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Abstract

Many cellular functions are mediated by protein–protein interac-
tion networks, which are environment dependent. However,
systematic measurement of interactions in diverse environments is
required to better understand the relative importance of different
mechanisms underlying network dynamics. To investigate envi-
ronment-dependent protein complex dynamics, we used a
DNA-barcode-based multiplexed protein interaction assay in
Saccharomyces cerevisiae to measure in vivo abundance of 1,379
binary protein complexes under 14 environments. Many binary
complexes (55%) were environment dependent, especially those
involving transmembrane transporters. We observed many
concerted changes around highly connected proteins, and overall
network dynamics suggested that “concerted” protein-centered
changes are prevalent. Under a diauxic shift in carbon source from
glucose to ethanol, a mass-action-based model using relative
mRNA levels explained an estimated 47% of the observed variance
in binary complex abundance and predicted the direction of
concerted binary complex changes with 88% accuracy. Thus, we
provide a resource of yeast protein interaction measurements
across diverse environments and illustrate the value of this
resource in revealing mechanisms of network dynamics.
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Introduction

The molecular function and cellular role of a protein often cannot

be understood without knowledge of its interactions with other

proteins. For this reason, multiple high-throughput methods have

been developed to identify direct protein–protein interactions (PPIs)

on a genomewide scale, for example, using yeast 2-hybrid (Y2H) or

protein-fragment complementation assay (PCA) methods. These and

complementary techniques for detecting co-complexation, for exam-

ple, affinity purification coupled with tandem mass spectrometry

(AP-MS), have yielded a wealth of PPI data in model organisms and

humans (Uetz et al, 2000; Ito et al, 2001; Butland et al, 2005; Stelzl

et al, 2005; Gavin et al, 2006; Krogan et al, 2006; Tarassov et al,

2008; Yu et al, 2008). A positive Y2H assay suggests that two

expressed proteins are capable of a direct biophysical PPI in the

context of the Saccharomyces cerevisiae nucleus, but whether,

where, and when this interaction is physiologically relevant is left

undetermined. In contrast, various PCA approaches have been

developed which test for an interaction in the native cellular envi-

ronment at native expression levels (Tarassov et al, 2008; Schlecht

et al, 2012). These approaches, reportedly able to detect as few as

25 complexes per cell (Remy & Michnick, 1999), can directly

measure the dynamic dependence of a PPI on growth environment.

While the results ofmany high-throughput PPI assays are interpreted

as static maps of physical connections, it is known that the variability of

protein complexes and the coordinated dynamics of physically linked

gene products underlie fundamental aspects of cellular function. In an

attempt to capture this, static protein–protein interactomes have been

used as a “scaffold” on which to overlay and interpret other genome-

scale data such as gene expression and metabolic fluxes (Ideker et al,

2002; Luscombe et al, 2004; Sauer, 2004; de Lichtenberg et al, 2005).

These approaches have shown the value of PPIs in contextually under-

standing gene function, but they cannot straightforwardly identify
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quantitative changes in PPI complex levels, nor directly determine

protein complex levels in an environment-dependent cellular state.

A simplified view of PPI dynamics as “binary switches” in which

interactions are either present or absent is common and can offer

biological insights (de Lichtenberg et al, 2005; Greene et al, 2015) but

ignores potentially important quantitative changes in protein complex

abundance. The proliferating cell nuclear antigen (PCNA) complex

serves to illustrate the idea of quantitative environmentally responsive

protein interactions. PCNA, a major factor in DNA replication and

repair, forms a chromatin-bound complex with other proteins at sites

of DNA damage in response to gamma irradiation in a dose-dependent

manner (Balajee & Geard, 2001; Mailand et al, 2013). In another exam-

ple, salt stress leads to in vivo activation of the HOG (high-osmolarity

glycerol) signal transduction pathway, which is quantitatively depen-

dent on the interaction between Sho1 and Pbs2 (Marles et al, 2004).

In order to address the limitations of static interactome maps,

multiple studies have begun to identify condition-specific PPI changes

directly. We have previously implemented highly multiplexed murine

dihydrofolate reductase (mDHFR)-based PCA, which can detect

changes in the abundance of hundreds of binary protein complexes in

parallel. In this approach, the mDHFR fragments are fused to genes at

their genomic locus under control of the endogenous promoter, thus

allowing an in vivo study of binary protein complex level changes.

