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Abstract
People learn modality-independent, conceptual representations from modality-specific sen-

sory signals. Here, we hypothesize that any system that accomplishes this feat will include

three components: a representational language for characterizing modality-independent

representations, a set of sensory-specific forward models for mapping from modality-inde-

pendent representations to sensory signals, and an inference algorithm for inverting forward

models—that is, an algorithm for using sensory signals to infer modality-independent repre-

sentations. To evaluate this hypothesis, we instantiate it in the form of a computational

model that learns object shape representations from visual and/or haptic signals. The

model uses a probabilistic grammar to characterize modality-independent representations

of object shape, uses a computer graphics toolkit and a human hand simulator to map from

object representations to visual and haptic features, respectively, and uses a Bayesian

inference algorithm to infer modality-independent object representations from visual and/or

haptic signals. Simulation results show that the model infers identical object representations

when an object is viewed, grasped, or both. That is, the model’s percepts are modality

invariant. We also report the results of an experiment in which different subjects rated the

similarity of pairs of objects in different sensory conditions, and show that the model pro-

vides a very accurate account of subjects’ ratings. Conceptually, this research significantly

contributes to our understanding of modality invariance, an important type of perceptual

constancy, by demonstrating how modality-independent representations can be acquired

and used. Methodologically, it provides an important contribution to cognitive modeling, par-

ticularly an emerging probabilistic language-of-thought approach, by showing how symbolic

and statistical approaches can be combined in order to understand aspects of human

perception.
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Author Summary

When viewing an object, people perceive the object’s shape. Similarly, when grasping the
same object, they also perceive its shape. In general, the perceived shape is identical in
these two scenarios, illustrating modality invariance, an important type of perceptual con-
stancy. Modality invariance suggests that people infer a modality-independent, conceptual
representation that is the same regardless of the modality used to sense the environment.
If so, how do people infer modality-independent representations from modality-specific
sensory signals? We present a hypothesis about the components that any system will
include if it infers modality-independent representations from sensory signals. This
hypothesis is instantiated in a computational model that infers object shape representa-
tions from visual or haptic (i.e., active touch) signals. The model shows perfect modality
invariance—it infers the same shape representations regardless of the sensory modality
used to sense objects. The model also provides a highly accurate account of data collected
in an experiment in which people judged the similarity of pairs of objects that were viewed,
grasped, or both. Conceptually, our research contributes to our understanding of modality
invariance. Methodologically, it contributes to cognitive modeling by showing how sym-
bolic and statistical approaches can be combined in order to understand aspects of human
perception.

Introduction
While eating breakfast, you might see your coffee mug, grasp your coffee mug, or both. When
viewing your mug, your visual system extracts and represents the shape of your mug. Similarly,
when grasping your mug, your haptic system also extracts and represents the shape of your
mug. Are the representations acquired when viewing your mug distinct from the representa-
tions acquired when grasping your mug? If so, these would be modality-specific representa-
tions. Or does there exist a level at which the shape representation of your mug is the same
regardless of the sensory modality through which the mug is perceived? If so, this would be a
modality-independent representation.

Recent experiments on crossmodal transfer of perceptual knowledge suggest that people
have multiple representations of object shape and can share information across these represen-
tations. For example, if a person is trained to visually categorize a set of objects, this person will
often be able to categorize novel objects from the same categories when objects are grasped but
not seen [1, 2]. Because knowledge acquired during visual training is used during haptic testing,
this finding suggests that neither the learning mechanisms used during training nor the repre-
sentations acquired during training are exclusively visual. To the contrary, the finding indicates
the existence of both visual and haptic object representations as well as the ability to share or
transfer knowledge across these representations. Successful categorization of objects regardless
of whether the objects are seen or grasped illustrates modality invariance, an important type of
perceptual constancy.

What type of learning mechanisms and mental representations might underlie modality
invariance? One possible answer is that people are able to abstract over their modality-specific
representations in order to acquire modality-independent representations. For instance, people
might use modality-specific representations of objects as a foundation for inferring modality-
independent representations characterizing objects’ intrinsic properties. To understand the
nature of the latter representations, it is important to recognize the distinction between objects’
intrinsic (or “deep”) properties and the sensory (or “surface”) features that these properties
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give rise to. The shape of an object is a modality-independent intrinsic property. Visual and
haptic features are modality-specific sensory cues to the object’s shape arising when the object
is viewed or grasped, respectively.

Once acquired, modality-independent representations may underlie modality invariance.
For example, they can mediate crossmodal transfer of knowledge. Consider a person who is
first trained to visually categorize a set of objects, and then tested with novel objects (from the
same set of categories) when the objects are grasped but not seen. During visual training, the
person uses his or her visual representation of each object to infer a modality-independent
representation characterizing the object’s intrinsic properties, and applies the object’s category
label to this representation. When subsequently grasping a novel object on a test trial, the per-
son uses the object’s haptic representation to infer a modality-independent representation of
its intrinsic properties. The novel object is judged to be a member of a category if it has similar
intrinsic properties to the training objects belonging to that category.

Because modality-independent representations may underlie modality invariance, they
would clearly be useful for the purposes of perception and cognition. Importantly, recent
behavioral and neurophysiological data indicate their existence in biological organisms. For
instance, behavioral and neural evidence support the idea that object features extracted by
vision and by touch are integrated into modality-independent object representations that are
accessible to memory and higher-level cognition [3–15]. Based on brain imaging (fMRI) data,
Taylor et al.[10] argued that posterior superior temporal sulcus (pSTS) extracts pre-semantic,
crossmodal perceptual features, whereas perirhinal cortex integrates these features into amodal
conceptual representations. Tal and Amedi [15], based on the results of an fMRI adaptation
study, claimed that a neural network (including occipital, parietal, and prefrontal regions)
showed crossmodal repetition-supression effects, indicating that these regions are involved in
visual-haptic representation.

Perhaps the most striking data comes from the work of Quiroga and colleagues who ana-
lyzed intracranial recordings from human patients suffering from epilepsy [16, 17]. Based on
these analyses, they hypothesized that the medial temporal lobe contains “concept cells”, mean-
ing neurons that are selective for particular persons or objects regardless of how these persons
or objects are sensed. For instance, Quiroga et al [16] found a neuron that responded selectively
when a person viewed images of the television host Oprah Winfrey, viewed her written name,
or heard her spoken name. (To a lesser degree, the neuron also responded to the comedian
Whoopi Goldberg.) Another neuron responded selectively when a person saw images of the
former Iraqi leader Saddam Hussein, saw his name, or heard his name.

To fully understand modality-independent representations, Cognitive Science and Neuro-
science need to develop theories of how these representations are acquired. Such theories
would be significant because they would help us understand the relationships between percep-
tual learning and modality invariance. They would also be significant because they would be
early “stepping stones” toward developing an understanding of the larger issue of how sensory
knowledge can be abstracted to form conceptual knowledge.

The plan of this paper is as follows. In the Results section, we start by describing a general
theoretical framework for how modality-independent representations can be inferred from
modality-specific sensory signals. To evaluate the framework, we next describe an instantiation
of the framework in the form of a computational model, referred to as the Multisensory-
Visual-Haptic (MVH) model, whose goal is to acquire object shape representations from visual
and/or haptic signals. Simulation results show that the model learns identical object represen-
tations when an object is viewed, grasped, or both. That is, the model’s object percepts are
modality invariant. We also evaluate the MVHmodel by comparing its predictions with
human experimental data. We report the results of an experiment in which subjects rated the
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similarity of pairs of objects, and show that the model provides a very successful account of
subjects’ ratings. In the Discussion section, we highlight the contributions of our theoretical
framework in general, and of the MVHmodel in particular, emphasizing its combination of
symbolic and statistical approaches to cognitive modeling. Due to this combination, the model
is consistent with an emerging “probabilistic language of thought”methodology. The Methods
section provides modeling and experimental details.

Results

Theoretical framework
According to our framework, any system (biological or artificial) that acquires modality-inde-
pendent representations from sensory signals will include the following three components: (1)
a representational language for characterizing modality-independent representations; (2) sen-
sory-specific forward models for mapping from modality-independent representations to sen-
sory signals; and (3) an inference algorithm for inverting sensory-specific forward models—
that is, an algorithm for using sensory signals in order to infer modality-independent represen-
tations. These three components are discussed in turn.

(1) Representational language for characterizing modality-independent representa-
tions. Although biological representations of modality-specific sensory signals are not fully
understood, it is believed that these representations are constrained by the properties of the
perceptual environment and the properties of the sensory apparatus. For example, the nature
of biological visual representations depends on the nature of the visual environment and the
nature of the eye.

