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Introduction 
The spatial accuracy of an eye-tracker is defined as the 

angular offset between a fixation target and the point of 
gaze.    Accuracy is important for a number of goals, for 
example: (1) to compare the performance of different eye-
eye-trackers (K. Holmqvist, Anderssen R., 2017; 

Macinnes, Iqbal, Pearson, & Johnson, 2018; Nystrom, 
Andersson, Holmqvist, & van de Weijer, 2013), (2) to 
study the visual perception of patients with several eye dis-
eases (Fragiotta et al., 2018; Whittaker, Budd, & 
Cummings, 1988), (3) to assess the neurodevelopment or 
the development of social skills of infants (Frank, Vul, & 
Saxe, 2012; Morgante, Zolfaghari, & Johnson, 2012), (4) 
to study eye-movements during reading (Rayner, 
Pollatsek, Drieghe, Slattery, & Reichle, 2007), and  (5) to 
test a variety of psychological paradigms (Orquin & 
Holmqvist, 2018). 

According to (K. Holmqvist, Anderssen R., 2017), to 
calculate the accuracy of an  eye-tracker (parentheses 
added): 
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    ''...calibrate your participant and then let him 
look at a number of points. Record data when the eye 
is fixating each point and calculate accuracy as the av-
erage angular offset (in degrees of visual angle)..." 
page 168. 

Generally, it is assumed that the underlying distribu-
tions are unimodal and normal.  But if the underlying dis-
tributions are multimodal, this measure of accuracy is 
somewhat less useful. Here are some quotes to support this 
point of view: 

“As a descriptive statistic the mean loses most of its 
usefulness, for example, since it can be expected to fall 
between the two modes of a bimodal frequency distri-
bution.'' (Clark, 1976), page 370.  

In a section labelled “Multimodal distributions: the 
mean considered harmful'', we find this quote: 

“The mean of a multimodal distribution can lie on 
an area of low probability, thus being a highly unlikely 
representative of the distribution.'' (Carreira-Perpiñán, 
2011),  page 5. 

And: 

“The mean of a multimodal distribution, for in-
stance, is not very informative, much less than the 
modes and their respective weights.'' (Galtier & 
Daubin, 2008) 

We are not aware of any previous research team that 
has ever statistically tested for multimodality in these dis-
tributions or formally tested for a normal distribution. We 
present evidence that the underlying distributions are, in a 
considerable majority of cases, not unimodal.  Further-
more, when they are unimodal, they are typically not nor-
mally distributed. Two previous papers have noticed and 
discussed the issue of multimodality in fixation stability 
metrics (Castet & Crossland, 2012; Whittaker et al., 1988).  
Both papers offer recommendations for ways to get preci-
sion estimates for multimodal fixation distributions.  Nei-
ther paper provides a solution to the problem of measuring 
accuracy in the face of multimodality.   

In the present study, we will formally test for the mul-
timodality of angular offset distributions in approximately 
50,000 distributions from 322 subjects tested twice.  Since 
we do find overwhelming evidence of multimodality, we 
suggest several metrics for accuracy in the face of multi-
modality.  We compare these various approaches to each 

other in terms of estimated data quality.  For unimodal dis-
tributions, we test for Gaussianity, and report the percent 
of distributions that were normal.   

During the review process, the question of the role of 
drift in accounting for multimodality was raised.  Accord-
ing to (K. Holmqvist, Anderssen R., 2017), drift is defined 
as: 

 “Accuracy over time: A gradual increasing offset 
as the recording progresses.” [page 160] 

It is not entirely clear whether this term is used in relation-
ship to changes over a task or recording session or is meant 
to apply to individual fixations.  Here, we consider it in the 
context of individual fixations.  It is also not clear to us 
why very slow movements away from a target should be 
treated differently from very slow movements toward a 
target.  We operationally define drift as any slow change 
in angular offset during a fixation, either toward target 
(lower angular offset) or away from target  We relate our 
measure of drift to our measure of multimodality.  If we 
considered as drift only those slow movements away from 
target (toward higher angular offset), our results would 
clearly be different. 

