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a b s t r a c t

Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treat-
ment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-
stratification enables accelerated response to patients displaying critical indicators. Chest CT manifesta-
tions including ground-glass opacities and consolidations are a reliable indicator for prognostic studies
and show variability with patient condition. To this end, we propose a novel attention framework to
estimate COVID-19 severity as a regression score from a weakly annotated CT scan dataset. It takes
a non-locality approach that correlates features across different parts and spatial scales of the 3D
scan. An explicit guidance mechanism from limited infection labeling drives attention refinement and
feature modulation. The resulting encoded representation is further enriched through cross-channel
attention. The attention model also infuses global contextual awareness into the deep voxel features
by querying the base CT scan to mine relevant features. Consequently, it learns to effectively localize
its focus region and chisel out the infection precisely. Experimental validation on the MosMed dataset
shows that the proposed architecture has significant potential in augmenting existing methods as it
achieved a 0.84 R-squared score and 0.133 mean absolute difference.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The SARS-Cov-2 coronavirus (COVID-19) created a global med-
cal emergency in 2020 and its variants continue to spread in
any countries, impacting 435 million people worldwide with
.9 million deaths. Over this period, the health sector has faced
major setback in the allocation of medical resources. Access to
entilators, life support, and intensive care has to be prioritized
or severely affected patients exhibiting critical symptoms. There-
ore, accurate assessment of severity plays a crucial factor in the
recise triage of COVID-19 patients. From the medical perspec-
ive, several biochemical and clinical parameters are studied as
otential biomarkers for predicting patient outcomes and disease
rogression. Feng et al. associated COVID-19 with inflammatory
evels expressed in terms of neutrophil count, lactic dehydro-
enase, and C-reactive protein [1]. Similarly, biological variables
ike oxygen flow rate, diastolic pressure, and comorbidities in-
estigated in clinical trials can help forecast severity conversion
ate [2]. Scoring indicators like Pneumonia Severity Index (PSI),
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CURB-65, A-DROP show good sensitivity for use as prognostic
variables [3]. Thus, medical history and clinical findings are ef-
fective factors in the creation of triage tools to identify high-risk
patients [4].

While manual patient triage from clinical reports and lab tests
can be very labor-intensive, automated data-driven methods are
actively explored. Currently, the use of chest Computed Tomog-
raphy (CT) scan imaging in prognostic studies has motivated the
development of imaging-based Artificial Intelligence (AI) solu-
tions that can analyze these findings to quantify severity. An
international level consensus was reached about the applicability
of imaging predictors as a primary tool in the clinical decision
making and triage of patients suspected of COVID-19 [5]. Ra-
diological features statistically distinguish between severe and
non-severe patient groups [6]. Lieveld et al. statistically proved
the associations between CT scoring and hospital/ICU admissions
and 30-day mortality, suggesting that CT directly offers cues for
prognosis [7]. Clinical features in the CT are taken as the refer-
ence even for affirming the diagnostic nature of other modalities
including lung ultrasound, biochemical tests [8]. Common CT
features attributed to COVID-19 include posterior and peripheral
ground-glass opacities with or without consolidation, which are
leveraged to facilitate contextual information for AI learning.

Challenges in learning an AI model from CT arise from the
large inter-case variabilities in the data acquired from different

https://doi.org/10.1016/j.asoc.2022.108765
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108765&domain=pdf
mailto:r.karthik@vit.ac.in
mailto:menaka.r@vit.ac.in
mailto:hmanikan@cisco.com
mailto:dhwon@binghamton.edu
https://doi.org/10.1016/j.asoc.2022.108765


R. Karthik, R. Menaka, M. Hariharan et al. Applied Soft Computing 121 (2022) 108765

s
e
t
s
a
s
F
p
l
f
s
t

m
C
i
s
t
t
t
w
i
v
t
o
l
o
g
i
p
c
c
s

2

e
w
f
s
i
c

t
s
u
F
a
t
i
c
c
o
l
s
c
a
p
i
P
u
s
a
s
c

canners which have different parameters. Furthermore, the pres-
nce of certain CT biomarkers like ground-glass opacities, septal
hickening, crazy paving patterns may not always contribute to
everity, thus the assessment depends on the individual case
nd the adjoining context. It is also observed that patients with
imilar CT patterns might experience different extents of severity.
urther, the CT manifestations responsible for COVID-19 are often
resented with intricate morphological structures. From exhibits
ow contrast against background noise and lesser discriminability
rom similar manifestations. AI that learns to assess severity
hould be guided by a mechanism that aligns its receptivity to
his lesion volume.

Recent works in CT severity assessment employ statistical,
achine learning, and deep learning approaches to learn from
T images. In CNN, predominant methods include transfer learn-
ng from pre-trained models, multi-pathway branching networks,
patial/channel attention, and multiple instance learning. Sec-
ion 2 discusses the pros and cons of these techniques in rela-
ionship with the advantages presented by the proposed work. To
his end, we propose a novel weakly supervised attention frame-
ork that simultaneously stratifies COVID-19 risks and extracts

nfected volumes. Deep attention models especially in medical
ision tasks, selectively enhance the properties of the infected
issues while diminishing other structures. Specifically, the use
f the non-locality based attention in this work helps to capture
ong-range connectivity between lesion spread in different parts
f the CT scan. Further, as attention networks develop a self-
uided mechanism to adjust their weights, they are finely tuned
n response to feedback from other layers. The attention modules
roposed in this work are designed to fully analyze the semantic
ues in deep voxel features on a range of scales and complexity. It
omprehensively correlates findings across the scan to recognize
alient CT features responsible for severity.