In contrast, constraints on the nature of modality-independent representations are not so
easy to identify. One radical view, usually referred to as embodied cognition [18], claims that
there are no amodal representations; all mental representations consist of sensory representa-
tions. However, the majority view in Cognitive Science argues that people possess modality-
independent representations (e.g., representations of object shape or representations of abstract
concepts such as ‘love’ or ‘justice’), though there is no consensus as to the best way to charac-
terize these representations. Common approaches include both statistical (e.g., distributed rep-
resentations over latent variables) and symbolic (e.g., grammars, logic) formalisms. These
formalisms provide different representational languages for expressing modality-independent
thoughts and ideas, each with their own strengths and weaknesses.

(2) Sensory-specific forward models. Modality-independent representations do not make
direct contact with sensory signals. To bring them in contact with sensory signals, our frame-
work includes sensory-specific forward models which map from modality-independent repre-
sentations to sensory features. For example, a vision-specific forward model might map a
modality-independent representation of an object’s shape to an image of the object when viewed
from a particular viewpoint. Similarly, a haptic-specific forward model might map the same
modality-independent representation of an object’s shape to a set of haptic features (e.g., hand
shape as characterized by the joint angles of a hand) that would be obtained when the object is
grasped at a particular orientation. We often find it useful to think of these sensory-specific for-
ward models as implementations of sensory imagery. For instance, if a vision-specific forward
model maps an object to its visual features, then that is an implementation of visual imagery.

(3) Inference algorithm for inverting forward models. Sensory-specific forward models
map from modality-independent representations to sensory signals. However, perception
operates in the opposite direction—it maps from sensory signals to modality-independent rep-
resentations. Consequently, perception needs to invert the sensory-specific forward models.
This inversion is accomplished by a perceptual inference algorithm.
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From a larger perspective, our theoretical framework presents a conceptual analysis of the
computational problem of multisensory perception. How can we transfer knowledge (category,
shape, meaning etc.) from one modality to another? Why are we more accurate when we per-
ceive through more modalities? How can we recognize a novel object crossmodally? Or how
can we recognize an object crossmodally from a novel view? We believe our framework is suc-
cessful in providing a unified account of the answers to these questions and the underlying cog-
nitive processes. Hence, we believe our theoretical framework in itself constitutes a significant
contribution to the understanding of multisensory perception.

Framework applied to visual-haptic object shape perception
To better understand and evaluate our framework, we apply it to the perception of object shape
via visual and haptic modalities. This application results in the MVH computational model
with the three components outlined above.

We have had to make specific implementation choices to instantiate our theoretical frame-
work as a computational model. To us, these choices are both uninteresting and interesting.
On the one hand, the implementation choices that we have made are not essential to the frame-
work. Indeed, other reasonable choices could have been made, thereby leading to alternative
framework implementations. On the other hand, we believe that some of our choices are
important because they contribute to the study of cognitive modeling. In particular, our
computational model combines both symbolic and statistical modeling approaches. Because of
this combination, the model can be regarded as falling within a recently emerging “probabilis-
tic language of thought”methodology. This contribution is described in the Discussion section.

One of the implementation choices that we made was a choice as to which stimuli we should
focus on. Object shape perception via vision and/or haptics is currently an unsolved problem
when considered in its full generality. Consequently, we focus on a small subset of objects. We
designed 16 novel objects, where the set of object parts was based on a previously existing set of
objects known as “Fribbles”. Fribbles are complex, 3-D objects with multiple parts and spatial rela-
tions among parts. They have been used in studies of visual [19, 20] and visual-haptic [2] object
perception. We used part-based objects because many real-world objects (albeit not all) have a
part-based structure. In addition, theories of how people visually recognize part-based objects
have received much attention and played important roles in the field of Cognitive Science [21–25].

Each object that we designed is comprised of five parts (the set of possible parts is shown in
Fig 1). One part (labeled P0 in Fig 1), a cylindrical body, is common to all objects. The remain-
ing four parts vary from object to object, though they are always located at the same four loca-
tions in an object. A particular object is specified by selecting one of two interchangeable parts
at each location (4 locations with 2 possible parts per location yields 16 objects). The complete
set of objects is shown in Fig 2.

Shape grammar as a language for characterizing object shape. In the MVHmodel,
object representations have three important properties. The first property is that representa-
tions are modality-independent. That is, they are not directly composed from modality-specific
features, nor do they directly specify the values of these features.

The second property is that object representations characterize objects in terms of their
parts and the spatial relations among these parts. When designing the model, our main focus
was not on developing new insights regarding how people represent object shape. Although
this is an important research area, many researchers in the Cognitive Science and Artificial
Intelligence communities already study this topic [21–35]. The scientific literature contains a
wide variety of different approaches to object shape representation. To date, there does not
appear to be a consensus as to which approach is best.

From Sensory Signals to Modality-Independent Representations
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Instead of researching new ways to represent object shape, our goal is to understand how
modality-independent representations can be learned from sensory data. Because the MVH
model needs to represent object shape, it necessarily resembles previously existing models that
also represent object shape. In particular, like previous models, our model represents objects in
terms of their parts and the spatial relations among these parts [21–25]. In principle, we are
not strongly committed to the hypothesis that people represent objects in a part-based manner.
Shape primitives other than parts could have been used in our simulations (as is sometimes
done with shape grammars in the Computer Vision and Computer Graphics literatures; e.g.,
see [36]), albeit at possibly greater computational expense. To us, the use of part-based object

Fig 1. Possible object parts. Part P0 is common to all objects. Parts P1–P8 vary from object to object.

doi:10.1371/journal.pcbi.1004610.g001

Fig 2. Images of objects used in our simulations and experiment.

doi:10.1371/journal.pcbi.1004610.g002
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representations in our simulations seems reasonable because these representations have played
prominent roles and received considerable theoretical and empirical support in the Cognitive
Science literature, because the stimuli used in our simulations and experiment were generated
in a part-based manner, because the analyses of our experimental data indicate that subjects
were sensitive to the part-based structure of the stimuli (see below), and because part-based
object representations led to computationally tractable simulations.

The final property is that object representations use a shape grammar to characterize an
object’s parts and the spatial relations among these parts [35–42]. Grammars are commonly
used to characterize human language and language processing [43, 44], and are also used in
other areas of Cognitive Science [45–50]. In addition, they are used to characterize objects and
scenes in fields such as Computer Vision and Computer Graphics [35–42].

The MVHmodel uses a shape grammar to specify the possible parts and spatial relations
among parts. Conventional shape grammars, like other types of symbolic representations, can
often be “brittle” when used in noisy environments with significant uncertainty. We amelio-
rated this problem through the use of a probabilistic approach. The details of the shape gram-
mar are described in the Methods section. For now, note that the grammar is an instance of a
probabilistic context-free grammar. Production rules characterize the number of parts and the
specific parts comprising an object. These rules are supplemented with information character-
izing the spatial relations among parts.

Specifically, an object is generated using a particular sequence of production rules from the
grammar. This sequence is known as a derivation which can be illustrated using a parse tree.
To fully specify an object, an object’s derivation or parse tree is supplemented with information
specifying the locations of the object’s parts. This specification occurs by adding extra informa-
tion to a parse tree, converting this tree to a spatial tree representing object parts and their loca-
tions in 3-D space (see Methods section).

Vision-specific and haptic-specific forward models. Because object representations are
modality independent, they do not make direct contact with sensory signals. To evaluate and
infer these representations, they need to be brought in contact with these signals. For these pur-
poses, the MVHmodel uses its modality-independent representations to predict or “imagine”
sensory features from individual modalities. For example, given a modality-independent repre-
sentation of a particular object (i.e., a representation of the object’s parts and the locations of
these parts), the model can predict what the object would look like (perhaps a form of visual
imagery) or predict the hand shape that would occur if the object were grasped (perhaps a
form of haptic imagery). A mapping from a modality-independent representation to a sensory-
specific representation can be carried out by a forward model, a type of predictive model that is
often used in the study of perception and action [51–53]. In Cognitive Science, forward models
are often mental or internal models. However, forward models exist in the external world too.
Our computer simulations made use of two forward models.

The vision-specific forward model was the Visualization Toolkit (VTK; www.vtk.org), an
open-source, freely available software system for 3-D computer graphics, image processing,
and visualization. We used VTK to visually render objects. Given a modality-independent
representation of an object, VTK rendered the object from three orthogonal viewpoints. Images
were grayscale, with a size of 200 × 200 pixels. A visual input to the model was a vector with
120,000 elements (3 images × 40,000 [200 × 200] pixels per image).