Methods 
The Eye Tracking Database 
The eye tracking database employed in this study is 

fully described in (Griffith, Lohr, Abdulin, & 
Komogortsev, 2020) and is labelled "GazeBase".  All de-
tails regarding the overall design of the study, subject re-
cruitment, tasks and stimuli descriptions, calibration ef-
forts, and eye tracking equipment are presented there.  
There were 9 temporally distinct "rounds" over a period of 
37 months, and round 1 had the largest sample. This report 
only includes subjects from round 1. Briefly, subjects  
were initially recruited from the undergraduate student 
population at Texas State University through email and 
targeted in-class announcements. A total of 322 subjects 
(151-F, 171-M) were included.  Subjects completed two 
sessions of recording (median 19 min. apart) for each 
round of collection. Each session consisted of multiple 
tasks. The only task employed in the present study was the 
random saccade task. During the random saccade task, 
subjects were to follow a white target on a dark screen as 
the target was displaced at random locations across the dis-
play monitor, ranging from ± 15° and ± 9° of visual angle 
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in the horizontal and vertical directions, respectively. The 
minimum amplitude between adjacent target displace-
ments was 2° of visual angle. At each target location, the 
target was stationary for 1 sec.  There were 100 fixations 
per task.  The target positions were randomized for each 
recording. The distribution of target locations was chosen 
to ensure uniform coverage across the display. Monocular 
(left) eye movements were captured at a 1,000 Hz sam-
pling rate using an EyeLink 1000 eye tracker (SR Re-
search, Ottawa, Ontario, Canada).  

Processing for Each Fixation 
Our goal was to study the accuracy for each fixation 

trial.  Although this was not the only possible choice (we 
could have made a single measurement for each task), 
analysis at the level of a fixation trial provided the oppor-
tunity to evaluate future assessments regarding the role of 
target eccentricity or pupil size on accuracy or multi-
modaltiy.  With 322 subjects across 2 sessions, and 100 
fixations per task, we started with 64,400 fixations.  Dur-
ing data processing, described below, the last fixation 
(#100) was lost. That left 63,756 fixations. Five subjects 
who had at least one session with fewer than 20 good qual-
ity fixations, were excluded. After certain other quality 
control steps, described below and presented in the results 
section, approximately 79%, or 50,545 fixations were left. 

Removing Average Saccade Latency 
The full gaze position signal contained various eye 

movements, including fixations, saccades, post-saccadic 
events and oscillations (PSE), and blinks.  We wanted to 
measure data quality only when subjects were fixating. 
Typically, the human reaction time to the instantaneous 
movement of a target (saccade latency) is around 200 ms 
(Leigh & Zee, 2015)[p. 113].  We first found the optimal 
temporal shift of the eye signal for each recording to align 
the eye and target movements as much as possible. To ob-
tain the best overall estimate of saccade latency, we calcu-
lated the mean angular offset distance between the meas-
ured gaze position and the target position at shifts of 1 sam-
ple, from 1 sample to 800 samples (1 ms to 800 ms). The 
shift resulting in the lowest mean angular offset distance 
was chosen.  As a result of this shift, fixation #100 was 
reduced in length and was dropped from the study.  The 
average shift was 237 msec (SD=17, min=192, max=316). 

 

 

The Angular Offset Measurement 
The error signal we wanted to analyze for accuracy was 

the angular offset. For each sample, we determine the dis-
tance of the horizontal eye position from the horizontal tar-
get position and likewise for the vertical signals. Given a 
position sample (x, y) in degrees of the visual angle, we 
first converted it to a direction vector using Equation 1: 

Then, we computed the angular distance between two such 
direction vectors using Equation 2: 

where �⃗� is the length of some vector in Euclidean space 
(L2 norm). 