. Related works

Statistical analysis, machine learning, and deep learning mod-
ls are mainly studied for COVID-19 severity assessment. Several
orks utilize multi-modal learning that fuses predictor variables

rom not only CT image features but also patient medical history,
igns and symptoms, demographic data, comorbidities, other clin-
cal characteristics, and diagnostic biomarkers. Thus, the severity
ould be explained through any of these modes.
One of the popular approaches towards clinical risk estima-

ion is the statistical hypothesis validation on lab experimental
tudies. These trials and multi-variate analysis aim to identify
seful parameters that indicate the extent of severity in the lungs.
or instance, Yang et al. developed a clinical framework that
ttributes the COVID-19 severity score to 20 different regions of
he lungs depending on the parenchymal opacification involved
n that region [9]. Sun et al. demonstrated that CT parameters in-
luding lesion, ground-glass opacities, consolidations have strong
orrelations with laboratory inflammatory biomarkers, which are
bservable indicators of severity [10]. The severity scores calcu-
ated for these parameters were statistically different between
evere and non-severe groups. In a similar research, Feng et al.
ombinedly analyzed the CT lung abnormalities and clinical char-
cteristics as risk factors to develop a severity score [1]. These
arameters accurately reflected the extent of lesion involvement
n the lungs. Evaluating standard risk prediction tools, such as
neumonia Severity Index (PSI), quick Sepsis Related Organ Fail-
re Assessment (qSROFA) renders calibration of the COVID-19 as-
ociated risks in terms of these variables. Fan et al. compared the
ccuracy of these indices to identify a reliable risk stratification
ystem [3]. Neto et al. employed these indices and statistically
onfirmed their significance in differentiating severely affected
2

populations [11]. Similarly, Zhang et al. developed a scoring sys-
tem that uses a multi-variate analysis to select certain risk factors
of severe pneumonia [12]. The usefulness of D-dimer levels as
a reliable prognostic marker for mortality rate determination
and hospitalization was demonstrated by Yao et al. [13]. In a
clinical study to confirm the correlation of CAD-based quantifi-
cation of lung parenchyma with other clinical findings, Durhan
et al. decisively highlighted CT scoring utility in predicting severe
pneumonia and ICU admissions [14]. Ebrahimian et al. investi-
gated the closeness between standard Radiographic Assessment
of Lung Edema (RALE) score and the severity determined by a
commercial AI algorithm that scores proportionate to COVID-19
related findings [15]. In the clinical trial, it was observed that the
difference between these scores was statistically insignificant and
strongly correlated with patient outcomes. Overall, these statisti-
cal risk scoring techniques define a set of known variables, such
as opacities, consolidations, and express severity as a heuristic
function of these terms. In contrast, the deep learning model
proposed in this work automatically performs feature engineering
from the CT scans to determine useful abnormal attributes.

Machine learning techniques model the severity as a func-
tion of radiographical features and other clinical, biochemical
parameters from Electronic Health Records (EHR). The combined
feature-set is an effective modality for predicting clinical out-
comes, triaging, and early identification of symptoms. Feature
engineering aims to build effective descriptors out of these vari-
ables. As an example, Ye et al. combined the infection morpholog-
ical features, and the texture attributes like coarseness, contrast,
roughness, and entropy, to create a fusion assessment descriptor
for severity estimation [16]. Along similar lines, Wu et al. devel-
oped a hierarchy of features encompassing radiological findings
and clinical attributes [6]. Learning from quantitative CT lung-
lesion features and clinical parameters, Zhang et al. employed
a light gradient boosting machine regression model to assess
severe or non-severe clinical stages [17]. Bagged trees recursive
feature elimination was tried for feature selection followed by
a logistic regression model to discriminate between the severe
and non-severe groups. Cai et al. investigated histogram tex-
ture features of the CT lesion volumes to build random forest
models for severity classification [18]. Leveraging the EHR data,
Schoning et al. trained logistic regression and decision trees to
classify severe and non-severe patients into distinct groups de-
pending upon different severity levels [19]. Similarly, Bats et al.
designed a framework of clinical characteristics consisting of 26
variables to learn a probability distribution for severe and risk-
free patients [20]. Selection of the best predictors was made
using the Akaike information criterion and the classifier was
learnt as logistic regression. The utility of biochemical tests as a
prognostic indicator of COVID-19 severity was demonstrated by
Cobre et al. [21]. The trained neural networks, decision trees, and
K-nearest neighbors showed the ability to predict positivity and
relative importance order of the biomarkers in clinical decision
making. Quiroz came up with a ML approach (gradient boosted
trees) that utilizes the CT imaging features such as ground-glass
volume, consolidate volume, effusion volume for assessing the
severity [22]. Clinical and laboratory indices have been shown
to enhance the learnability of ML for severity estimation. Tang
et al. trained a random forests model over these fusion fea-
tures [23]. The significance of each CT feature or laboratory index
was obtained as a correlation of that variable to the predicted
severity band. Though ML methods offer explainability of impor-
tant clinical and imaging variables, they still do not directly derive
features from CT images. They demand domain awareness and
also extensive parameter fine-tuning for optimal performance.
Deep learning on the other hand performs end-to-end feature
extraction and learning. Also, the proposed CNN encodes key
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esion information in its layers which can be incrementally trans-
erred to further prognostic tasks/datasets, unlike ML design that
pecializes in a target application.
Deep learning is seen as a major future trend in COVID-19