The haptic-specific forward model was a grasp simulator known as “GraspIt!”[54]. GraspIt!
contains a simulator of a human hand. When predicting the haptic features of an object, the
input to GraspIt! was the modality-independent representation for the object. Its output was a
set of 16 joint angles of the fingers of a simulated human hand obtained when the simulated
hand “grasped” the object. Grasps—or closings of the fingers around an object—were
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performed using GraspIt!’s AutoGrasp function. Fig 3 shows the simulated hand grasping an
object at three orientations. In our simulations, each object was grasped 24 times, each time
from a different orientation (different orientations were generated by rotating an object 8 times
[each time by 45°] around the width, length, and depth axes). The use of multiple grasps can be
regarded as an approximation to active haptic exploration. A haptic input to the model was a
vector with 384 elements (16 joint angles per grasp × 24 grasps). Our choice of using joint angles
as our haptic features follows a common practice in the field of postural hand analysis [55, 56].

Bayes’ rule inverts sensory-specific forward models. Importantly, the MVHmodel learns
its object representations. The most influential models of object shape in the Cognitive Science
literature, such as those of Biederman [23] and Marr and Nishihara [21], used part-based
shape representations that were stipulated or hand-crafted by scientific investigators. In con-
trast, a goal of our model is to learn representations using a probabilistic or Bayesian inference
algorithm from visual and/or haptic signals. Using the terminology of Bayesian inference, the
model computes a posterior distribution over object representations based on a prior distribu-
tion over these representations (indicating which of the representations are more or less likely
before observing any sensory data) and a likelihood function (indicating which representations
are more or less likely to give rise to observed sensory data).

The model’s prior distribution is based on the prior distribution of the Rational Rules model
of Goodman et al.[45]. In brief (see the Methods section for full details), the prior distribution
is the product of two other distributions, one providing a prior over parse trees and the other
providing a prior over spatial models. These priors are Occam’s Razors favoring the use of
“simple” parse trees and spatial models.

The likelihood function allows the model to use sensory data to evaluate proposed object
representations. Object representations which are highly likely to give rise to perceived sensory
data are more probable than object representations which are less likely to give rise to these
data (ignoring the prior distribution, for the moment). Sensory-specific forward models play a
crucial role in this evaluation. As mentioned above, object representations are modality-inde-
pendent, and thus do not make direct contact with perceived visual or haptic features. Sensory-
specific forward models are needed to relate object representations to their sensory features.

Using Bayes’ rule, the MVHmodel combines the prior distribution and the likelihood func-
tion to compute a posterior distribution over object representations. Unfortunately, exact com-
putation of the posterior distribution is intractable. We, therefore, developed a Markov chain
Monte Carlo (MCMC) algorithm that discovers good approximations to the posterior. This
algorithm is described in the Methods section.

Simulation results. We used the model to infer modality-independent representations of
the 16 objects in Fig 2. Object representations were inferred under three stimulus conditions: a
vision condition, a haptic condition, and a multisensory (visual and haptic) condition. In all con-
ditions, we inferred the posterior distribution over modality-independent object representations.

Fig 3. GraspIt! simulates a human hand.Here the hand is grasping an object at three different orientations.

doi:10.1371/journal.pcbi.1004610.g003
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However, except where explicitly noted, the results reported below are based on maximum a pos-
teriori (MAP) estimates. Because distributions are highly peaked around the MAP estimate, the
results are essentially the same when samples from each distribution are used.

The sole free parameter of the model is the variance of the likelihood function. Intuitively,
this parameter controls the relative weights of the prior and likelihood terms. By increasing the
variance, thereby increasing the relative weight of the prior, it is possible to constrain the
model so that it tends to prefer simple parse trees and spatial models. In contrast, as the vari-
ance is decreased, the likelihood becomes more important, thus allowing more complex trees
and models to be assigned probability mass. For each stimulus condition, we selected a value
for the variance that provides a good balance between prior and likelihood terms. We found
that simulation results are robust to the exact choice for the variance value. As long as the vari-
ance is small enough to allow object representations which are complex enough, the MVH
model produced similar results.

Fig 4 shows the results of a representative simulation in which the model received visual
input. This input consisted of three images of an object from orthogonal viewpoints (Fig 4a).
The four modality-independent object representations with the highest posterior probabilities
are shown in the top row of Fig 4b. The bottom row shows visual renderings of these object
representations. The MAP estimate is on the left. Crucially, this estimate represents the object
perfectly, successfully inferring both the object parts and their spatial locations. Indeed, we find
that the model’s MAP estimate always represents an object perfectly for all the objects compris-
ing our stimulus set.

Fig 4. Results from a representative simulation of the MVHmodel. (a) Visual input to the model. (b) Four estimates of modality-independent object
representations (parse trees augmented with spatial information) with the highest posterior probabilities (top) and their images (bottom). The MAP estimate is
on the left. Each S (spatial) node denotes a position in 3D space relative to its parent S node. P (part) nodes specify the part located at its parent S node
position. For example, in all the trees here P0 is located at its ancestor S node’s position, which is the origin. The depth of a P node corresponds roughly to its
distance from the origin. Please refer to Methods for more details.

doi:10.1371/journal.pcbi.1004610.g004
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The other estimates in Fig 4b (estimates with smaller probabilities than the MAP estimate)
exemplify the robustness of the model. Although imperfect, these estimates are still sensible.
When a part is missing from an object representation, it is often part P8 which is small in size
and, thus, has only a small influence on the likelihood function. When a part is mismatched,
the model often substitutes part P7 for P8. This is unsurprising given that parts P7 and P8 are
visually (and haptically) similar.

Critically, the model shows perfect modality invariance. That is, it performs identically in
vision, haptic, and multisensory conditions, meaning the model produces the same MAP esti-
mate of an object’s parts and spatial relations among these parts regardless of whether the
object is viewed, grasped, or both. For example, if the model is given the haptic features of the
object shown in Fig 4a (instead of images of the object), its MAP estimate is still the parse
tree on the left of Fig 4b. This result demonstrates that the object representations acquired by
the model are modality independent. For this reason, we do not discuss separately the mod-
el’s performances in vision, haptic, and multisensory conditions—these performances are
identical.

Comparison with human data
Above, the motivations and merits of our computational model were described based primarily
on theoretical grounds. Here, we evaluate the MVHmodel based on its ability to provide an
account of human experimental data. The experiment reported here is related to the experi-
ments of Wallraven, Bülthoff, and colleagues who asked subjects to rate the similarity of pairs
of objects when objects were viewed, grasped, or both [57–61]. However, our experiment also
includes a crossmodal condition in which subjects rated object similarity when one object was
viewed and the other object was grasped.

In brief (experimental details are given in the Methods section), the stimuli were the 16
objects described above (Fig 2). On each trial, a subject observed two objects and judged their
similarity on a scale of 1 (low similarity) to 7 (high similarity). The experiment included four
conditions referred to as the visual, haptic, crossmodal, and multisensory conditions. Different
groups of subjects were assigned to different conditions. In the visual condition, subjects
viewed images of two objects on each trial. In the haptic condition, subjects grasped physical
copies of two objects (fabricated using 3-D printing) on each trial. In the crossmodal condition,
subjects viewed an image of one object and grasped a second object on each trial. Finally, in the
multisensory condition, subjects viewed and grasped two objects on each trial.

Experimental results. If people’s perceptions of object shape are modality invariant, then
subjects in all conditions should perform the experimental task in the same manner: On each
trial, a subject represents the intrinsic shape properties of the two observed objects in a modal-
ity-independent format, and then the two modality-independent object representations are
compared to generate a similarity judgment. The goal of the analyses of our experimental data is
to evaluate whether subjects in fact based their similarity judgments on modality-independent
shape representations. We look at this question by testing various predictions of the modality-
invariance hypothesis. First, if people’s perceptions of object shape are modality invariant, their
similarity judgments should be quite similar regardless of modality. Hence, one would expect to
see high correlations between similarity judgments not only within conditions but also across
conditions. We test this prediction with our first analysis below. A much stronger test of modal-
ity invariance is possible if we can somehow find the shape representations subjects employed in
each condition. We can then simply compare these representations to evaluate modality invari-
ance. In our second set of analyses, we use additive clustering andMultidimensional Scaling
(MDS) to infer the perceptual space for each condition and compare them.
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First, we looked at the average of subjects’ similarity ratings for identical objects; this provides
us with a coarse measure of modality invariance as well as a measure of objective accuracy. As
expected from modality invariant representations, these ratings were nearly 7 (Visual: 6.89
±0.27, Haptic: 6.74±0.47, Crossmodal: 6.71±0.49, Multisensory: 6.82±0.35). To address the
question of modality invariance further, we proceeded as follows. First, for each subject in our
experiment, we formed a subject-level similarity matrix by averaging the subject’s ratings for
each pair of objects. Next, we correlated a subject’s similarity matrix with the matrices for sub-
jects in the same experimental condition and in other conditions. The average correlations are
shown in Table 1. These correlations are large, ranging from 0.76 to 0.91 (explaining 58%–83%
of the variance in subjects’ ratings). To test if these values are significantly greater than zero, we
transformed them using the Fisher z-transformation. A t-test using the transformed correlations
indicated that all correlations are significantly greater than zero (p< 0.001 in all cases). We are
primarily concerned with whether subjects from different conditions gave similar similarity rat-
ings, and thus we closely examined the average correlations when subjects were in different con-
ditions (for example, cells Visual-Haptic or Visual-Crossmodal, but not Visual-Visual or
Haptic-Haptic, in the matrix in Table 1). Using t-tests, we asked if each of these correlations is
“large”, which we (arbitrarily, but not unreasonably) defined as meaning that a correlation
explains at least 50% of the variance in subjects’ ratings. All of these correlations were found to
be large by this definition (p< 0.001 in all cases). Lastly, for each condition, we also formed a
condition-level similarity matrix by averaging the subject-level matrices for the subjects belong-
ing to that condition. As shown in Table 2, correlations among these condition-level matrices
were extremely high, with the smallest correlation equal to 0.97 (explaining 94% of the variance
in subjects’ ratings across conditions). Taken as a whole, our correlational analyses strongly sug-
gest that subjects had similar notions of object similarity in all experimental conditions. In other
words, subjects’ similarity ratings were modality invariant.