It is worth mentioning that for relatively small dis-
tances, the angular distance between two direction vectors 
is very similar to the Euclidean distance between two po-
sition samples: 

 

For an angular distance of 10.00o, the corresponding Eu-
clidean distance is only 0.5% higher (10.05o). 

Therefore, the two distance measures are virtually 
equivalent in practice, and one may prefer the simplicity 
of Euclidean distance over angular distance. 

Which Part of Fixation to Analyze 
We wanted to know which part of the fixation period 

was least likely to have large error due to saccades.  To 
determine this, we created an average offset per sample, 
by averaging the angular offset across all studies (N=644) 
on a per sample basis. Figure 1 below shows the results. 
The line represents the mean error per sample. The blue 
colored portion represents the 500 contiguous samples 
with the lowest mean error. The lowest mean error period 
started at sample number 192 and ended at sample number 
691.  This is the data that we ultimately analyzed for accu-
racy. 
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Figure 1: The line represents a plot of the average angular offset 
per sample.  Any fixation which contained any NaN values 
(likely due to blinks) was not included.  Any fixation with any 
sample with angular offset > 60 deg was also excluded. Of a total 
of 63,756, only 54,751 fixations were included in these averages.  
We searched for the stretch with 500 samples with the lowest 
mean angular offset.  This stretch is shown in blue. The rest of 
the line is red. The low mean stretch started at sample 192 and 
ended at sampled 691. 

The procedures described below for detecting and re-
moving blink saccades and real saccades were largely 
based on those presented in  (Nystrom & Holmqvist, 2010) 
and (Friedman, Rigas, Abdulin, & Komogortsev, 2018).  
In some cases, modifications needed to be made for the 
present study. 
 

Removing “Blink saccades” 
 
Blink saccades are pieces of the horizontal and vertical 

position signals that occur before or after a blink.  A blink 
is indicated by a block of contiguous NaN values in the 
position traces.  Position signals before or after a blink of-
ten appear saccade-like and are often confused with sac-
cades.  As our goal was to measure the accuracy of fixa-
tion, we wanted to remove these blink saccades as well as 
typical saccades and PSE, and any other part of the signal 
that did not represent fixation. 
 

Our blink saccade removal method required a threshold 
on velocity noise during fixation.  To compute velocity for 
each position channel, we used the first derivative of each 
signal filtered with the Savitzky-Golay procedure 
(MATLAB, Mathworks, Natick, MA), taking care to per-
form the analysis without introducing any delay due to the 
filter. Radial velocity was calculated as the square root of 
the sum of the squared velocity from both filtered position 
channels.  

 
The next step was to calculate the 90th percentile of the 

velocity noise during fixation.  Every stretch of signal as-
sociated with a peak velocity above 55 deg/sec was re-
moved.  This left a series of periods during which fixation 
might be found (a potential fixation block).  If the length 

of any block was less than 40 msec, the block was rejected. 
For all remaining blocks, we skipped the first and last 4 
samples. For the purposes of this analysis, these sections 
were treated as fixations.  We then created a frequency dis-
tribution of the radial velocity of all of the samples in these 
fixation samples and determined the 90th percentile.  A 
single value was determined for each recording and was 
referred to as the “fixation velocity threshold'' or 
“FixVelT''. 
 

To detect the start of a blink saccade, starting at the last 
good sample before the NaN block, we marched backward 
in time until three contiguous samples were all below the 
FixVelT.  Of the 3 samples that were all less than FixVelT, 
the sample closest to the NaN block was taken as the start 
of the blink saccade (and the end of the prior fixation).  To 
determine the end of the blink saccade we started at the 
first good sample after the NaN block and marched for-
ward in time until 3 contiguous samples were below 
FixVelT.  Once again, the sample closest to the NaN block 
was taken as the end of the blink saccade. All of the signal 
portions related to blink saccades were set to NaN so that 
they would not be considered in our analysis of the fixa-
tions.  We visually inspected many of the removed blink 
saccades and found that this algorithm performed very 
well. 
 