rognosis [24]. The models like CNN, fully connected neural net-
orks, sequence networks develop a perception of the severity
hrough a layered stack of learnable units. They rigorously ana-
yze the CT features in different levels of the processing hierarchy.
rmak et al. extracted the ground-glass opacities and extent of
ung involvement through a feedforward CNN to quantify COVID-
9 severity [25]. Lassau et al. improved the prognosis perfor-
ance of the deep learning model by composite training on the
ulti-contextual dataset of deep CT features, clinical parameters,
nd biomarkers [2]. Different from these methods, our proposed
ork operates directly on raw CT images, progressively filtering
he salient regions with attention. To optimize 3D CNN complex-
ty for fine-grained severity assessment, Li et al. introduced an
nput slicing based on multi-view slicing [26]. Furthermore, the
erformance was enhanced by utilizing dual-Siamese channels
nd clinical metadata for prior knowledge transfer. In contrast to
i et al. that considers nine fixed slices in a 3D scan, the proposed
NN comprehensively attends to every 3D voxel at multiple res-
lutions. Karthik et al. presented a filter optimization module in
NN that can capture characteristic patterns of COVID-19 [27].
imilarly in our work, the attention module identifies the COVID-
9 indicators by minimizing an additional infection segmentation
rror term. Karthik et al. introduced a contour enhancement to
NN for locating COVID-19 infected tissues [28]. Samala et al.
everaged the severity map generated by a pre-trained GoogLeNet
o form intensity-based global descriptors from the image and
lassified them with logistic regression [29]. Naeem et al. used
IFT, GIST features to build a CNN-LSTM fusion model for severity
rediction [30]. Aboutalebi et al. designed a projection–expansion
NN that generates enhanced representations for predicting the
irspace severity of COVID-19 [31]. In a similar fashion, to adap-
ively recalibrate feature responses at each encoder level our
roposed CNN explores a squeeze and channel-attention com-
ination. Wang et al. explored dual parallel branching neural
etworks to share and co-learn features on joint segmentation
asks, which mirrors the setup of severity prediction and infection
ocalization in our proposed approach [32]. Zhao et al. proposed
n image registration and knowledge-aided CNN approach to
ffectively learn from limited segmentation labels in training
ata [33]. The proposed deep learning model also builds upon
he concept of weak supervision that guides the attention head
o learn lesion localization.

Deep transfer learning from off-the-shelf CNNs including In-
eption V3, ResNet, and DenseNet was attempted by Yu et al. [34].
he COVID-19 cases were assessed as severe or not from ex-
loring these CT features on multiple ML classifiers. Aswathy
t al. applied transfer learning from the fusion of ResNet50 and
enseNet201 [35]. Goncharov et al. proposed a residual U-Net
odel for severity assessment [29]. Exploiting both diagnostic
nd prognostic information evident from a CT scan, Feng et al.
esigned a U-Net based encoder network for extracting lesion
eatures [36]. The encoded sequence was collectively classified
o a set of severity bands, at the same time explicitly supervised
o predict disease progression from mild to severe. Along similar
ines, Goncharov et al. designed an encoder–decoder CNN to
rocess severe lesions in the CT scan [37]. Lessmann et al. trained
ultiple pre-trained CNNs for assigning severity scores based on

he degree of parenchymal involvement in the lung pulmonary
obes [38]. While transfer learning from standard CNN architec-
ures exploits prior knowledge, the model design elements are
ot tailored to handle specific aspects of COVID-19 lesions. For

nstance, the CNN developed in this work inspired non-locality

3

based attention to correlating lesions spread across the spatial
and axial dimensions of the scan.

Applying CAD-based tools to quantify severity scores is
another robust approach. Huang et al. tracked the CT lung opaci-
fication percentages of infected patients between initial assess-
ment and follow-up treatments. These scores generated by a
commercial deep learning software significantly varied amongst
mild, severe, critical patients, thus validating the sensitivity of CT
features [39]. Pu et al. designed a CAD system that utilizes elastic
registration of lung boundaries and vessels, between two consec-
utive CT scans to assess severity and disease progression [40].
Different from statistical techniques and CAD tools that rely on
biochemical variables and risk indices, the proposed approach
learns solely from the chest CT modality. Inclusion of these
other clinical parameters into our attention modeling would help
determine their effect on the severity quantification.

Zhou et al. proposed an attention-based multi-modality fea-
ture fusion learning for severity prediction [41]. Mohammed et al.
used spatial-channel attention CNN to detect infected regions
with weak supervision [42]. Compared to these spatial/channel
attention models, the proposed CNN is customized as a multi-
stage analyzer that encodes a range of cues into hierarchical at-
tention layers, such as global contextual awareness, cross-channel
interdependencies, and variably-sized receptive field information
across different feature sizes.

Multiple Instance Learning (MIL) on CT patches aids in severity
estimation of different lung regions at a finer granularity. The
patch-wise scores are collectively pooled to express the severity
of the CT scan. The work by Li et al. proposed an instance-
level attention model to weigh the severity of the cropped patch
instances and combine them for bag-level classification [43]. The
MIL was enhanced by performing a virtual bag-based data aug-
mentation and learning a self-supervised pretext task ahead of
actual training. He et al. developed an embedding-level MIL, to
encode the patch instances into feature embeddings [44]. A global
contrast pooling was applied over these instance embeddings in
the bag to estimate severity. In a similar work, Xue et al. used
MIL to generate deep representations from lung ultrasound [45].
These ultrasound features were fused with the encoded clinical
information and assessed for the likelihood of being severe or
not. Although MIL offers an effective means to gather severity
from different parts of the CT image, the pooling function can
dilute the quality of embeddings, as key activations might get
diminished. While dense aggregations or attention-based MIL (as
in [43]) overcome to an extent, the features are not robustly tuned
at the micro-level. Our proposed CNN on the other hand, exploits
non-local attention operations to comprehensively correlate fine-
grained voxel features across the scan. Unlike the self-guided MIL
that takes longer to converge, we employ a weakly-supervised
refinement technique to auto-correct the attention focus. Though
this model uses pooling layers, these effects are compensated by
considering a range of scales and resolutions.

2.1. Research gaps and motivation

The key motivations behind the proposed design are as fol-
lows,

• Prevalent AI methods treat severity assessment as a classifi-
cation task into one of mild, moderate, severe, and fatal cat-
egories. Since such a rigid stratification has blurred bound-
aries, learning to separate these classes can be limiting the
key information desired in precise triage.

• While attention-based design enhancements are generally
used to augment the CNN capabilities, there exists a
methodological possibility of exploring fusion systems with
different architectural elements that can complement and
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Fig. 1. Architecture sketch of the proposed non-local squeeze attention 3D CNN framework for severity assessment.
fully harness the potential of attention learning for the
given task/dataset at hand. Although several works have
researched multi-level attention structures, access to the
interpretability of predictions at various levels can offer
better penetration into the decision process which better
informs the clinicians.