Table 1. Average correlations within and across conditions among subjects’ similarity matrices.

Visual Haptic Crossmodal Multisensory

Visual 0.91 ± 0.0341 0.83 ± 0.0855 0.86 ± 0.0729 0.89 ± 0.0572

Haptic 0.76 ± 0.1032 0.78 ± 0.1052 0.81 ± 0.0962

Crossmodal 0.8 ± 0.0968 0.83 ± 0.0866

Multisensory 0.86 ± 0.0651

For example, the value in the Visual-Visual cell was calculated by averaging over correlations in subjects’ similarity ratings for each pair of subjects in the

visual condition (because there were 7 subjects in this condition, there were 42 = 7 × 6 such pairs). Similarly, the value in the Visual-Haptic cell was

calculated by averaging over correlations for each pair of subjects when one subject was in the visual condition and the other subject was in the haptic

condition (because there were 7 subjects in each condition, there were 49 such pairs).

doi:10.1371/journal.pcbi.1004610.t001

Table 2. Correlations based on condition-level similarity matrices formed by averaging subject-level matrices for the subjects belonging to each
condition.

Visual Haptic Crossmodal Multisensory

Visual 0.99 ± 0.0072 0.95 ± 0.0206 0.96 ± 0.0138 0.97 ± 0.0134

Haptic 0.97 ± 0.0241 0.94 ± 0.023 0.94 ± 0.0232

Crossmodal 0.97 ± 0.0199 0.96 ± 0.017

Multisensory 0.98 ± 0.0136

Means and standard deviations are estimated with a bootstrap procedure with 1000 replications.

doi:10.1371/journal.pcbi.1004610.t002
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We further analyzed the experimental data using a Bayesian nonparametric additive cluster-
ing technique due to Navarro and Griffiths [62]. This technique makes use of the Indian Buffet
Process [63], a latent feature model recently introduced in the Machine Learning and Statistics
literatures. In brief, the technique infers the latent or hidden features of a set of stimuli from
their similarities. In our context, the technique assumes that subjects’ similarity ratings are gen-
erated from hidden or latent binary object representations. Using Bayes’ rule, it inverts this
generative process so that similarity ratings are used to infer probability distributions over
object representations. In other words, the input to the technique is a matrix of similarity rat-
ings. Its output is a probability distribution over object representations where representations
that are likely to give rise to the similarity ratings are assigned higher probabilities. The
dimensionality of the binary object representations is not fixed. Rather, the technique infers a
probability distribution over this dimensionality.

We applied the technique to each of the condition-level similarity matrices. In all conditions,
it revealed that the most probable dimensionality was eight (i.e., similarity ratings in all condi-
tions were most likely based on object representations consisting of eight binary features). How-
ever, the technique inferred two identical copies of each dimension, a potential problem noted
by Navarro and Griffiths [62]. Consequently, the technique actually inferred four-dimensional
object representations in all conditions. Interestingly, these object representations can be inter-
preted as “part based” representations of our experimental stimuli. Recall the structure of the
experimental objects. There are four locations on objects at which parts vary. At each location,
there are two interchangeable parts, only one of which is present in a given object. As a matter
of notation, label the first set of interchangeable parts as {P1, P2}, the second set as {P3, P4}, and
so on. An object can, therefore, be represented by four binary numbers. One number indicates
which part is present in the set {P1, P2}, another number indicates which part is present in the
set {P3, P4}, etcetera. We refer to this as a list-of-parts object representation.

The Bayesian nonparametric additive clustering technique inferred the same list-of-parts
object representation as its MAP estimate when applied to every condition-level similarity
matrix. This is important because it suggests that the same object representations underlied
subjects’ similarity ratings in visual, haptic, crossmodal, and multisensory experimental condi-
tions. That is, this analysis of our data suggests that subjects used modality-independent repre-
sentations, and thus our data are consistent with the hypothesis that subjects’ object
perceptions were modality invariant. Importantly, the result did not have to come out this way.
If the additive clustering technique inferred different object representations when applied to
different condition-level similarity matrices, this outcome would have been inconsistent with
the hypothesis of modality invariance.

The fact that the additive clustering technique always inferred part-based representations is
also noteworthy. In hindsight, however, it might be unsurprising for subjects to have used part-
based representations. Recall that our stimuli were generated by combining distinct parts. It
seems likely that subjects would be sensitive to the structure of this generative process. More-
over, previous theoretical and empirical studies have indicated that people often use part-based
object representations [21–25].

Lastly, we analyzed subjects’ similarity ratings using non-metric multidimensional scaling
(MDS) with the Manhattan distance function. Given a condition-level similarity matrix, MDS
assigns locations in an abstract space to objects such that similar objects are nearby and dissim-
ilar objects are far away [64–66]. To evaluate the dimensionality of this abstract space, we com-
puted the “stress” value, a goodness-of-fit measure, for several different dimensionalities. In
addition, we also calculated the Bayesian Information Criterion (BIC) score for each
dimensionality. When using MDS, there are potential pitfalls when averaging similarity judg-
ments of different subjects. If different subjects use different abstract spaces, then averaging
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will lose this information. In addition, average similarity ratings can be fit well by MDS regard-
less of the nature of individual subject’s ratings due to the increased symmetry of the average
ratings [67]. Lee and Pope [68] developed a BIC score that ameliorates these potential pitfalls.
This score takes into account both the fit and complexity of an MDS model. The results based
on stress values and BIC scores are shown in Fig 5a and 5b, respectively. In both cases, values
typically reach a minimum (or nearly so) at four dimensions in all experimental conditions. In
Fig 6, we plot the MDS space with four dimensions for the crossmodal condition. The results
for other conditions are omitted since they are all qualitatively quite similar. In each panel of
Fig 6, we plot two of the four dimensions against each other, i.e., project the 4D space down to
2D. What is striking is the clear clustering in all panels. We see four clusters of four objects
where each dimension takes one of two possible values. This is precisely the list-of-parts repre-
sentation found by the Bayesian nonparametric additive clustering technique.

In summary, our correlational analyses of the experimental data reveal that subjects made
similar similarity judgments in visual, haptic, crossmodal, and multisensory conditions. This
indicates that subjects’ judgments were modality invariant. Our analyses using a Bayesian non-
parametric additive clustering technique and using multidimensional scaling indicate that sub-
jects formed the same set of modality-independent object representations in all conditions.

Simulation results. Here we evaluate whether the MVHmodel provides a good account of
our experimental data. To conduct this evaluation, however, the model must be supplemented
with an object similarity metric. Such a metric could potentially take several different forms. For
example, object similarity could be computed based on modality-independent features. Alterna-
tively, it could be based on modality-specific features such as visual or haptic features.

Researchers studying how people represent space have made a surprising discovery. Spatial
locations can be represented in many different reference frames, such as eye-centered, head-cen-
tered, body-centered, or limb-position centered coordinate systems. Counterintuitively, people
often transform representations of spatial locations into a common reference frame, namely an
eye-centered reference frame, when planning and executing motor movements [69–72].

These studies raise an interesting issue: In what reference frame do people judge object similar-
ity? Do they judge object similarity in a modality-independent feature space? Or do they judge
object similarity in a sensory-specific feature space such as a visual or haptic space? Here we
address these questions by augmenting the MVHmodel with different object similarity functions.