Removing Saccades - Step 1 
 

To detect saccades, we found all blocks of data with a 
radial velocity above 55 deg/sec. These peak blocks were 
considered to potentially contain the peak velocity of sac-
cades. Each block began at a start sample and ended at an 
end sample.  To find the start of each saccade  we marched 
backward from the start sample until we found a local min-
imum in the radial velocity that was also less than 30 
deg/sec.  The end of each saccade was the sample after the 
end sample of the peak block that was both a local mini-
mum and less than 30 deg/sec.  Between the start of each 
saccade and the end of each saccade, sample values were 
set to NaN.  We visually inspected the performance of the 
saccade detection and removal procedure and found that it 
performed well. 
 

Removing Saccades - Step 2 
 

We found a novel, unusual, and unexpected method of 
removing other non-fixation events from the recordings. 
This method was found through trial and error.  We per-
formed a regression in a (sliding) window of 27 samples, 
which started at the 1st sample up to the 27th sample, with 
the window centered at sample number 14. Regressions 
were performed in each window, as the window slid from 
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the start of the position data to the end of the position data 
(last sample number minus window width (27)).  The in-
dependent variable for each regression was the sample po-
sition in each window (1 to 27) raised to the power of 2 
(squared). So, the independent variable for the first sample 
was 12 or 1, and for the last sample was 272 or 789.  This 
regression is similar to a polynomial regression with order 
1 (the linear component) removed and only the quadratic 
component remaining.  A statistically significant regres-
sion meant that some sort of parabolic function, 27 sam-
ples long, fit the data well.  The analysis was conducted 
with the first dependent variable as horizontal position fol-
lowed by the same analysis based on the vertical position. 
 

Each regression produced an r2 which indicated the 
goodness of fit of the model to the data, and a beta-weight, 
which was related to the amplitude of the parabolic struc-
ture found.  For convenience, the beta-weight was multi-
plied by 1000.  We empirically determined that windows 
with an r2 greater than 0.6 and a beta-weight greater than 
0.55 typically contained either saccades or pieces of sac-
cades which were not found during the previous saccade 
removal procedure.  Most were very small saccades, or 
else pieces of saccades, or other saccades which had a 
somewhat unusual velocity profile.  Upon visual inspec-
tion, this method was very successful in removing all sorts 
of non-fixation events from the position data. 
 

Removal of Anticipatory Saccades 
 
Our task was designed so that each fixation trial was 

exactly 1 second in duration.  In such a predictable situa-
tion, subjects often anticipate the target jump and make a 
saccade prior to the target jump.  Such saccades are re-
ferred to as “anticipatory saccades'' (AS).  These events did 
occur in our data.  The saccade portion of each AS was 
removed by our saccade removal methods. But after an 
AS, the fixation level would be far from the target, not due 
to inaccuracy, but because of the AS.  We developed a 
method to detect these elevated fixation levels due to AS 
and removed them. 
 

To start, we found, within each fixation, all periods 
where the eye-position offset (horizontal or vertical) was 
greater than 2°.  Contiguous samples with such offsets 
were considered potential fixation blocks after AS.   If any 
such block of data was shorter than 100 msec, we rejected 
it as a post-AS fixation.  If any block was longer than 100 
msec occurred, at least partially, within our sample range 
of analysis (192 to 691 samples after the target jump) we 
considered these post-AS fixations. 
 

The sample number of the start of each of these events 
was logged.  We would expect that the probability of an 
AS would increase over time. As a check that we were 
finding AS with our method we created a frequency histo-
gram for the number of AS in each fixation period (from 
1-99), we then correlated the frequency in each fixation 
with the fixation number.  We found a highly linear rela-
tionship (r2=0.85) between the time of onset of an AS and 
the frequency of AS during each of our 99 fixations.  
Therefore, it was clear that what we were labelling as AS 
did tend to occur more frequently with time during the 
task.  We considered that this was consistent with these 
events being AS. 