• As it is commonly not feasible to enable large-scale fully
annotated medical image databases for diagnostic studies,
there is a significant shift towards AI architectures that
can effectively exploit weakly labeled datasets to provide
insights. Navigating the CNN focus areas in response to
weakly-guided learning amplifies contextuality in features.

.2. Research contributions

Motivated by the above research opportunities, the major
ontributions put forth by the proposed work are listed below:

• The proposed AI framework learns the severity scoring as a
regression model on a continuous 0–1 scale encompassing
five bands of criticality. Different from existing works, this
formulation helps the model respond well to variations in
the CT manifestations that influence the degree of severity.

• The proposed model employs a non-local attention scheme
to correlate severe structures encoded in different parts of
the 3D scan. Weakly supervising this attention head from a
limited set of infection annotated samples guides the CNN
to refine its focus towards severely infected areas. Design-
ing explicit guidance to fine-tune the non-locality based
attention module is a novelty of this work.

• The proposed model builds an information channel across
the multi-scale features, and attention modules by encap-
sulating them into a layer-wise attention encoder–decoder
hierarchy that is tunable at a micro-level of granularity.

• Salient knowledge transfer from individual modules in the
attention unit is designed to facilitate information discovery
and complement learning at other modules in the unit. The
Squeeze and Channel-attention layers encode large recep-
tive fields and long-range connectivity that can be globally
queried at the attention Decoder to extract infections.

• The proposed CNN intrinsically highlights the CT hotspots
influencing the severity prediction, as pointed by the for-

ward attention tended to individual 3D voxels.

4

3. Proposed work

The proposed network is modeled as a 3D CNN that performs
attention fusion over diverse feature sets. A high-level architec-
tural sketch of the proposed CNN framework is presented in
Fig. 1. The first three blocks make up the encoder phase. It is
designed to robustly analyze the CT scan and encode adequate
contextual information that would facilitate the non-local at-
tention layer. The non-locality based attention module extracts
relevant cues from this encoded map and correlates these fea-
tures with voxels in the base CT scan to decode the severely
infected areas. Weak supervision from a limited set of infection-
labeled samples is used to guide this attention learning in the
refinement of key focus areas and further quantify severity. Fi-
nally, the learning objective is defined on dual loss functions
applied both to lesion localization and severity regression.

The subsequent Sections 3.1 to 3.4 elucidate the stages in-
volved in the CNN framework. Lastly, Section 3.5 presents the
multi-task learning setup and loss functions for training the
model.

3.1. Multi-scale feature pyramid

The input 3D CT scan is processed by a stack of 3D convolu-
tions as shown in Fig. 2. The feature pyramid robustly extracts
salient features in four different spatial scales. The shallower
layers extract low-level information, structural details such as le-
sion edge, boundaries, morphology, intensity range, and contrast
variations with other manifestations. In the inner layers, more se-
mantic features with objectness information are derived. Building
an encoder representation with such broad-ranging contextual
details is central to assessing severity of the COVID-19 infection
present in the scan.

In Fig. 2, the convolutional layer consists of a 3D convolution
operation, followed by a Leaky ReLU activation and batch-wise
Z-normalization. Every pyramid level emits double the number
of channels from the previous level. The activated feature map
is downsized using a 3D max-pooling layer which reduces the
dimensions by half. Thus, with each layer, the resolution of the
volume gets halved, and the voxel feature depth is doubled.
The pyramid feature maps are denoted by F 1, F 2, F 3, F 4 in the

decreasing order of resolution.



R. Karthik, R. Menaka, M. Hariharan et al. Applied Soft Computing 121 (2022) 108765

3

d
l
p
d
k
p
P
o

s
c
l
c
d
l
p
s
a
u
e
m
c
f
s

d
d

Fig. 2. Schematic diagram of the multi-scale feature pyramid.
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.2. Squeeze layer

This feature pyramid encodes rich semantic features in the
eep layers while preserving the low-level structures in the initial
ayers. Exploiting such multi-scale, varied contextual information
lays an important role in precisely assessing the criticality of
ifferent regions in the CT scan. Multi-scale feature learning is a
ey ingredient in the design of neural networks for medical image
rocessing and has led to state-of-the-art results in several tasks.
articularly, leveraging this information enables weak localization
f the infected CT voxels.
In the squeeze layer shown in Fig. 3, the four differently

ized maps F 1, F 2, F 3, F 4 are parallelly reduced to a uniform
hannel dimension of 32. The reduction achieved by 3D convo-
utional layers introduces a bottleneck representation. These 3D
onvolutional transformations analyze the channel-wise depen-
encies, squeeze and consolidate the filters information into a
ower-dimensional space, comprising of 32 channels. The average
ooling layers down-sample the spatial resolution to a uniform
ize of 16 × 16. The resultant feature maps are reshaped into
matrix form. Here the rows represent voxels in the 3D vol-
me, and the columns correspond to the 32-dimensional feature
mbedding associated with the voxel. Let M i be the transformed
atrix corresponding to feature map F i. These M i feature matri-
es infuse contextual information from differently sized receptive
ields. They encapsulate the semantic details drawn from various
cales.
The matrices are linearly densely stacked along the voxels

imension to yield an aggregated feature set. This matrix entity,
enoted by K is termed as the ‘keys’ (refer to Fig. 3). The densely

fused contextual map, K , comprehensively encodes the local spa-
tial descriptions from multiple scales and captures the channel
relationships as well. It will be analyzed by the subsequent layers
to decode the lesion tissues.
5

3.3. Channel-wise attention layer

Learning a mechanism to weigh the channel information, en-
ables the CNN to adaptively recalibrate its parameters and con-
verge on significant features. The keys, K generated in the previ-
ous step are pooled from the multi-scale feature pyramid. Thus,
the merged 32 number of filter channels in K are a result of con-
volutional layers with different parameters. Therefore, a channel-
wise attention model at this step would normalize the effects
of fusing divergent channel information. It clearly highlights the
relevant channels for the subsequent layers. Also, it constrains the
upstream convolutional layers to align the feature extraction and
produce complementary features that enhance the dense fusion.