This approach was used to examine the effects of 80 small molecules

on 238 yeast binary protein complexes, uncovering multiple positive

and negative chemical modulators (Schlecht et al, 2012). A related

study by Rochette et al (2014) used a plate-based mDHFR PCA to test

the response of 1,338 yeast protein interactions to methyl methane-

sulfonate, an alkylating agent that induces DNA damage. This study

identified PPI changes in diverse cellular processes and found that, in

the DNA damage response, protein relocalization is a major driver of

PPI changes. A strength of the mDHFR PCA in measuring dynamic

interactions is that quantitative changes in relative strain abundance

reflect quantitative changes in binary protein complex abundance

(Schlecht et al, 2012; Freschi et al, 2013), allowing for a detailed

view of PPI remodeling by simply measuring cellular growth rates.

Here, we extend our previously developed multiplex barcoded

mDHFR PCA (BC-PCA) to investigate the effects of 14 chemical and

environmental perturbations on 1,379 binary protein complexes.

We observed widespread PPI changes in these conditions, many of

which were informative for the specific stimulus applied. Altered

PPIs tended to concentrate in large subnetworks and were often

centered around highly connected hub proteins. More closely exam-

ining the shift from fermentative to respiratory growth, we found a

highly significant relationship between binary protein complex

abundance and mRNA levels that explains a large portion of the

observed network dynamics. This correlation was predictive,

suggesting that reasonably accurate first-order estimates of PPI

network dynamics can be made using only mRNA data.

Results

Construction of a genome-scale barcoded protein-fragment
complementation assay

In the murine dihydrofolate reductase protein complementation

assay (mDHFR PCA), two proteins of interest are fused to two

respective fragments of mDHFR. Upon successful physical interac-

tion of the two target proteins, the mDHFR fragments fold together

into the native conformation and give rise to a functional enzyme

that is resistant to methotrexate (MTX). Interaction-dependent

reconstitution of MTX-resistant mDHFR allows for growth-based

selection, where the extent of MTX resistance is dependent on the

intracellular concentration of the PPI complex. The majority of all

possible binary PPI combinations in the yeast genome have been

previously subjected to mDHFR testing, leading to the identifi-

cation of 2,770 PPIs under a set of standard laboratory conditions

(i.e., growth at 30°C on solid media containing glucose, a rich

nitrogen source, and all essential supplements; Tarassov et al,

2008).

Having established the multiplex BC-PCA assay at a smaller

scale (Schlecht et al, 2012), here we attempted to scale it to as

many known PCA interactions as possible in a pooled and

barcoded format. We first reconstructed 2,394 (see Dataset EV1) of

the 2,770 Tarassov et al (2008) strains, 1,701 of which were veri-

fied to grow in liquid minimal media containing MTX (Fig EV1A

and B). We observed a broad range of growth rates among these

strains. This likely reflects strain-specific differences in the abun-

dance of reconstituted mDHFR complexes that arise from dif-

ferences in abundance of the binary protein complex of interest,

but could also reflect differences in DHFR reconstitution efficiency

arising from steric effects of different proteins fused to mDHFR

fragments. Consistent with a previous study (Freschi et al, 2013),

we found growth rate to be significantly correlated with the protein

expression level of the least abundant protein (using abundance

data from Wang et al, 2012) in the interacting pair (Pearson’s

r = 0.31, P < 2.2e-16, Fig EV1C). Indeed, this correspondence is

theoretically expected in cases where PPI affinity is high and each

pair of interacting proteins is independent of others (see Materials

and Methods). Also consistent with this idea, we found that the

subset of confirmed PPI pairs from Tarassov et al (2008) tended to

have least abundant proteins that were more abundant than the

least abundant proteins of unconfirmed PPI pairs (Fig EV1D).

Taken together, these results support the idea that quantitatively

measuring MTX resistance of these PCA strains can capture protein

complex abundance information.

To adapt the successfully recreated PCA strains to the BC-PCA

assay, barcode cassettes were transformed into corresponding F

[1,2]-containing haploid strain for each pair, which was then mated

with the corresponding F[3]-containing partner (Materials and

Methods, Fig EV1A) to create a barcoded diploid strain. We

successfully incorporated 1,432 barcodes, representing 1,428 of

1,701 unique interactions (Dataset EV1). These strains were then

pooled and competitively grown in selective media. Genomic DNA

was isolated from an aliquot, and barcodes were PCR-amplified and

hybridized to a high-density oligonucleotide array in six replicates.