All the major steps in our preprocessing of fixations are 
listed in Table 1. 

Table 1. Steps in the Preprocessing of Fixations 

Step 1 Remove saccade latency 
Step 2 Remove blink saccades 
Step 3 Remove saccades – step 1 
Step 4 Remove saccades, etc. - step 2 
Step 5 Remove anticipatory saccades 

 
 

Evaluation of the Success of These Efforts to 
Remove Non-Fixation Samples 
 

As a result of our steps to remove non-fixation samples 
from our fixations we hoped that only fixation samples 
were represented in the angular offset of these fixations.  
To check this, we examined 500 randomly chosen fixa-
tions. Of these, we rated 408 (82%) as containing only fix-
ation samples, 66 (13%) contained PSEs (typically only 1), 
20 (4%) contained microsaccades, 2 contained very slow 
and/or very noisy saccades, 2 contained a piece of a very 
slow saccade, 1 contained pieces of a blink saccade and 1 
contained RIONEPS (Abdulin, Friedman, & 
Komogortsev, 2017) noise.  We considered that these 
small and/or brief events would not challenge the state-
ment that the overwhelming number of these fixation sam-
ples were indeed fixation only. 
 

Inclusion Criteria for Fixations 
 

There was a maximum of 500 samples for each fixa-
tion.  Any fixation that had fewer than 400 samples (i.e., > 
100 NaN values after all preprocessing), was excluded 
from further analysis.  Any fixation with more than 4 
blocks of contiguous NaNs was also rejected. 
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Assessing Unimodality 
 

To determine if the distributions of angular offset in 
each fixation were unimodal or multimodal, we employed 
several methods.  First, we employed the Bayesian mixture 
model approach described in (Xu, Bedrick, Hanson, & 
Restrepo, 2014) (see Figure 2 for an illustration of this pro-
cess).  The basic idea is that an algorithm is employed to 
try to fit from 1 to kmax (5, in our case) weighted normal 
distributions to the histogram of the angular offsets.  Each 
normal component is represented by a mean, a standard 
deviation (SD) and a weight.  The sum of these weights is 
always 1.  This is done repetitively, 2000 times (iterations) 
and on each iteration, the most likely number (from 1 to 5) 
of modes in the distribution was determined. The ultimate 
goal is to determine the Bayes Factor (BF). If a is the  prior 
odds of more than one mode (determined by simulation in 
our code), and b is the posterior odds of finding more than 
one mode, then BF=b/a.  A log(BF) <=1 means there is no 
evidence of multimodality (unimodal)(Kass & Raftery, 
1995).  A log(BF) between 1 and 3 is considered as posi-
tive evidence for multimodality.  A log(BF) between 3 and 
5 is considered as strong evidence for multimodality.  And, 
finally, a log(BF) > 5 is considered as very strong evidence 
for multimodality.  The algorithm used to perform the mix-
ture model is referred to as a reversible jump Markov chain 
Monte Carlo (rjMCMC) procedure.  The R package that 
does the fitting is ``mixAK" (A. Komárek, 2009; Arnošt 
Komárek & Komárková, 2014).  R code for this computa-
tion is available at R code for multimodality testing (R 
Development Core Team, 2010). 

 
In addition, we also applied 1 additional test of multi-

modality from the ``multimode'' R package (Ameijeiras-
Alonso, Crujeiras, & Rodríguez-Casal, 2018).  Specifi-
cally, we employed a version of the excess mass test 
(ACR). The ACR test is a new multimodality testing pro-
cedure that combined 2 approaches, the critical bandwidth 
approach, and the excess mass approach (ACR). 