The hypothesis that people’s percepts are modality invariant predicts that people judge
object similarity based on the values of modality-independent features. An alternative possibil-
ity is that people acquire modality-independent object representations when objects are viewed

Fig 5. Results fromMDS analysis.MDS (a) stress values and (b) BIC scores as a function of the number of
dimensions.

doi:10.1371/journal.pcbi.1004610.g005

From Sensory Signals to Modality-Independent Representations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004610 November 10, 2015 13 / 32



and/or grasped, but then re-represent objects in terms of visual features for the purpose of
judging object similarity. The mapping from modality-independent to visual features could be
achieved by a vision-specific forward model. A second alternative is that people re-represent
objects in terms of haptic features (via a haptic-specific forward model) to judge object similar-
ity. Because the MVHmodel includes modality-independent representations along with
vision-specific and haptic-specific forward models, it can be used to evaluate these different
possibilities.

In one set of simulations, the model was used to compute object similarity in a modality-
independent feature space. On each simulated trial, the model computed modality-indepen-
dent representations for two objects. Next, the objects’ similarity was estimated using a tree-
based similarity measure known as “tree edit distance”[73]. In brief, this measure has a library
of three tree-based operators: rename node, remove node, and insert node. Given two modal-
ity-independent object representations—that is, two spatial trees or MAP estimates of the
shapes of two objects—this similarity measure counts the number of operators in the shortest
sequence of operators that converts one representation to the other representation (or vice
versa). For similar representations, the representation for object A can be converted to the
representation for object B using a short operator sequence, and thus these representations
have a small distance. For dissimilar representations, a longer operator sequence is required to
convert one object representation to the other, and thus these representations have a large dis-
tance. In our simulations, we first placed the object representations in a canonical form, and

Fig 6. 4D MDS space for the crossmodal condition. Each panel plots one of the six possible 2D projections of the 4D MDS space. Each point corresponds
to one of the 16 objects.

doi:10.1371/journal.pcbi.1004610.g006
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then measured pairwise distances between objects using the tree edit distance measure of
Zhang and Shasha [73].

In a second set of simulations, the model was used to compute object similarity in a visual
feature space. As above, the model was used to acquire modality-independent representations
for two objects on each simulated trial. Next, the vision-specific forward model was used to
map each object representation to images of the represented object, thereby re-representing
each object from a modality-independent reference frame to a visual reference frame. Given
three images from orthogonal viewpoints of each object (see Fig 4a), the similarity of the two
objects was estimated as the Euclidean distance between the images of the objects based on
their pixel values.

In a final set of simulations, the model was used to compute object similarity in a haptic fea-
ture space. This set is identical to the set described in the previous paragraph except that the
haptic-specific forward model (GraspIt!) was used to map each object representation to sets of
a simulated hand’s joint angles, thereby re-representing each object from a modality-indepen-
dent reference frame to a haptic frame. Given sets of joint angles for each object, the similarity
of two objects was estimated as the Euclidean distance between the haptic features of the
objects based on their associated joint angles.

Which set of simulations produced object similarity ratings matching the ratings provided
by our experimental subjects? For ease of explanation, we refer to the model augmented with
the modality-independent based, visual-based, and haptic-based similarity functions as the
MVH-M, MVH-V, and MVH-H models, respectively. The results for these three models are
shown in Figs 7, 8 and 9. In each figure, the four graphs correspond to the visual, haptic, cross-
modal, and multisensory conditions. The horizontal axis of each graph shows subjects’ object
similarity ratings (averaged across all subjects, and linearly scaled to range from 0 to 1). The
vertical axis shows a model’s similarity ratings (linearly scaled to range from 0 to 1). Each
graph contains 136 points, one point for each possible pair of objects. The correlation (denoted
R) between subject and model ratings is reported in the top-left corner of each graph.

A comparison of these figures reveals that the object similarity ratings of the MVH-M
model provide an excellent quantitative fit to subjects’ ratings. Indeed, the correlation R ranges
from 0.975 to 0.987 across the different experimental conditions (explaining 95%–97% of the
variance in ratings). In other words, the MVH-Mmodel provides a (nearly) perfect account of
our experimental data. The MVH-V model provides a reasonably good fit to subjects’ data,
though this fit is not as good as the fit provided by the MVH-Mmodel. Based on a two-tailed t-
test using the Fisher z-transformation, correlations for the MVH-M model are always greater
than the corresponding correlations for the MVH-V model (p< 0.05). In addition, correla-
tions for the MVH-Mmodel and the MVH-V model are always greater than those of the
MVH-H model. That is, the MVH-Mmodel performs best, followed by the MVH-V model,
and then the MVH-H model.

In summary, we have compared the performances of three models. All models represent
objects in a modality-independent manner. However, the models differ in the space in which
they calculate object similarity. One model calculates similarity using modality-independent
features (MVH-M), another model maps modality-independent features to visual features and
calculates similarity on the basis of these visual features (MVH-V), and a final model maps
modality-independent features to haptic features and calculates similarity on the basis of these
haptic features (MVH-H). Our results show that the MVH-Mmodel’s similarity ratings pro-
vide the best quantitative fit to subjects’ ratings. Consequently, we hypothesize that subjects
computed object similarity in a modality-independent feature space. That is, subjects acquired
modality-independent object shape representations based on visual signals, haptic signals, or
both, and then compared two objects’ shape representations in order to judge their similarity.
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Discussion
This paper has studied the problem of learning modality-independent, conceptual representa-
tions from modality-specific sensory signals. We hypothesized that any system that can accom-
plish this feat will include three components: a representational language for characterizing
modality-independent representations, a set of sensory-specific forward models for mapping
from modality-independent representations to sensory signals, and an inference algorithm for
inverting forward models (i.e., an algorithm for using sensory signals to infer modality-inde-
pendent representations).

To evaluate our theoretical framework, we instantiated it in the form of a computational
model that learns object shape representations from visual and/or haptic signals. The model
uses a probabilistic context-free grammar to characterize modality-independent

Fig 7. Results for the MVH-Mmodel (this model computes object similarity in a modality-independent
feature space). The four graphs correspond to the visual (top left), haptic (top right), crossmodal (bottom left),
and multisensory (bottom right) experimental conditions. The horizontal axis of each graph shows subjects’
object similarity ratings (averaged across all subjects, and linearly scaled to range from 0 to 1). The vertical
axis shows the model’s similarity ratings (linearly scaled to range from 0 to 1). The correlation (denoted R)
between subject and model ratings is reported in the top-left corner of each graph. Note that MVH-Mmodel’s
similarity ratings take only a finite number of different values since parse trees are discrete structures, and
therefore tree-edit distance returns only integer values.

doi:10.1371/journal.pcbi.1004610.g007
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representations of object shape, uses a computer graphics toolkit (VTK) and a human hand
simulator (GraspIt!) to map from object representations to visual and haptic features, respec-
tively, and uses a Bayesian inference algorithm to infer modality-independent object represen-
tations from visual and/or haptic signals. Simulation results show that the model infers
identical object representations when an object is viewed, grasped, or both. That is, the model’s
percepts are modality invariant. It is worth pointing out that the particular implementational
choices we have made in our model are in some sense arbitrary; any model that instantiates
our framework will be able to capture modality invariance. Therefore, from this perspective,
our particular model in this work should be taken as one concrete example of how modality
independent representations can be acquired and used.

Our work in this paper focused on showing how our framework can capture one aspect of
multisensory perception, i.e., modality invariance. We take this as an encouraging first step in
applying our framework to multisensory perception more generally. We believe other aspects
of multisensory perception (such as cue combination, crossmodal transfer of knowledge, and
crossmodal recognition) can be easily understood and treated in our framework.

Fig 8. Results for the MVH-Vmodel (this model computes object similarity in a visual feature space).
The format of this figure is identical to the format of Fig 7.

doi:10.1371/journal.pcbi.1004610.g008
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The paper also reported the results of an experiment in which different subjects rated the
similarity of pairs of objects in different sensory conditions, and showed that the model pro-
vides a very good account of subjects’ ratings. Our experimental results suggest that people
extract modality independent shape representations from sensory input and base their judg-
ments of similarity on such representations. The success of our model in accounting for these
results are important from two perspectives. First, from a larger perspective, it is significant as
a validation of our theoretical framework. Second, it constitutes an important contribution to
cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by
showing how symbolic and statistical approaches can be combined in order to understand
aspects of human perception.

Related research
Our theoretical framework is closely related to the long standing vision-as-inference [74]
approach to visual perception. In this approach, the computational problem of visual percep-
tion is formalized as the inversion of a generative process; this generative process specifies how

Fig 9. Results for the MVH-Hmodel (this model computes object similarity in a haptic feature space).
The format of this figure is identical to the format of Fig 7.

doi:10.1371/journal.pcbi.1004610.g009
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the causes in the world, e.g., objects, give rise to 2D images on the retina. Then, the purpose of
the visual system is to invert this generative model to infer the most likely causes, i.e., the expla-
nation, for the observed sensory data. This approach, also called analysis-by-synthesis, has fea-
tured prominently both in cognitive science [75, 76] and computer vision [77–79]. Our work
here can be seen as the application of this approach to multisensory perception.