Most barcodes (1,383 of 1,432; representing 1,379 unique interac-

tions) were detected across all six replicates, and the rest were

excluded from further analysis. As was previously found, micro-

array signal intensity values showed very high correlation among

six replicates (r ≥ 0.97, Fig EV1E), and correspondence to non-

competitive growth rates measured in isogenic culture (r = 0.69,

Fig EV1F). This confirms that our pool-based assay provides a

reproducible quantitative growth measure for each individual

strain.
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Identifying protein complex dynamics under diverse conditions

Many previous studies have mapped and analyzed “static” PPI

networks, in which the interaction assay reveals protein pairs that

are capable of interacting if expressed at sufficient concentrations at

the same time and place. However, the question of how and to what

extent PPI complex levels vary across different conditions has not

been studied at a large scale. Given that the BC-PCA assay yields

quantitative strain abundance measurements (across a large

dynamic range) which correspond to growth, and because growth

directly relates to reconstituted mDHFR abundance (Remy &

Michnick, 1999), BC-PCA represents a means of addressing this

question. Using BC-PCA, we can detect a condition-specific deviation

of growth rate in response to a perturbation (compared to a “refer-

ence” state) and infer a change in binary protein complex levels.

To represent broad classes of environmental change, we chose a

set of 14 different perturbations, including: addition of small mole-

cules (e.g., FK506, atorvastatin, doxorubicin); altered nutrient

composition of the growth medium (e.g., ethanol instead of dextrose

as the sole carbon source, nitrogen starvation, addition of specific

amino acids); and abiotic stress conditions (e.g., growth at high

temperature, in a high salt concentration, or under oxidative stress).

Dataset EV1 lists details of all growth environments. All experiments

were performed in both selective and non-selective (i.e., without

MTX) media, with the latter acting as a control to identify and

exclude cases where the incorporation of the mDHFR tag had an

impact on growth in the condition tested (Rochette et al, 2014;

Dataset EV2). In most conditions, significant growth changes in

non-selective media were observed in < 2% of all strains in the pool

(see Materials and Methods). Such strains were specifically

excluded from the conditions in which they were identified, as were

additional strains containing PCA fragments appearing multiple

times in excluded strains (Dataset EV2).

For each PPI in each condition tested, we calculated R, the ratio

of barcode abundance in that condition (as measured by microarray

signal intensity) to barcode abundance in the reference condition

(selective dextrose-containing media plus 1% DMSO). Requiring

both the UP- and DOWN-tag of each strain to meet our significance

and effect size thresholds (q-value < 0.05 and log2(R) > 0.25 for

accumulated, and q-value < 0.05 and log2(R) < �0.25 for depleted

interactions), we found 757 binary complexes that varied in at least

one condition (Dataset EV2). Hierarchical clustering of these data

showed that all experiment replicates were grouped as closest neigh-

bors (Fig 1A), indicating a reproducible assay. We examined the

reproducibility of a subset of candidate dynamic binary complexes

using isogenic growth experiments and found a strong correlation

between growth assays and pooled barcode fluorescence intensity

values in most cases (r > 0.6, Fig EV2A and Dataset EV1). We also

observed binary complexes where there was a clear dose-dependent

relationship between the addition of a small molecule and the rela-

tive growth rate under MTX selection (Fig EV2B). Together, these

results suggest that the BC-PCA assay can measure quantitative

changes in abundance of many binary complexes, supporting its

utility for studying condition-dependent global PPI remodeling.

We clustered dynamic interactions based on their pattern of

change across environments. We observed several subnetworks that

shared a common protein (Fig 1B), suggesting that control of the

common protein may have led to concerted changes in binary

complexes containing that protein. For example, Fmp45 was a

member of several binary complexes that accumulated during respi-

ratory growth (using ethanol as a carbon source) and under heat

and high-salt stress (Fig 1B). Similarly, the addition of hydrogen

peroxide led to the accumulation of binary complexes containing

the Ftr1 protein, a high-affinity iron permease (Stearman et al,

1996). Finally, growth in methionine-supplemented media led to the

depletion of binary complexes containing the methionine permease

Mup1. This cluster also contained other proteins important for

methionine metabolism, underscoring that the function of respon-

sive complex components was logically connected to environmental

change.