 

 
 

Figure 2: The top panel presents the histogram of angular offsets 
for subject 1001 (coded number, not consecutive number), ses-
sion 1, fixation number 14.   The green line is the density of the 
histogram, which can be thought of as a smoothed version of the 
histogram.  The blue line is the fit of the multimodal mixture dis-
tribution found by the rjMCMC algorithm.  The middle panel dis-
plays the three component distributions estimated by the multi-
modality algorithm. The bottom panel displays the means, SDs 
and weights of each component estimated by the multimodality 
algorithm. 

Testing for Normality 
 

From a practical point of view, there are problems us-
ing classic formal inferential normality testing for large 
samples sizes. (See Discussion of Formal Normality Test-
ing for a discussion of the issues.)  Rather than use these 
tests, we have come up with our own approach, which is 
quite similar to the approach of (Cain, Zhang, & Yuan, 
2017), for determining normality.  We resample 10,000 
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pseudo-random normal distributions with the same total N 
as a plurality of our fixations (500 samples).  For each sam-
ple normal distribution, we obtain an estimate of skewness 
and kurtosis.  We use these estimates to create 95% confi-
dence limits for skewness and kurtosis.  If a test distribu-
tion has skewness and kurtosis within these limits, we con-
sidered it normal for present purposes.  The skewness lim-
its were -0.1821 to 0.1806 and the kurtosis limits were 
2.6768 to 3.3655 (the skewness of a normal distribution is 
0.0 and the kurtosis of a normal distribution is 3.0). 
 

Accuracy Metric Names 
 

Accuracy-related fixations consist of all fixations 
which met the inclusion criteria above (50,545).  For each 
accuracy-related fixation, to estimate accuracy, we calcu-
late the mean (ClassicAccuracy).  This is the mean of the 
angular offset distribution regardless of whether the distri-
bution is unimodal or multimodal.  We also determine the 
mean of the component distribution with the maximum 
weight (MaxCompMean).  For unimodal distributions we 
report the median of the fixation-related distributions (Me-
dianAccuracy).  For unimodal, Gaussian distributions, we 
report the mean (MeanAccuracy). 

 
Drift 

 
To obtain a measure of drift in the angular offset val-

ues, we began by selecting only fixations  that consisted of 
a single, 500 sample fixation segment (N = 14,179).  Next, 
we performed a Fast Fourier Transform (FFT) of the an-
gular offset signal.  We retained the slowest frequencies 
(1.95 Hz and 3.91 Hz and the DC component (mean)) and 
performed an inverse FFT to obtain a slow frequency 
curve that matched the angular offset signal.  We fit these 
curves to the angular offset signal by including a linear 
component and obtained very good fits of  the low fre-
quency component to the angular offset signal (see Figures 
3 and 4 for examples of high and low drift).  The r2 of these 
fits were taken as a measure of drift. 

 

Results 
Characteristics of Accepted Fixations 
With 322 subjects measured for two sessions, with 

each session consisting of 99 fixation trials, there was a 
total of 63,756 fixations to consider. As noted above, to be 
included in our analysis each fixation had to have at least 
400 non-NaN samples, and no more than 4 NaN Blocks 
(contiguous runs of NaN values, which presumably 

represent blinks).  Also, five subjects with fewer than 20 
good fixations for a session were also excluded.  This left  

 

Figure 3: Illustration of a case of high drift. 

50,545 fixations (79% retention) included in our analysis. 
Appendix Figure 1 illustrates the frequency distributions 
of number of NaNs, number of NaN Blocks and number 
of good samples.   

Bayes Factor Distribution 
Figure 5 is the frequency histogram of log(Bayes Fac-

tors) (logBF) for all fixations in this study.  Log(BF) val-
ues that were infinite were set to the maximum numerical 
value found.  As noted above, a log(BF) <=1 means there 
is no evidence of multimodality (unimodal). A log(BF) be-
tween 1 and 3 is considered as positive evidence for 

Figure 4: Illustration of a case of low drift 
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multimodality.  A log(BF) between 3 and 5 is considered 
as strong evidence for multimodality.  And, finally, a 
log(BF) > 5 is considered as very strong evidence for mul-
timodality.  See Table 2 for a breakdown of log(BF) values 
for fixation trials that contained from 1 to 5 fixation seg-
ments. Based on the ACR Test of multimodality, we found 
83.5% of all angular offset distributions to be multimodal. 