Aggregation of voxel features along the channel dimension
leads to global channel-wise statistics. The attention layer applies
a global average pooling of columns in K , to form 32 channel
descriptors (presented in Fig. 4). This operation squeezes the
global voluminal information encoded by each channel into a
scalar value. A vector of such 32 channel descriptors is called the
attention vector, denoted by v. The attention vector is softmax
ormalized and masked along the columns of K . The attention
ating function results in optimal weighing of the channel-wise
eatures.

.4. Non-local attention block

Let K ′ denote the transformed set of keys emitted at the
hannel-attention block. K ′ is used as context to guide the decod-
ng of COVID-19 infections and criticality scoring from the base
T scan. The non-local attention block learns a comprehensive
ttention function, where voxels in the base CT scan attend to
he information contained in the encoded contextual map. With
uch learning, a voxel’s receptive field is not restricted to its local
patial neighborhood but is set to the entire context of the scan.
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Fig. 4. Block diagram of the channel-wise attention layer.
a
(

α

ince the voxel features can tune in response to the global view
f the CT, its representational capabilities are enhanced. Global
ttention to multi-scale features boosts the CNN’s discriminatory
earning and precise localization of the severely infected tissues.

Fig. 5 depicts the steps involved in non-local attention. First,
he CT scan is processed into a feature map, termed as queries, Q .
ueries are an entity used to search and extract relevant details
rom the encoded context. On the other hand, the keys, K ′ are
tilized to serve the required information as queried by Q . The
ttention map, A is computed as a matrix product between the

query and keys, as presented in Eq. (1).

A = QK ′T (1)
6

Aij refers to the degree of correlation between voxel i and the
encoding j. The resulting matrix is row-wise softmax normalized
nd transformed into a unified attention coefficient map alpha
refer Eq. (2)).

= softmax
i

(Ai) (2)

For facilitating feature adaptation and easing the convergence of
attention parameters, the attention weighing is performed over a
contextual map, V . This entity, termed as values, V is derived as a
linear projection of K ′. The attention coefficients, α are combined
over V as given in Eq. (3). Combining on V offers the CNN a
learnable mechanism to refine its output feature map in response
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Fig. 5. Schematic diagram of the non-local attention block.
o the attention feedback.

= αV (3)

he final representation emitted at the non-local attention, given
y O has selectively infused salient details from all areas in the
T and suppressed insignificant signals.
To enable sharp refinement of the attention focus towards

esion-rich areas, this attention coefficient map, α is further sub-
ected to supervision from a subset of infection annotated sam-
les. This matrix α is reshaped into a 4D tensor and averaged
long the channel dimension to yield P . Then given sample i
ith infection mask G(i) and predicted attention map P (i), the

ocalization loss LA is defined as follows,

A(G, P) =

∑
i

[G(i)
̸= ∅]

(
1 −

2
⏐⏐P (i) ∩ G(i)

⏐⏐⏐⏐P (i)
⏐⏐+ ⏐⏐G(i)

⏐⏐
)

(4)

From Eq. (4) it is clear that this dice loss function is only opti-
mized for samples with mask.

3.5. Regression learning

The proposed CNN is trained for severity regression as shown
in Fig. 6. The severity score is regressed within a range of 0–1.
The dataset offers five bands of criticality observed in the COVID-
19 patients based on their degree of lung abnormalities. These
bands are set at 0.00, 0.25, 0.50, 0.75 and 1.00. The regression
head predicts a severity measure closest to one of these marks.
The decoded feature map O from the previous layer is convolved
and linear projected to a regression score, ŷ (refer Fig. 6). The
regressor head is trained against target score y on mean squared
loss, LB which is given in Eq. (5).

LB
(
y, ŷ

)
=
y − ŷ

2 (5)

The joint loss function applied to both the localizer and regressor
during training is presented in Eq. (6). As a result, during predic-
tion, the model is not only able to a generate criticality score but
also renders a rough estimation of the affected volume.

L = L + L (6)
A B

7

Table 1
Distribution of CT scan samples based on severity of the COVID-19 infection.
Severity band Pulmonary parenchymal

involvement
Number of 3D
scans

Regression
target score

Zero Absent 254 0.00
Mild ≤25% 684 0.25
Moderate 25% to 50% 125 0.50
Severe 50% to 75% 45 0.75
Critical ≥75% 2 1.00

4. Dataset description

The MosMed CT scans dataset was used to train and validate
the proposed method for severity assessment. The reason for
the choice of this severity dataset is because it also comes with
infection labeling annotated for a subset of 3D scans. These expert
annotated samples are leveraged through weak supervision to
tune the attention head to roughly localize the severely infected
regions.

The dataset contains 1110 3D CT volumes, collected from indi-
vidual patients in the municipal hospitals of Moscow, Russia. The
scans are stratified into five bands of severity. Table 1 describes
the severity thresholds and sample counts under these bands.
Based on the criticality range, a suitable regression target score
between 0 to 1 is assigned to the samples. Out of all scans in the
dataset, infection masks are available only for a subset of 50 scans
which are used to train the attention module.

4.1. Data pre-processing

The data pipeline consists of the steps described in Fig. 7. First,
the raw 3D scans are intensity normalized. The CT voxel intensi-
ties are saved in Hounsfield Units (HU). For scans in the MosMed
dataset, this ranges from –1024 to 2000. 400HU is chosen as
the upper bound since the radio-intensities above this threshold
indicate bones. Therefore, the scans are min–max thresholded to
the range bounded between –1024 and 400. Post this step, they
are normalized between 0 to 1. Normalized scans are then resized
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Fig. 6. Schematic sketch of the CNN head for regression.
Fig. 7. Stages involved in the data preparation and augmentation of the 3D CT scans.
o a uniform spatial resolution of 128 ×128 and depth of 64
lices. Interpolating the scan intensities to fit these dimensions
acilitates consistent data batching and tensor processing across
ifferent CNN layers.