We observed many binary complexes that changed between

conditions, but interestingly, within each condition there was a

comparable number of accumulated and depleted binary complexes

(Fig 1C and Dataset EV2). Conditions that induced the most wide-

spread changes were the shift from fermentation to respiration (i.e.,

dextrose to ethanol), the addition of amino acids to the media, and

growth at high temperature, while the addition of bioactive small

molecules such as FK506 and atorvastatin resulted in a much

smaller number of altered binary complexes (Fig 1C). These results

may be explained by the fact that pharmaceuticals are often selected

for specificity (i.e., to minimize off-target and side effects). In

contrast, metabolic shifts or exposures to abiotic stress factors can

induce widespread cell-physiological effects (Gasch et al, 2000) and

regulatory responses that may have evolved given frequent expo-

sure to similar environments in the evolutionary history of yeast

(Gasch & Werner-Washburne, 2002; Gasch, 2007). Contrary to this

pattern, the pharmaceutical agent doxorubicin resulted in many

protein interaction changes (Fig 1C), possibly due to widespread

non-specific effects of DNA damage and corresponding induction of

a DNA damage response (Westmoreland et al, 2009).

Dynamic binary complexes exhibit condition-dependent
functional trends

About half (757) of the binary complexes tested were dynamic in at

least one condition. Most (672) of these dynamic binary complexes

were found to be specific to a few (from one to three) conditions,

while only 86 binary complexes were frequently dynamic (exhibit-

ing change in four or more conditions; Fig 2A). To assess functional

trends among gene products participating in frequently dynamic

binary complexes, we used the FuncAssociate web server (Berriz

et al, 2003; Berriz et al, 2009, see Materials and Methods) to deter-

mine over-represented Gene Ontology (GO) terms. This revealed

that gene products involved in frequently dynamic binary

complexes were enriched for plasma membrane localization

(q < 1e-04), and for active transmembrane transporter activity

(q = 0.012; Dataset EV3). Among the proteins involved in frequently

dynamic binary complexes were members of the 12-span drug:H(+)

antiporters (Tpo1, Tpo2, Tpo3), multidrug ABC transporters (Pdr5,

Pdr12, Snq2, Yor1), and transporters for glucose, iron and methion-

ine (Hxt1, Hxt2, Hxt5, Ftr1, Mup1). Two proteins of unknown func-

tion (Ybl029c-A and Ina1/Ylr413w) were also found to take part in

frequently dynamic interactions, suggesting a potential role in

responding to environmental stress (Fig 2B).

To further assess functional trends among dynamic binary

complexes, we again used GO enrichment analysis to determine
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which functions were enriched among gene products participating

in either accumulated or depleted binary complexes, examining

each condition separately (Figs 2C and EV3). Under many

conditions, transmembrane transporters and plasma membrane

proteins were over-represented among gene products participating

in dynamic binary complexes. In some cases, binary complexes
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Figure 1. Environmental cues elicit changes in the yeast protein interaction network.

A Heatmap depicting log2-ratios of 757 binary protein complexes that displayed a significant change in at least one of the conditions tested here. Complexes are
arranged on the y-axis, and conditions are arranged on the x-axis. Accumulated and depleted signals are colored in blue and red, respectively. Dendrograms on the
left and on top show clustering of complexes and samples, respectively.

B Three clusters of binary protein complexes. Complexes are labeled on the right.
C Barplot depicting the number of protein complexes whose abundance significantly changed (log2(R)) > 0.25 or log2(R) < �0.25 for both UP- and DOWN-tags in the

same direction, q < 0.05 for both UP- and DOWN-tags) in response to 14 perturbations (indicated on the x-axis). Number of complexes that were accumulated or
depleted in response to each condition are shown in blue and orange bars, respectively.
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changing in a condition were clearly related to the environment. For

example, there was an enrichment of “xenobiotic transporter activ-

ity” for proteins involved in accumulated complexes under the

small-molecule drug FK506 (q = 0.0023). Here, the enrichment

phenomenon was driven by previously observed binary complex

changes involving the Snq2, Pdr5, and Yor1 efflux pumps (Schlecht

et al, 2012).

In other cases, the changes were less intuitive but consistent with

previous findings. For example, binary complexes that accumulated

in the NaCl condition were enriched for proteins in the Arp2/3 actin
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Figure 2. Functional trends of dynamic complexes.

A Barplot showing the frequency at which each binary protein complex was found to be dynamic (i.e., accumulated or depleted). The number of complexes (y-axis) is
plotted against the number of conditions they responded to (x-axis). Colors indicate complexes that were dynamic in 0 (gray), 1–3 (pale blue), and 4 or more (dark
blue) conditions.

