very little is known about the tissue-
the regulatory region of the gene potentially specific expression and the regulation of these
subject to rearrangement in the non-expressing proteins during stress, inflammation or debilitat-

65species. Alternatively, the presence of tissue- ing disease. A proposed model summarizing
specific repressor sequences in rodents may these observations is shown in Fig. 3. This model
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FIG. 3. A proposed model explaining the mechanism of tissue-specific antithetical effects of glucocorticoids on hCRH gene expression.
In this model it is assumed that basal expression of the hCRH gene is under constant AP-1. enhancement. Elevation of ambient gluco-
corticoid levels may elicit activation of GR to different degrees, depending on the tissue hsp90 content. TM Stimulation of hCRH gene
expression would be predicted in tissues with high hsp90 content, such as testis, thymus or pineal, mediated by excess activation of
GR that bypasses the AP-1 block and enhances transcription through the 1/2 GRE element. Inhibition would be expected in tissues
with a low hsp90 content such as liver, spleen or pituitary, mediated by suppression of AP-1 enhancement through inactive complex
formation with activated GR. Immunophilins, hsp70 and other factors interacting with the GR/hsp90 complex99 may also modulate the
activation of GR.

introduces a hypothetical general mechanism to
account for the differential sensitivity and direc-
tion of effects of various tissues to glucocorti-
coids. This mechanism involves genes that are
regulated by both the growth-promoting AP1
factors and by the differentiation-promoting, anti-
growth glucocorticoid hormones. Since the
hCRH gene contains both types of enhancers in
its promoter region, it may potentially respond as
outlined in Fig. 3. The mechanism proposed in
Fig. 3 may also explain the frequently observed
antithetical effects of chronic glucocorticoid
administration in clinical practice.

Potential implications of CRH gene
regulation for the sexual dimorphism of
the stress response and the immune/
inflammatory reaction

Both the stress response and the immune/
inflammatory reaction are associated with sexual
dimorphism, both being more robust in the
female or castrated male than in the intact male.

The basis of this dimorphism may be gonadal
steroid regulation of the components of the
stress response. The demonstration of direct E2-
effects on hCRH gene expression,122 implicates
the CRH gene and, therefore, the HPA axis, as a
potentially important target of ovarian steroids
and a potential mediator of gender-related differ-
ences in the stress response and HPA axis activ-
ity. These effects of E2 on the CRH neuron
suggest that the HPG axis, which is known to be
inhibited by hormones of the HPA axis at the
hypothalamic, pituitary, gonadal and sex steroid
target tissue levels during stress,12’129 also
appears to influence the latter in a positive
fashion, by slightly enhancing CRH gene tran-
scription. Thus, these data support a mutual,
bidirectional interaction between the HPG and
HPA axes, as depicted heuristically in Fig. 4.
The slightly enhanced CRH neuron activation

by estrogen may not only explain why normal
women have a slightly higher ACTH response to
oCRH than normal men, as well as a slightly
decreased ability of the glucocorticoid negative
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of the CPa-I neuron may also help explain the
paradox of the negative E2 feedback effect on
the GnRH neuron, which, unlike the PVN,
lacks ERs.132 The negative E2 feedback might,
thus, be exerted indirectly, via a subgroup of
CRH neurons. CRH has been reported to sup-
press GnRH secretion through both a direct and
an indirect, arcuate nucleus POMC/13-endorphin-
mediated path.2’
The immune/inflammatory reaction is greater

in female than in male animals and humans, and
in keeping with this, autoimmune inflammatory
disease has a significantly higher prevalence in
the female than the male sex of several
species.4- Estrogens, generally, have been
shown to activate some components of the
immune/inflammatory reaction, while androgens
suppress it.l-s Markedly elevated secretion of
immune CRH in various inflammatory sites has
been demonstrated in the Lewis rat,44’47 an
animal model of increased susceptibility to auto-
immune inflammatory disease, in which
decreased hypothalamic CRH secretion and,
hence, diminished glucocorticoid production and
defective suppression of inflammation has been
demonstrated.19’4 Although the decreased pro-
duction of CNS CRH and increased secretion of
immune CRH are associated with the high sus-
ceptibility of this animal to autoimmune inflam-