.2. Dataset augmentation

To improve generalizability of the model and expose to new
rientations during training, the samples were augmented in
8

an online fashion. In each randomly sampled mini-batch, the
samples were dynamically subjected to a series of data transfor-
mations on the fly at the time of training, as opposed to creating
a static augmented set (refer Fig. 7). The parameter ranges for the
affine transformations are as follows: (1) angle of rotation is ran-
domly drawn from the range of −10◦ to 10◦, (2) translation along
x-y directions are within 10% of the image’s height and width,
(3) horizontal and vertical shears factors are randomized between
−tan(5◦) and tan(5◦) for a shear angle of 5◦, (4) horizontal flipping
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s performed with a 50% probability. These augmentations are
arried out on the raw data in the training set. Samples in the
alidation or testing sets are directly considered for evaluation.

. Results and discussions

This section presents the performance analysis of the proposed
NN through multiple experiments. In the ablation study, the
ffectiveness of each individual building block of the model is
nvestigated in isolation from other components. The proposed
rchitecture is robustly evaluated on the K-fold cross-validation
cheme. In addition, we present a quantitative comparison of the
roposed work’s efficacy with state-of-the-art methods.

.1. Experimental setup

The K-fold cross-validation approach is chosen to evaluate
NN performance and carry out model training/validation. The
raining-validation splits are generated in a stratified manner,
.e., the ratio between the five categories of samples is the same
n both sets. When creating data batches, an equal number of
amples from the five severity bands are drawn into a single
atch. The weighted-class data sampling technique ensures that
his percentage of severity classes is equally balanced within the
atch.
The proposed CNN was trained on a 32 GB NVIDIA V100 GPU

n an Ubuntu VM instance on the Google Cloud. The model was
mplemented in PyTorch. Adam was used as the default gradient
escent optimization algorithm in all the experiments. The initial
earning rate was set to 0.01. The rate of gradient updates is
ontrolled by a multiplicative learning rate decay scheduler. The
earning rate drops by a factor of 0.1 when no improvement
s observed in the validation accuracy for a span of 10 epochs.
onsidering the GPU memory limitations, a batch size of 32 was
hosen for training the CNN.

.2. Results of CNN training

The proposed model was empirically analyzed on the 5-fold
ross-validation framework. To measure convergence of the dice
oss applied at the attention head, it was ensured that the CT
amples with infection mask were split in a 4:1 ratio between
he training and validation sets in each fold. The model was
ombinedly trained for severity regression and weakly super-
ised attention localization. The trained model was evaluated
n regression metrics that included Mean Squared Error (MSE),
oot Mean Squared Error (RMSE), Mean Absolute Error (MAE),
nd Coefficient of Determination (R2 score). The Dice Similarity
oefficient (DSC) was used to evaluate the degree of closeness
etween the predicted and actual infection masks at the attention
ead.
Results of evaluating the proposed CNN on 5-fold

ross-validation are presented in Table 2. The model converged
ith a residual error of 0.13. Since the difference between any
onsecutive two severity levels is 0.25, a confidence interval
f ±0.13 on unseen data reasonably demarcates the boundary
etween these bands. It suggests that the model has learnt char-
cteristic features for different severity ranges and exploits these
ues to distinguish the degree of infection between two adjacent
ands. It has learnt to correlate similarity of CT manifestations
ithin a severity level and differentiate the patterns across the

evels. A mean squared error of 0.019 further asserts the good
egree of fit achieved by the model. R2 score projects the extent
f variability of the severity scoring that can be explained by
he model. With a coefficient of 84%, the model reliably fits the
istribution of severity values, by capturing most of the variance
9

Table 2
Fold-wise computation of the trained model metrics for severity score
regression, recorded on the validation set from each fold.
Folds MSE RMSE MAE R2 score

Fold 1 0.017 0.131 0.126 0.860
Fold 2 0.019 0.140 0.136 0.840
Fold 3 0.021 0.148 0.139 0.824
Fold 4 0.022 0.149 0.146 0.820
Fold 5 0.016 0.126 0.116 0.873

Average 0.019 0.139 0.133 0.843

inherent to that data. It accurately forecasts the criticality mea-
sure, as a dependent variable of the CT scan data with only a low
margin of error.

The trendline variation in the R2 score and decay of mean
square error are visualized in Table 3. The values are tabulated
in Table 4. The R2 curve shows an increasing trend that satu-
rates in about 14 epochs. In all folds, the model converged close
to 20 epochs. The minimal gap observed between training and
validation curves suggests that the CNN generalized well for the
data distribution. The decay in mean squared error follows a
decreasing trend, where the validation loss initially staggers but
stabilizes in the later phase. Fact that the mean difference in MSE
across the folds is only 0.003, proves the model’s robustness to
perform alike on different splits of unseen data. An optimal mean
dice loss of 0.199 at the attention module suggests that it has
significantly complemented the regression learning, by guiding
the model’s focus towards infection areas. Being able to implicitly
associate this severity score to specific regions in the CT scan
using attention also highlights the explainability aspects of the
model design.

To evaluate the classifiable nature of the regression scores,
the values are mapped to severity classes based on the scoring
intervals. As described in the dataset section, the values closer to
0.00, 0.25, 0.50, and 0.75 get marked as Normal, Mild, Moderate,
and Severe respectively. From Fig. 8, the model achieves excellent
distinguishability between the categories. The recall metric is
registered at over 94%, 96%, 92%, 88% for the individual classes
respectively, which reinforces confidence in detecting the pos-
itive cases. There are only a few false positives resulting from
misclassification.