B Network illustrating plasma membrane complexes that were frequently modulated. Proteins are indicated as nodes. Interactions that are frequently perturbed (i.e.,
four or more times) are shown with dark blue edges. Other interactions are indicated by semi-transparent edges—interactions perturbed 1–3 times are in pale blue
and static interactions are in gray. Edge width is proportional to perturbation frequency.

C Network illustrating functional trends of genes participating in dynamic complexes. For each condition, we assessed functional enrichment among gene products
participating in either accumulated complexes (blue) or depleted complexes (red). Lines connect terms to their respective condition(s) and are shaded by degree of GO
term enrichment measured using the log10-odds score (LOD). Terms here have been manually grouped and summarized. All original terms are available in Fig EV3
and Dataset EV3.
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polymerization complex. This is consistent with previous studies

finding that overall actin organization is responsive to osmotic

stress (Chowdhury et al, 1992), and the genes driving this GO term

enrichment (ARC40, ARP2, ARC15, ARC19, ARC18, and ARC35)

have all been previously shown to have elevated transcript levels

under hypersaline conditions (Berry & Gasch, 2008). In another

example, binary complexes depleted under atorvastatin were

enriched for proteins involved in the lipid biosynthetic process. This

is consistent with atorvastatin’s role as an inhibitor of HMG-CoA

reductase (Endo, 1992; Leszczynska et al, 2009).

Interaction network dynamics are largely driven by “protein-
centric” changes

In every condition tested, we sought to identify patterns of variabil-

ity in the protein network. Observing that some clusters of binary

protein complex abundance changes involve a common protein

(Fig 1B), we further explored the topology of binary protein

complex dynamics. In some cases, large subnetworks which are

fully connected by dynamic interactions in the same direction were

formed (Fig 3A shows an example from the doxorubicin condition).

Frequently, these subnetworks (“dynamic components”) were

centered on highly connected “hub” proteins (defined here as

proteins with 10 or more interactions; see Dataset EV4 for a list of

the 74 hubs identified).

Sets of interactions around a given hub protein were often

“concerted” in that they changed in the same direction. For exam-

ple, the hub proteins Ade17, Hxt1, Ftr1, and Ppz1 all exhibit appar-

ently concerted binary complex level changes in the doxorubicin

environment (Fig 3A). We sought to systematically identify hubs

exhibiting concerted changes (Fig 3B; Materials and Methods). This

analysis revealed that 50 hubs were concerted in at least one condi-

tion, representing 68% of all hubs (Dataset EV4). This included the

examples shown in Fig 1B, wherein the sets of binary complexes

centered on Fmp45, Mup1, and Ftr1 each exhibited concerted

change under multiple perturbations.

Concerted binary complex changes around a protein are most

simply explained by a change in the general availability of that

protein for complex formation. For example, changes in the abun-

dance of a given protein should, by mass action, tend to alter the

abundance of all binary complexes in which it participates and do

so in the same direction in each case. We therefore refer to patterns

of concerted binary complex changes as “protein-centric” effects.

Conversely, if changes around a protein are not concerted, this may

be explained by mechanisms which modulate interactions indepen-

dently, for example, through a post-translational modification at an

interaction interface, or through direct interference or facilitation of

an interaction by a small molecule. We refer to patterns of

independently modulated interaction changes as “interaction

specific”.

Given that we observed many concerted binary complex changes

(Fig 3B), we wished to explore the extent to which the global

patterns of binary complex changes could be explained by protein-

centric as opposed to interaction-specific dynamics. Depending on

the relative contribution of these two mechanisms, dynamic subnet-

works should exhibit a different overall topology. Specifically, we

expect dynamic subnetworks resulting from purely protein-centric

changes to be grouped into distinct network areas, yielding larger

mutually connected subgraphs (“component sizes”), as well as a

higher density of interactions within dynamic subnetworks

(“subgraph density”) than we would expect to observe if dynamics

were driven by many independent interaction-specific changes.

Dynamic subnetworks affected by a combination of protein-centric

and interaction-specific changes are expected to exhibit intermediate

component sizes and subgraph densities.

In order to explore what proportion of protein-centric dynamics

are most consistent with the patterns of observed binary complex

changes, we generated dynamic networks in silico by randomly

selecting interactions from our entire BC-PCA network (see Materi-

als and Methods). For each given growth condition, we simulated

networks having the same number of enriched, depleted, and

unchanged interactions that were observed in the BC-PCA assay.