Previous research has instantiated our general theoretical framework in other ways. For
example, Yildirim and Jacobs [80] developed a latent variable model of multisensory percep-
tion. In this model, modality-independent representations are distributed representations over
binary latent variables. Sensory-specific forward models map the modality-independent repre-
sentations to sensory (e.g., visual, auditory, haptic) features. The acquisition of modality-inde-
pendent representations takes place when a Bayesian inference algorithm (the Indian Buffet
Process [63]) uses the sensory features to infer these representations. Advantages of this model
include the fact that the dimensionality of the modality-independent representations adapts
based on the complexity of the training data set, the model learns its sensory-specific forward
models, and the model shows modality invariance. Disadvantages include the fact that the
inferred modality-independent representations (distributed representations over latent vari-
ables) are difficult to interpret, and the fact that the sensory-specific forward models are
restricted to being linear. Perhaps its biggest disadvantage is that it requires a well-chosen set of
sensory features in order to perform well on large-scale problems. In the absence of good sen-
sory features, it scales poorly, mostly due to its linear sensory-specific forward models and
complex inference algorithm.

As a second example, Yildirim and Jacobs [2] described a model of visual-haptic object
shape perception that is a direct precursor to the MVHmodel described in this paper. Perhaps
its biggest difference with the model presented here is that it represents parts as generalized cyl-
inders, and parts connect to each other using a large number of “docking locations”. This strat-
egy for representing object shape provides enormous flexibility, but this flexibility comes at a
price. Inference using this model is severely underconstrained. Consequently, the investigators
designed a customized (i.e., ad hoc) Bayesian inference algorithm. Despite the use of this algo-
rithm, inference is computationally expensive. That is, like the latent variable model described
in the previous paragraph, the model of Yildirim and Jacobs [2] scales poorly.

Probabilistic language-of-thought
We believe that the MVHmodel described in this paper has significant theoretical and practi-
cal advantages over alternatives. These arise primarily due to its use of a highly structured
implementation of a representational language for characterizing modality-independent repre-
sentations. In particular, the model combines symbolic and statistical approaches to specify a
probabilistic context-free object shape grammar. Due to this shape grammar, the model is able
to use a principled inference algorithm that has previously been applied to probabilistic gram-
mars in other domains. We find that inference in the model is often computationally tractable.
We are reasonably optimistic that the model (or, rather, appropriately extended versions of the
model) will scale well to larger-scale problems. Although important challenges obviously
remain, our optimism stems from the fact that shape grammars (much more complex than the
one reported here) are regularly used in the Computer Vision and Computer Graphics litera-
tures to address large-scale problems. In addition, due to its principled approach, the model
should be easy to extend in the future because relationships between the model and other mod-
els in the Cognitive Science and Artificial Intelligence literatures using grammars, such as mod-
els of language, are transparent. As a consequence, lessons learned from other models will be
easy to borrow for the purpose of developing improved versions of the model described here.
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In Cognitive Science, there are many frameworks for cognitive modeling. For example, one
school of thought favors symbolic approaches, such as approaches based on grammars, pro-
duction rules, or logic. An advantage of symbolic approaches is their rich representational
expressiveness—they can often characterize a wide variety of entities in a compact and efficient
manner. A disadvantage of these approaches is that they are often “brittle” when used in noisy
or uncertain environments. An alternative school of thought favors statistical approaches, such
as approaches based on neural networks or Bayesian inference. An advantage of statistical
approaches is their ability to learn and adapt, and their robustness to noise and uncertainty.
Their main disadvantage is that they often require highly structured prior distributions or like-
lihood functions to work well [81]. Advocates of symbolic and statistical schools of thought
have often engaged in heated debates [82–85]. Unfortunately, these debates have not led to a
resolution as to which approach is best.

A recently emerging viewpoint in the Cognitive Science literature is that both symbolic and
statistical approaches have important merits, and thus it may be best to pursue a hybrid frame-
work taking advantage of each approach’s best aspects [45–48]. This viewpoint is referred to here
as a “probabilistic language of thought” approach because it applies probabilistic inference to a
representation consisting of symbolic primitives and combinatorial rules [86]. To date, the proba-
bilistic language-of-thought approach has been used almost exclusively in domains that are typi-
cally modeled using symbolic methods, such as human language and high-level cognition. A
significant contribution of the research presented here is that it develops and applies this
approach in the domain of perception, an area whose study is dominated by statistical techniques.

Future research
We foresee at least three areas of future research. First, the framework described here sheds
light on modality invariance. Future work will need to study whether this framework also
sheds light on other aspects of multisensory perception and cognition. For example, can the
framework be used to understand why our percepts based on two modalities are often more
accurate than our percepts based on a single modality, why training with two modalities is
often superior to training with a single modality (even when testing is conducted in unisensory
conditions), or why crossmodal transfer of knowledge is often, but not always, successful?
Future work will also need to study the applicability of the framework to other sensory
domains, such as visual and auditory or auditory and haptic environments. Future work will
also need to consider how our framework can be extended to study the acquisition of other
types of conceptual knowledge from sensory signals.

Second, future research will need to study the role of forward models in perception and cog-
nition. For example, we have speculated that sensory-specific forward models may be ways of
implementing sensory imagery, and thus our framework predicts a role for imagery in multi-
sensory perception. Behavioral, neurophysiological, and computational studies are needed to
better understand and evaluate this hypothesis. From a technological perspective, it is advanta-
geous that we live in a “golden age” of forward models. New and improved forward models are
frequently being reported in the scientific literature and made available on the world wide web
(e.g., physics engines providing approximate simulations of physical systems such as rigid
body dynamics or fluid dynamics). These forward models will allow cognitive scientists to
study human perception, cognition, and action in much more realistic ways than has previ-
ously been possible.

Finally, cognitive scientists often make a distinction between rational models and process
models [87]. Rational models (or computational theories [88]) are models of optimal or nor-
mative behavior, characterizing the problems that need to be solved in order to generate the
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behavior as well as their optimal solutions. In contrast, process models (or models at the
“representation and algorithm” level of analysis [88]) are models of people’s behaviors, charac-
terizing the mental representations and operations that people use when generating their
behavior. Because the MVHmodel’s inference algorithm is optimal according to Bayesian cri-
teria, and because this algorithm is not psychologically plausible, the model should be regarded
as a rational model, not as a process model. Nonetheless, we believe that there are benefits to
regarding the MVHmodel as a rational/process hybrid. Like rational models, the MVHmodel
is based on optimality considerations. However, like process models, it uses psychologically
plausible representations and operations (e.g., grammars, forward models).

For readers solely interested in process models, we claim that the MVHmodel is a good
starting point. As pointed out by others [89, 90], the MCMC inference algorithm used by the
MVHmodel can be replaced by approximate inference algorithms (known as particle filter or
sequential Monte Carlo algorithms) that are psychologically plausible. Doing so would lead to
a so-called “rational process model”, a type of model that is psychologically plausible and also
possesses many of the advantages of rational models. Future work will need to study the bene-
fits of extending our framework through the use of psychologially plausible and approximately
optimal inference algorithms to create rational process models of human perception.

Methods

Ethics statement
The experiments were approved by the Research Subjects Review Board of the University of
Rochester. All subjects gave informed consent.

Multisensory-Visual-Haptic (MVH) model
Shape grammar. The production rules of the MVHmodel’s shape grammar are shown in

Fig 10. The grammar is an instance of a probabilistic context-free grammar. However, proba-
bilities for each production rule are not shown in Fig 10 because our statistical inference proce-
dure marginalizes over the space of all probability assignments (see below). Production rules
characterize the number of parts and the specific parts comprising an object. The rules contain
two non-terminal symbols, S and P. Non-terminal P is always replaced by a terminal represent-
ing a specific object part. Non-terminal S is used for representing the number of parts in an
object. Production rules are supplemented with additional information characterizing the spa-
tial relations among parts.

An object is generated using a particular sequence of production rules from the grammar.
This sequence is known as a derivation which can be illustrated using a parse tree. To represent
the spatial relations among object parts, a parse tree is extended to a spatial tree. Before describ-
ing this extension, it will be useful to think about how 3-D space can be given a multi-resolu-
tion representation. At the coarsest resolution in this representation, a “voxel” corresponds to
the entire space. The center location of this voxel is the origin of the space, denoted (0, 0, 0). At
a finer resolution, this voxel is divided into 27 equal sized subvoxels arranged to form a 3 × 3 ×
3 grid. Using a Cartesian coordinate system with axes labeled x, y, and z, a coordinate of a

Fig 10. Production rules of the shape grammar in Backus-Naur form. S denotes spatial nodes, and P
refer to part nodes. S is also the start symbol of the grammar. P1, P2, etc. are the object parts as seen in Fig
1.

doi:10.1371/journal.pcbi.1004610.g010
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subvoxel’s location along an axis is either −1, 0, or 1. For example, traversing the z-axis would
reveal subvoxels located at (−1, −1, −1), (−1, −1, 0), and (−1, −1, 1). This process can be
repeated. For instance, the subvoxel at (−1, −1, −1) can be divided into 27 subsubvoxels. The
coordinates of subsubvoxels would also be either −1, 0, or 1. Note that the location of a subsub-
voxel is relative to the location of its parent subvoxel which, in turn, is relative to the location
of its parent voxel.