The trendline variation in the R2 score and decay of mean
square error are visualized in Table 3. The values are tabulated
in Table 4. The R2 curve shows an increasing trend that satu-
rates in about 14 epochs. In all folds, the model converged close
to 20 epochs. The minimal gap observed between training and
validation curves suggests that the CNN generalized well for the
data distribution. The decay in mean squared error follows a
decreasing trend, where the validation loss initially staggers but
stabilizes in the later phase. Fact that the mean difference in MSE
across the folds is only 0.003, proves the model’s robustness to
perform alike on different splits of unseen data. An optimal mean
dice loss of 0.199 at the attention module suggests that it has
significantly complemented the regression learning, by guiding
the model’s focus towards infection

5.3. Infection localization

A major finding from this work is the ability to guide an
attention model to learn focus areas with weak supervision. The
severe regions map derived as P in the non-local attention layer
(refer Fig. 5) is visualized in Fig. 9. In all the four CT instances
drawn from the test set, the CNN’s attention heatmap has roughly
coincided with the ground truth infection label. This proves that
explicitly guiding the attention learning even with a limited num-
ber of annotated samples leads to better interpretation of infected
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Table 3
Learning curves recorded during training. Mean squared error is the criteria for severity regression, while reduction dice loss is monitored for the
attention head. The coefficient of determination is computed on the train/dev sets after every epoch.
Table 4
Metrics recorded for regression and attention localization on the 5-fold cross-validation scheme.
Folds Mean squared error R2 score Dice loss at attention head

Training Validation Training Validation Training Validation

Fold 1 0.007 0.017 0.980 0.860 0.119 0.228
Fold 2 0.008 0.019 0.985 0.840 0.051 0.185
Fold 3 0.010 0.021 0.988 0.824 0.099 0.190
Fold 4 0.012 0.022 0.989 0.820 0.091 0.188
Fold 5 0.010 0.016 0.994 0.873 0.076 0.204

Average 0.009 0.019 0.987 0.843 0.087 0.199
regions. It also assures applicability of this modeling to real-world
data.

The quantitative results summary of the attention learning
s presented in Table 5. With a precision of 84.8%, the model
as finely captured the infection morphology with fewer false
10
positives. Given a 75.9% recall score, it has certainly identified
the predominant regions of pulmonary involvement with a mod-
est miss rate. The attention maps obtained against a heteroge-
neous distribution of lesion samples in Fig. 9, further validate
these conclusions. Except for a few detached islands, majority of
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Table 5
Fold-wise performance of the weakly supervised attention learning computed
on the validation samples with infection labeling.
Folds Precision Recall DSC IoU

Fold 1 0.824 0.726 0.772 0.623
Fold 2 0.857 0.776 0.815 0.677
Fold 3 0.876 0.753 0.810 0.695
Fold 4 0.871 0.760 0.812 0.668
Fold 5 0.811 0.781 0.796 0.672

Average 0.848 0.759 0.801 0.667

the infectious areas are well captured and accounted for in the
severity quantification. In addition to the severity score, these
estimated infected voxels can serve as additional radiological
markers/insight for the clinician.

5.4. Ablation study

This section investigates the effectiveness of the three key
uilding blocks of the proposed architecture - (1) Squeeze layer,
2) Channel-wise Attention layer and the (3) Non-local Attention
ayer. To quantify the usefulness of an individual component,
he contribution of that component is measured as a percentage
egrade in the CNN performance after its removal. The results of
his evaluation are tabulated in Table 6.

Eliminating the squeeze layer increased the mean residual
rror to 0.192 and the R2 score dropped by 17.2%. This layer

serves as the encoder. For this ablation experiment, in place of the
squeeze encoder, the feature map F 4 was directly reduced to 32
channels and propagated downstream (refer Fig. 3). The inclusion
of this layer primarily helps the CNN to process diverse receptive
field information from different levels of the multi-scale feature
pyramid. Low-level structures harnessed at the initial layers get
streamlined into the CNN’s attention learning and serve as salient
cues for infection localization.

The channel-wise attention layer weighs the relative signif-
icance of the channel information present in the densely fused
contextual map from the squeeze layer (refer Fig. 4). In absence
of this layer, this feature map is not channel-wise normalized,
therefore patterns of random maximal activations emerge from
the component maps and affect the rate of convergence. Thus the
model saturated in more number of epochs, yet the performance
quotient fell by 6.88% R2 score. This experiment confirms the

usefulness of analyzing cross-channel relationships to determine

11
salient features. Applying this step, especially in the deeper layers
improves tuneability of the CNN features.

In the final ablation study, the non-local attention block is
examined. This block performs decoding of the semantic features
towards severity assessment. For the ablation experiment, this
block is directly substituted with feedforward fully connected
layers that learn regression. The fused keys matrix, K is flattened
and passed down these linear layers (refer Fig. 5). The outcome of
removing this component has the highest impact on the results.
The R2 score dropped by a huge factor of 28.9%. Thus, the non-
ocal attention’s assessment of the significant encoded features
lays a huge role in decoding the relevant details for evaluating
everity.

.5. Comparison of proposed architecture with the existing works

We present a performance analysis of the non-local attention
NN with existing CT-based works for COVID-19 diagnosis and
everity prediction, as listed in Table 7. To ensure a fair compar-
son of the works, these compared methods were implemented
s regression models on the same Mosmed dataset at hand and
hey were all evaluated on a common test partition.

It is to be noted that though standard CNN architectures
uch as ResNet, DenseNet are accurate for most vision tasks,
hey still need additional customizations to recognize intricate
T structures contributing to severity. In a similar sense, the ML
lassifier on deep features also resulted in a lower R2 score of
6.8% [34]. To adapt U-Net for severity estimation, Goncharov
t al. introduced a slice-wise correlation and achieved a better
.51% R2 score and 0.215 MAE [46]. Similarly, the DenseNet161

encoder with U-Net quantified the infection severity accurately
to a 63.6% R2 score [37]. Different from these encoder–decoder
methods, the proposed CNN incorporates an attention fusion
module that spatially orients the CNN focus to locations with high
lesion likelihood.