These global values include presented trials which con-
sist of from 1 to 5 fixation tracking segments. Table 2 also 
presents data for distributions based on from 1 to 5 fixa-
tions segments. Although the percentage multimodal is 
higher for distributions from 2 to 5 segments, even for dis-
tributions based on a single, long (400- 500 msec) fixation, 
the percent multimodal was quite high (69%).  

Histogram of Number of Components 
Figure 6 is the frequency histogram of the number of 

component distributions found by the multimodality test-
ing algorithm. Two components was the most frequent re-
sult and occurred 42.5% of the time. Two or more compo-
nents were found in 87% of fixations. Evidence of more 
than 1 component needed to fit a distribution is also evi-
dence of multimodality. 

Distributions of All Measures of Accuracy 
 Distributions of all four of our measures of accuracy 

are presented in Figure 7. Note the overall similarity of 
these distributions, with all having a median between 0.71 
and 0.73. This is an indication that our measures that are 
appropriately applied (all but the top) give more or less the 
same overall estimate of accuracy as does the ClassicAc-
curacy (top). 

 
Figure 5: On the top, the frequency distribution of Bayes Factors 
(log(BF)) across all used fixations for both sessions and all sub-
jects (50,545 fixations.)  All BF values that were positive infinite 
were set to the highest numerical value obtained. All BF values 
that were negative infinite (log(0)) were set to log(0.003). The 
lines are the log(BF) thresholds for a value of 1, 3 and 5, corre-
sponding to positive evidence (1 to 3), strong evidence (3 to 5) or 
very strong evidence (>5) of multimodality. The bottom histo-
gram is the top histogram with the y-scale in log units. 
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Table 2. Percent Multimodal for from 1 to 5 Fixation Segments. 
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1 19,961 21.6 4.5 4.9 68.9 

2 24,614 11.4 2.8 3.4 82.5 

3 5,269 5.47 1.75 2.37 90.4 

4 626 6.4 0.3 1.8 91.5 

5 75 9.3 2.7 0.0 88.0 

Sum 50,545 14.7 3.3 3.9 78.1 

*-No evidence of multimodality (log(BF)<=1.) 

†-Positive evidence of multimodality (log(BF) > 1 & log(BF)<=3.) 

‡-Strong evidence of multimodality (log(BF) > 3 & log(BF)<=5.) 

$-Very strong evidence of multimodality (log(BF) > 5.) 

 
Figure 6: The mixture distribution analysis was allowed to fit 
from 1 to 5 component distributions.  In this figure, we present a 
frequency histogram of the number of component distributions 
found.  The most frequent number of component distributions is 
2. 

 
 
 

Relationship Between Multimodality and 
Drift 

The relationship between multimodality (log(BF)) and 
drift is illustrated in Figure 8.  The linear relationship be-
tween these two measures was highly statistically signifi-
cant (p < 0.00001) and accounted for 44.3% of the vari-
ance. A somewhat dense cloud of points is apparent in the 
portion of the figure with r2 > 0.55 and log(BF) > 0.  It 
looks like drift during fixation, as we have measured it, 
does explain a substantial part, but certainly far from all of 
the variance in multimodality.  Below (Figure 9), we pro-
vide illustrations of fixations with (A) low log(BF) and 
low drift; (B) low log(BF) and high drift ; (C) high log(BF) 
and low drift; and (D) high log(BF) and high drift.. Twelve 
similar distributions are presented in the Appendix. Note 
that a number of these drifts are toward decreasing angular 
offset error. 
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Figure 7: The top is a histogram of ClassicAccuracy measured 
across 50,545 fixations.  The mode in all plots was estimated by 
the first author.  The 2nd from the top is a histogram of MaxComp-
Mean across all fixations.  The 2nd from the bottom is the fre-
quency histogram of MedianAccuracy for unimodal distributions 
only (N=19,461).  The bottom is the histogram of the few distri-
butions that were unimodal and met normality criteria (N=855). 