The addition of multi-resolution spatial information to a parse tree converts this tree to a
spatial tree. This process is illustrated in Fig 11. Consider the object shown in Fig 11a and the
spatial tree for the derivation of this object shown in Fig 11b. The root S node is associated with
a voxel centered at the origin (0, 0, 0) of the 3-D space. This node is expanded using the rule S
! PSSS, and locations are assigned to the subvoxels associated with the S nodes [in the figure,
these locations are (0, −1, 0), (1, 0, 0), and (−1, 1, 0), respectively]. The P node is replaced with
terminal P0 representing the cylindrical body (see Fig 1). This part is placed at the location of
its grandparent S node. The two leftmost S nodes in the second level of the tree are eventually

Fig 11. Illustration of the multi-resolution representation of 3-D space. (a) Image of an object. (b) Spatial
tree representing the parts and spatial relations among parts for the object in (a). (c) Illustration of how the
spatial tree uses a multi-resolution representation to represent the locations of object parts.

doi:10.1371/journal.pcbi.1004610.g011
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replaced with terminals P1 and P3, respectively. These parts are placed at the locations of their
grandparent S nodes. The rightmost S node at the second level is expanded using the produc-
tion S! PS, and a location is assigned to the S node [(0, 1, 0)]. The P node is replaced with ter-
minal P5. The final S node is eventually replaced with terminal P7.

The multi-resolution representation of 3-D space, and the placement of parts in this space is
illustrated in Fig 11c. Two facts about spatial trees are evident from this figure. First, smaller-
sized voxels are reached as one moves deeper in a tree, enabling the model to make finer-
grained assignments of locations to object parts. Second, with the exception of the root S node,
an S node is never associated with a voxel located at (0, 0, 0) because this would create a situa-
tion in which two parts are assigned the same location.

There are several properties of the model’s shape grammar and spatial trees that were cho-
sen for convenience: (i) The maximum branching factor of the shape grammar is four; (ii) The
creation of spatial trees through the addition of spatial information to parse trees is not strictly
necessary. An equivalent representation could be achieved by a more complicated grammar
with productions for all possible voxel coordinate assignments to child S nodes; and (iii) With-
out loss of generality, the set of possible object parts was chosen for convenience. In other situa-
tions, other sets could be selected (indeed, one could imagine a system that uses a segmentation
algorithm to learn good sets). In addition, the fact that object parts are at fixed scales and orien-
tations is not strictly necessary. More complicated spatial trees could allow for scaling and rota-
tion of parts. Our point here is that the probabilistic shape grammar approach is general and
powerful, though the full generality and power of this approach is not needed for our current
purposes. Readers interested in how shape grammars can be used to characterize objects and
scenes in more realistic settings should consult the Computer Vision and Computer Graphics
literatures [35–42].

Prior distribution over object representations. An object representation consists of two
components, a parse tree, denoted T , and a spatial model, denoted S. The prior probability for
an object representation is defined as:

PðT ;SjGÞ ¼ PðT jGÞPðSjT Þ ð1Þ

where G denotes the shape grammar.
Due to the nature of our grammar, an object has a unique derivation, and thus a unique

parse tree. Recall that a derivation is a sequence of productions in the shape grammar that ends
when all non-terminals are replaced with terminals. At each step of a derivation, a choice is
made among the productions which could be used to expand a non-terminal. Because a proba-
bility is assigned to each production choice in a derivation, the probability of the complete deri-
vation is the product of the probabilities for these choices. That is, the probability of a parse
tree is:

PðT jG; rÞ ¼
Y
n2N nt

Pðn ! chðnÞjG; rÞ ð2Þ

whereN nt is the set of non-terminal nodes in the tree, ch(n) is the set of node n’s children
nodes, and Pðn ! chðnÞjG; rÞ is the probability for production rule n! ch(n). In this equa-
tion, ρ denotes the set of probability assignments to production rules. Allowing for uncertainty
in these production probabilities, we integrate over ρ:

PðT jGÞ ¼ R
PðT jG; rÞPðrjGÞdr: ð3Þ

Because there is no reason to prefer any specific set of production probabilities, we assume
that PðrjGÞ is a uniform distribution. With this assumption, the integral has a Multinomial-
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Dirichlet form, and thus can be solved analytically:

PðT jGÞ ¼
Y
s2Gnt

bðCðT ; sÞ þ 1Þ
bð1Þ : ð4Þ

Here, Gnt is the set of non-terminal symbols in grammar G, β(�) is the multinomial beta
function, 1 is a vector of ones, andCðT ; sÞ is a vector of counts of the productions for non-ter-
minal s in parse tree T (the count of a rule increments each time the rule is used).

An advantage of this distribution over parse trees is that it favors “simple” trees, meaning
trees corresponding to short derivations. (To see this, note that Eq 2 multiplies probabilities
[numbers less than one]. The number of terms that are multiplied increases with the length of
the derivation.) Consequently, it can be regarded as a type of Occam’s Razor.

In addition to the probability of parse tree T , the calculation of the prior probability of an
object representation also requires the probability of spatial model S (Eq 1). Recall that model
S contains the voxel coordinates for each S node in a parse tree. Let V denote the set of possible
voxel coordinates, a set with 26 elements (the 3 × 3 × 3 grid yields 27 subvoxels but the sub-
voxel centered at (0, 0, 0) is not a valid spatial assignment). UsingN S to denote the set of S
nodes in tree T , and assuming that all voxel coordinates are equally likely, the probability of
model S is:

PðSjT Þ ¼
Y
n2N S

1

jVj ¼
1

jVjjN S j : ð5Þ

As above, this distribution favors spatial models associated with small parse trees, and thus
is a type of Occam’s Razor.

Likelihood function. Recall that an object representation consists of a parse tree T and a
spatial model S. Let D denote actual sensory data perceived by an observer, either visual fea-
tures, haptic features, or both. Let FðT ;SÞ denote predicted sensory features, predicted by the
visual-specific forward model (VTK), the haptic-specific forward model (GraspIt!), or both. To
define the likelihood function, we assume that perceived sensory data D is equal to predicted
sensory features FðT ;SÞ plus random noise distributed according to a Gaussian distribution:

PðDjT ;SÞ / exp � jjD� FðT ;SÞjj22
s2

� �
ð6Þ

where σ2 is a variance parameter.
MCMC algorithm. Using Bayes’ rule, the MVHmodel combines the prior distribution

and the likelihood function to compute a posterior distribution over object representations:

PðT ;SjD;GÞ / PðDjT ;SÞPðSjT ÞPðT jGÞ ð7Þ

where the three terms on the right-hand side are given by Eqs 6, 5 and 4, respectively. Unfortu-
nately, exact computation of the posterior distribution is intractable. We, therefore, developed
a Markov chain Monte Carlo (MCMC) algorithm that discovers good approximations to the
posterior.

MCMC is a family of methods for sampling from a desired probability distribution by con-
structing a Markov chain that has the desired distribution as its stationary distribution. A com-
mon MCMCmethod is the Metropolis-Hastings (MH) algorithm [91, 92]. This algorithm
produces a sequence of samples. At each iteration, the algorithm picks a candidate for the next
sample value based on the current sample value. With some probability, the candidate is
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accepted meaning that the candidate value is used in the next iteration or rejected meaning this
value is discarded and the current value is reused in the next iteration.

In the context of our simulations, a value is a multisensory object representation—that is, a
parse tree T and a spatial model S. At each iteration, our algorithm proposes a new representa-
tion, denoted ðT 0;S0Þ, based on the current representation ðT ;SÞ with probability given by
proposal distribution qðT 0;S 0jT ;SÞ. The new representation is accepted with a probability
based on acceptance function AðT 0;S 0; T ;SÞ.