CNN-LSTM based models generate an optimal level of fit with
better results [30,42]. Specifically, Naeem et al. used SIFT, GIST
descriptors to encode the CT scan and reduced MAE to 0.190 [30].
Though this method analyzes global/local texture features, it adds
an overhead for deriving these feature sets, also demands exten-
sive hyperparameter fine-tuning. On the other hand, Mohammed
et al.’s Spatial/Channel (SC) attention module generates slice-level
severe regions prediction in a weakly supervised manner [42].
Nevertheless, it does not offer explicit guidance to aid in atten-
tion refinement or feature modulation, thus requiring more data
and longer training to converge. The same model behavior was
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a

Fig. 9. Cross-section view of the CNN attention map against the expert annotated infection labeling for four different CT scan samples in the hold-out test set. The
choice of samples is picked to show the model’s response to various heterogeneity in the lesion morphology.
Table 6
Result analysis of ablation experiments.
S. No. Ablation experiment MSE RMSE MAE R2 score

1 Proposed model without squeeze layer 0.038 0.194 0.192 0.698
2 Proposed model without channel-wise attention layer 0.027 0.164 0.142 0.785
3 Proposed model without non-local attention layer 0.050 0.223 0.218 0.599
4 Proposed model with all components included 0.019 0.139 0.133 0.843
observed in the attention ResNet by Zhou et al. that registered a
69.1% R2 score [41]. Compared to these SC-attention modules, the
proposed Squeeze-Channel attention layers form a fusion of var-
ious feature scales resulting in a global encoded representation.
Furthermore, the non-local attention processing is modeled as a
decoder function that exploits this context.

Extracting lesion-rich slices through attention decoding was
achieved by Chatzitofis et al. which gave a 6.80% higher R2 score
nd 0.175 MAE [47]. While this approach considers only frontal
12
slices to predict severity, accurate infection quantification should
be congregated from different axial views of the scan.

Amongst weakly supervised techniques, MIL models converged
faster and gave higher precision. He et al. projected severity score
as a weighted linear combination of features from different 2D
parts in the scan and attained a 77.1% R2 score, 0.160 MAE [25].
However compared to such dense pooling, the proposed non-
local attention applies a rigorous cross-correlation of voluminal
and channel-wise features to capture interdependencies across



R. Karthik, R. Menaka, M. Hariharan et al. Applied Soft Computing 121 (2022) 108765

h

a
t
r
a
a
t
i
a
e
t
a
r
t
t
g
s
D
n

a
a
c
p
p
r
o
p
m
v
a

D

c
t

Table 7
Experimental performance validation of the proposed model with similar works for COVID-19 severity assessment from CT scans.
S. No. Source Method R2 score MSE RMSE MAE

1 Aswathy et al. [35] Transfer learning from combined ResNet50 and DenseNet201 0.557 0.493 0.243 0.238
2 Yu et al. [34] SVM classifier on DenseNet201 features 0.568 0.484 0.235 0.233
3 Goncharov et al. [46] Residual U-Net 0.605 0.470 0.221 0.215
4 Qiblawey et al. [37] Encoder–Decoder CNN 0.636 0.457 0.209 0.206
5 Naeem et al. [30] CNN-LSTM autoencoder on SIFT, GIST features 0.684 0.441 0.195 0.190
6 Zhou et al. [41] Spatial channel attention residual network 0.691 0.437 0.191 0.188
7 Mohammed et al. [42] Spatial channel attention CNN-LSTM 0.720 0.427 0.183 0.182
8 Chatzitofis et al. [47] Attention decoder CNN 0.738 0.423 0.179 0.175
9 Xiao et al. [48] MIL on ResNet50 0.753 0.414 0.172 0.168
10 He et al. [25] Attention MIL 0.771 0.407 0.166 0.160
11 Li et al. [26] Multi-view Dual-Siamese CNN 0.802 0.392 0.154 0.147
12 Ouyang et al. [49] Dual sampling attention 0.813 0.386 0.149 0.145

13 Proposed work Non-local squeeze attention CNN 0.843 0.019 0.139 0.133
the 3D scan. Xiao et al.’s MIL pooling over ResNet features also
does not consider the inclusion of multi-scale features, which is
the key advantage in the proposed attention model [48].

The dual Siamese network proposed by Li et al. resulted in a
igh 81.3% R2 score and 0.145 MAE as it analyzed multiple views,

yet it requires complementary information from other clinical
markers to assess accurately [26]. Of the attention models, dual
sampler attention induced size-aware sampling and attention
refinement, therefore, has matched performance closer to the
proposed work [49].

6. Conclusion

The attention framework presented in this paper was aimed
t diagnosing the criticality of a patient’s medical condition from
he CT scan. To the best of our knowledge, this is the first
egression-based approach for COVID-19 severity scoring through
deep learning model. The CNN is customized as a multi-stage
nalyzer that encodes a range of cues into hierarchical atten-
ion layers, such as global contextual awareness, cross-channel
nterdependencies, and variably-sized receptive field information
cross different feature sizes. Specifically, multi-scale features are
xtracted and fused to construct a robust encoded representa-
ion for the decoder. Subsequently, we squeeze the structural
nd semantic details in the fused contextual map into a global
eference encoding and apply cross-channel correlation. Finally,
he processed feature set is matched against the base CT scan
hrough a non-local attention module that decodes the lesion re-
ions. Weakly supervising from a limited set of infection-labeled
amples guides the CNN to converge towards infected areas.
esigning explicit guidance to fine-tune the attention head is a
otable highlight of this work.
The proposed model achieved an average R2 score of 84.3%

nd a mean squared error of 0.133 on the MosMed data. Precise
lignment of the infected hotspots with the clinician’s markings
onfirms the effectiveness of the model and its explainability of
redictions. Results demonstrate that the approach has significant
otential to augment known methodologies, as it outperformed
ecent works by a good margin. As future work, the research
ffers rich scope to expand into other prognostic tasks such as
redicting severity conversion time, progression stages, and read-
ission rate. By including more clinical features and biochemical
ariables into attention learning it can cater to such diverse
pplications.
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