FIG. 4. A hypothetical model of the interactions between the matory disease in both sexes, both the
HPG and HPA axes and the immune/inflammatory response, susceptibility and the actual inflammatory respon-
Solid lines indicate stimulation, broken lines inhibition, and the
dotted lines conditional inhibition or stimulation. This model sug- .ses, including expression of immune CRH in per-
gests that the interactions between these axes are not unidirec- ipheral inflammatory sites, are greater in the
tional, with the HPA axis inhibiting the HPG axis at multiple female than the male.37’38 E2-mediated enhance-
levels, as reviewed, 12 but bidirectional, with estrogen potentially
stimulating both the CRH neuron, and therefore, the HPA axis, ment of immune CRH secretion might be a
the peripheral production of immune CRH, and, hence, the partial explanation for this sexual dimorphism in
immune/inflammatory response. 122 Immune CRH has been the Lewis rat, as well as, albeit [0 a lesser extent,
shown to exert proinflammatory effects in vitro and in vivo,
including enhanced production of cytokines and other mediators in other rat strains or animal species. 141

of inflammation, which in turn stimulate hypothalamic produc- Inflammatory sites, such as the athritic joints of
tion of CRH, pituitary production of ACTH and adrenal produc- patients with rheumatoid arthritis, contain high
tion of glucocorticoids. Although not included in the figure,
gonadal steroid/cytokine interactions have been demonstrated levels of immunoreactive CRH in the synovial
for IL-6 actions. 16 fluid and inside cultured synoviocytes.48 Interest-

ingly, patients with rheumatoid arthritis have
been shown to have poor or deficient responses

feedback to shut off the ACTH and cortisol of their HPA axes to the stress of major surgery,
responses,129 but may also provide an explana- when compared with patients with osteoarthritis

142tion as to why various emotional disorders char- having similar surgery. Rheumatoid arthritis
acterized by elevated CRH secretion,12 such as patients also have inappropriately normal or low
depression and anxiety, have a higher incidence normal basal diurnal concentrations of plasma

142 143in women than in men.3 Also, the same find- cortisol making them strictly analogous to
ings may explain why puberty/adolescence, the the Lewis rat model of autoimmune/inflammatory

139 140postpartum and the perimenopausal period, disease.
during all of which marked changes in estrogen The above studies suggest that homeostatic
production take place, are characterized by regulation involves complex mutual interactions
increased incidence of emotional disorders, between the reproductive axis, HPA axis and

In addition to explaining the slightly increased, the immune system, in which t2 and CRH may
basal and stress stimulated HPA axis function in play central roles (Fig. 4). Certainly, other mole-
the female gender, the Ei-induced enhancement cules involved in the regulation of these axes,
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such as several neurotransmitters, cytokines and
lipid mediators, also participate in the above
interactions and may contribute to their sexual
dimorphism.144 Thus, a neurotransmitter, ser-
otonin, has been shown to stimulate both CRH
and ACTH secretion. 145’146 The inflammatory
cytokines tumour necrosis factor-o,147’148 inter-
leukin-148-15 and interleukin-6,14a’149’151 have
been shown to activate acutely hypothalamic
CRH secretion and, more chronically, pituitary
ACTH147,152,153 and, perhaps, glucocorticoid
secretion,151’152 whereas several lipid mediators
of inflammation cause CRH, ACTH and gluco-

150 154-157corticoid secretion. These findings
explain the original pioneering studies, in which
CRH-, ACTH- and glucocorticoid-releasing bioac-
tivities were found in the serum or supernatants
of stimulated immunocytes.155,158,159 Thus,
immune CRH, by participating in the regulation
of the immune response at the level of the leu-
kocyte, may be also viewed as a peripheral
coordinator of immune-neuroendocrine interac-
tions.
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