We used two different proposal distributions in our simulations, one on even-numbered
iterations and the other on odd-numbered iterations [93, 94]. The subtree-regeneration pro-
posal distribution was originally developed by Goodman et al.[45]. When using this proposal
distribution, a non-terminal node is randomly selected from parse tree T , all its descendants
are removed, and new descendants are generated according to the rules of the shape grammar.
Nodes removed from the parse tree are also removed from the spatial model, and random
voxel coordinates are sampled for newly added nodes. The new representation is accepted with
probability equal to the minimum of 1 and the value of an acceptance function:

AðT 0;S 0; T ;SÞ ¼ PðDjT 0;S0Þ
PðDjT ;SÞ

PðT 0jGÞ
PðT jGÞ

jN ntj
jN 0

ntj
PðT jG; rÞ
jPðT 0jG; rÞ ð8Þ

whereN nt andN
0
nt are the sets of all non-terminals in tree T and T 0, respectively.

Sole use of the subtree-regeneration proposal did not produce an efficient MCMC algorithm
for our problem. This is mainly due to the fact that the algorithm sometimes proposes a new
object representation which is very different from the current representation, thereby losing
the desirable aspects of the current representation. Consider a scenario in which the current
representation is partially correct, such as the parse tree in Fig 12a. Based on this tree, it is diffi-
cult to propose the more correct tree in Fig 12b without losing the desirable aspects of the cur-
rent tree. To do so, the algorithm would have to choose the root node, thereby deleting nearly
all of the current tree, and then generate the proposal tree nearly from scratch.

This observation led us to design the add/remove-part proposal. This proposal adds or
removes object parts to a representation making it possible, for example, to propose the tree in
Fig 12b based on the tree in Fig 12a, or vice versa. The proposal starts by randomly choosing
whether to add or remove an object part. If adding a part, it draws a random part by choosing a
terminal symbol from the grammar. Then it chooses an S node that has less than four children

Fig 12. Parse trees for illustrating a difficulty with using the subtree-regeneration proposal. (a)
Partially correct tree for a hypothetical example. (b) The “true” tree for the example. Note that it is impossible
to propose the tree in (b) from the tree in (a) with a subtree-regeneration proposal without deleting and
regenerating all the nodes.

doi:10.1371/journal.pcbi.1004610.g012
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and adds a new S node as a child to the chosen S node. Finally, it expands the child S node to a
P node and the P node to the chosen part. If removing a part, an S node that has a P node as its
only child is chosen. This node and its descendants are removed. However, the proposal never
chooses the root S node or an S node that is the only child of its parent as these will result in
ungrammatical trees. The spatial model is updated accordingly. If a part is added, a random
voxel coordinate is sampled for the newly added S node. If a part is removed, the corresponding
S node (and its voxel coordinate) is removed. Assuming that representation ðT 0;S0Þ is pro-
posed by adding a new part to ðT ;SÞ, the new representation is accepted with probability
equal to the minimum of 1 and the value of the acceptance function:

AðT 0;S 0; T ;SÞ ¼ PðDjT 0;S 0Þ
PðDjT ;SÞ

PðT 0jGÞ
PðT jGÞ

jAj
jR0j jGtj ð9Þ

whereR0 is the set of S nodes in tree T 0 that can be removed,A is the set of S nodes in tree T
to which a new child S node can be added, and Gt is the set of terminal symbols in the gram-
mar. Similarly, the acceptance function when removing a part is:

AðT 0;S 0; T ;SÞ ¼ PðDjT 0;S 0Þ
PðDjT ;SÞ

PðT 0jGÞ
PðT jGÞ

jRj
jA0jjGtj

ð10Þ

whereR is the set of S nodes in tree T that can be removed,A0 is the set of S nodes in tree T 0

to which a new child S node can be added.
It is easy to show that our algorithm is a valid Metropolis-Hastings sampler, meaning that it

has the posterior distribution over multisensory object representations as its stationary distri-
bution. Derivations for the acceptance functions for the subtree-regeneration and add/remove-
part proposals are straightforward. Readers interested in these topics should contact the first
author.

In our simulations, each MCMC chain was run for 10,000 iterations. Samples from the first
6,000 iterations were discarded as “burn-in”.

Experimental Details
Stimuli. The experiment used the 16 objects in Fig 2. Visual stimuli consisted of images of

objects rendered from a canonical (three-quarter) viewpoint so that an object’s parts and spa-
tial relations among parts are clearly visible (Fig 2). Stimuli were presented on a 19-inch CRT
computer monitor. Subjects sat approximately 55 cm from the monitor. When displayed on
the monitor, visual stimuli spanned about 20 degrees in the horizontal dimension and 15
degrees in the vertical dimension. Visual displays were controlled using the PsychoPy software
package [95].

Subjects received haptic inputs when they touched physical copies of the objects fabricated
using a 3-D printing process (Fig 2). Physical objects were approximately 11.5 cm long, 6.0 cm
wide, and 7.5 cm high. Subjects were instructed to freely and bimanually explore physical
objects.

Procedure. On each experimental trial, a subject observed two objects and judged their
similarity on a scale of 1 (low similarity) to 7 (high similarity). Within a block of 136 trials,
each object was paired both with itself (16 trials) and with the other objects (each object could
be paired with 15 other objects; ignoring order of object presentation [which was randomized],
this results in 120 trials). Pairs were presented in random order. Subjects performed 4 blocks of
trials.

The experiment included four conditions referred to as the visual, haptic, crossmodal, and
multisensory conditions. Different groups of subjects were assigned to different conditions. We
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regard the crossmodal condition as the key experimental condition because it is the condition
that directly evaluates the modality invariance of subjects’ percepts. The visual, haptic, and
multisensory conditions are control conditions in the sense that data from these conditions are
of interest primarily because they allow us to better understand results from the crossmodal
condition.

In the visual condition, subjects saw an image of one object followed by an image of a sec-
ond object. Images were displayed for 3.5 seconds.

In the haptic condition, physical objects were placed in a compartment under the computer
monitor. The end of the compartment closest to a subject was covered with a black curtain. A
subject could reach under the curtain to haptically explore an object. However, a subject could
not view an object. Messages on the computer monitor and auditory signals indicated to a sub-
ject when she or he could pick up and drop objects. On each trial, an experimenter first placed
one object in the compartment. The subject then haptically explored this object. The experi-
menter removed the first object and placed a second object in the compartment. The subject
explored this second object. Each object was available for haptic exploration for 7 seconds. As
is common in the scientific literature on visual-haptic perception, the haptic input in the haptic
experimental condition was available for longer than the visual input in the visual condition
[11, 60, 96, 97].

In the crossmodal condition, objects in a pair were presented in different sensory modalities.
For one subgroup of three subjects, the first object was presented visually and the second object
was presented haptically. For another subgroup of four subjects, this order was reversed. We
checked for a difference in ratings between the two subgroups. A two-tailed Welch’s t-test
(used when two samples have possibly unequal variances) did not find a significant effect of
the order of the modalities in which objects were presented (t = 0.087, p = 0.935). We, there-
fore, grouped the data from these subgroups.

In the multisensory condition, both objects were presented both visually and haptically.
During the 7 seconds in which an object could be touched, the visual image of the object was
displayed for the final 3.5 seconds.

Visual and crossmodal conditions were run over two one-hour sessions on two different
days, each session comprising two blocks of trials. For haptic and multisensory conditions, an
individual block required about an hour to complete. These conditions were run over four one-
hour sessions. Although subjects performed four blocks of trials, we discarded data from the
first block because subjects were unfamiliar with the objects and with the experimental task
during this block. Results reported above are based on data from blocks 2–4.

Subjects. Subjects were 30 students at the University of Rochester who reported normal or
corrected-to-normal visual and haptic perception. Subjects were paid $10 per hour. Of the 30
subjects, 2 subjects provided similarity ratings that were highly inconsistent across blocks (one
subject in the visual condition and the other in the multisensory condition). A Grubbs test [98]
using each subject’s correlations among ratings in different blocks revealed that these two sub-
jects’ ratings are statistical outliers (Subject 1: g = 2.185, p< 0.05; Subject 2: g = 2.256,
p< 0.05). These ratings were discarded from further analyses. The remaining 28 subjects were
divided among the four experimental conditions, seven subjects per condition.

MVH-V and MVH-H models applied to the experimental data. The MVH-V and
MVH-H models are equivalent to alternative models. For instance, consider a model that com-
putes object similarity based solely on the pixel values of images of those objects. In fact, this is
equivalent to MVH-V. This equivalency arises from the fact the the MVHmodel’s MAP esti-
mates of object shape are always correct (given an object, this estimate is the correct representa-
tion of the object in terms of the shape grammar). When MVH-V obtains images of two
objects (by rendering the object representations using the vision-specific forward model), these
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images are also always correct (they are identical to the true images of the objects). Conse-
quently, MVH-V performs no differently than a model that rates object similarity based on the
pixel values of images of objects. Given this fact, why is MVH-V needed? It is because people
do not always have images of two objects (consider a case where one object is viewed and the
other object is grasped). Analogous remarks apply to MVH-H.
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