 
Figure 8: Illustration of the relationship between our measure of 
drift and our measure of multimodality (log(BF).   
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Figure 9: Examples of multimodality and drift. (A) Low drift, low log(BF). (B) High drift, low log(BF). (C) Low drift, high log(BF), 
(D), High drift, high log(BF).  Note that in B and D, drift is toward decreasing angular offset (closer to target). 
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Discussion 

The main findings of the present study are that distri-
butions of angular offset during fixation are, more often 
than not, multimodal.  In this case, describing the central 
tendency of these distributions with a mean is not highly 
useful. We present alternative measures of accuracy that 
might be more useful.  We also report that there is evidence 
for a relationship between multimodality and a measure of 
drift, but this relationship leaves much to explain.  

The mean of the maximum-weighted Gaussian compo-
nent found to fit the data (“MaxCompMean”), is interpret-
able, and is found for every fixation.  If one is open to ex-
cluding the majority of fixations that are multimodal, the 
median is appropriate.  Only a small subset of these uni-
modal distributions were normally distributed (1.7% of all 
fixations).  For this small group, the mean is a perfectly 
fine descriptor of the spread of the distribution (“MeanAc-
curacy”). The ultimate estimate of accuracy is very similar 
for each of these measures.  

As far as we can tell, there is no generally accepted 
method for measuring “drift” in individual fixations.  We 
defined drift in fixation as a very slow change in angular 
offset over time.  Although (K. Holmqvist, Anderssen R., 
2017) define drift as movement away from target, we con-
sidered as drift any gradual change in angular offset during 
each fixation, either away from or toward the target.  Our 
measure of drift was the model r2 of the fit of a slow drift 
signal to the angular offset data.  We did find evidence that 
drift was positively related to multimodality, and the rela-
tionship was substantial.  In our view, the relationship was 
not strong enough to support the view that multimodality 
is simply a function of drift (compare Figure 10 with Fig-
ure 12).  Explaining multimodality of angular offsets dur-
ing fixation is likely to involve a number of factors, which 
may interact in complex ways.   It is the case that some-
times, microsaccades appear to be the basis of multimodal-
ity and at other times, microsaccades are clearly not related 
to multimodality.   

Future Directions 
For precision, the differences between each sample an-

gular offset and the angular offset mean for that fixation is 
determined.  The standard deviation of those differences is 
often taken as a measure of precision.  It would be inter-
esting to know if these precision-related distributions were 
also multimodal.  As noted by (K. Holmqvist, 2017), 

accuracy is often a function of eye position (eccentricity), 
a fact that we did not consider for the present analysis. It 
might be interesting to study if multimodality is also a 
function of target eccentricity. Similarly, a number of re-
searchers have provided evidence that pupil size affects ac-
curacy (Drewes, Zhu, Hu, & Hu, 2014; K. Holmqvist, 
2017; Nystrom et al., 2013). Future studies might look for 
a relationship between multimodality and pupil size. 
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Appendix: Additional Figures 

 

 
 
  

Appendix Figure 1: The frequency distributions of Number of NaN values (top), number of NaN Blocks (mid-
dle) and number of good data points for fixations (bottom) included in this study 



Journal of Eye Movement Research Friedman, L. Lohr, D., Hanson, T. & Komogortsev, O. V. (2021) 
14(3):2 Multimodality of Accuracy-Related Distributions 

  16 

 

 

Appendix Figure 2 
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Appendix Figure 3 
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Appendix Figure 4 
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Appendix Figure 5 