The random selection procedure was varied to yield different

proportions of protein-centric and interaction-specific effects. For

each selection procedure, we then empirically estimated how often,

among 1,000 random networks, simulations yielded a dynamic

subnetwork with a topology similar to that of the observed dynamic

subnetwork. As measures of dynamic network topology, we used

both the size of the largest component and the interaction density.

We first simulated dynamic networks with purely interaction-

specific changes for all nine conditions that produced a large

number of changed binary complexes (set to ≥ 50), and found that

none of the largest connected component sizes were consistent with

a purely interaction-specific scenario (Fig 3C, bottom row). We next

simulated purely protein-centric binary complex changes for all

conditions (Fig 3C, top row) and also simulated networks with dif-

ferent mixtures of interaction-specific and protein-centered dynam-

ics. The largest component sizes of all nine (100%) of the

conditions were consistent with a purely protein-centered model.

The proportions of protein-centered changes most consistent with

the observed largest component size ranged between 40 and 100%

across conditions (Fig 3C). Evaluating dynamic subgraph density

▸Figure 3. Environmental perturbations elicit a mixture of protein-centric and interaction-specific changes.

A Network illustrating the largest connected component of complexes, which were accumulated (bottom) or depleted (top) in the presence of doxorubicin. Incidentally,
TPO2 is part of both subnetworks. Proteins are indicated as nodes; interactions are depicted as edges (accumulated in blue, depleted in red).

B Heatmap illustrating whether complex abundance changes associated with a given hub protein (y-axis) had a bias (q < 0.05) toward depletion (red) or accumulation
(blue) in each condition (x-axis).

C Comparison of the largest components found in simulated networks to those observed in the BC-PCA data. For the indicated conditions (x-axis), the observed number
of accumulated, depleted, and unchanged interactions was used to generate random networks based on a “protein-centric” model, an “interaction-specific” model,
and combinations thereof (y-axis; see Materials and Methods). Each square summarizes the results from 1,000 simulations (see legend). The insets expand and
illustrate two simulation scenarios under the “AA-mixture” condition; histograms show the simulation results for accumulated (left) and depleted (right) interaction
subnetworks, under purely “protein-centric” (top) and purely “interaction-specific” (bottom) models. The observed BC-PCA result is represented by a red line.

D As in (C), comparing the subgraph density of simulated networks to those observed in the BC-PCA data.
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yielded similar conclusions about the importance of protein-centric

changes (Fig 3D)—again, none of the nine conditions were consis-

tent with a purely interaction-centric model. However, four of the

nine conditions required at least some interaction-specific changes

(10%) to yield a subgraph density consistent with the BC-PCA

results. Thus, for each of the measures we used, protein-centered

dynamics were important for explaining the observed dynamic

subnetwork topology.

A

C D

B

Figure 3.
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These results do not identify the mechanism of interaction regu-

lation (e.g., modulation of transcription, localization, direct small-

molecule interference, or post-translational modification), nor do

they specifically determine which dynamic complexes are the result

of interaction-specific compared to protein-centric effects. Moreover,

different environmental stresses may yield effects different from

those we observed. Nevertheless, the frequent observation of

dynamic interactions centered on hubs suggests the prevalence of

protein-centric interaction dynamics, in which interaction network

dynamics are substantially driven by regulation of a few proteins.

Transcriptome changes predict binary complex
abundance changes

We next investigated the extent to which concerted protein-centric

interaction dynamics were the consequence of transcriptome

changes. The potential impact of transcriptional change on specific

interactions is well known. For example, we have previously shown

that transcriptional up-regulation of the PDR5 and SNQ2 genes

accompanies the accumulation of several drug-efflux pump homo-

dimers (such as Pdr5:Pdr5 and Snq2:Snq2) in response to FK506

(Schlecht et al, 2012). Indeed, mRNA expression data have previ-

ously been combined with “static” protein–protein interaction

networks to predict which interactions are present in a given condi-

tion (de Lichtenberg et al, 2005; Greene et al, 2015). However, these

previous studies made no attempt to quantitatively predict and

experimentally validate the changes in protein complex levels that

result from transcriptional change. We interrogated the relationship

between transcriptional changes and binary complex dynamics

in vivo.

A relationship between expression levels and PPI complex abun-

dance has been previously modeled based on mass action (Maslov

& Ispolatov, 2007); however, the validity of this model has not been

experimentally confirmed. To investigate this relationship further,

we more closely examined the shift from fermentation to respiration

(i.e., growth in glucose medium versus growth in ethanol medium),

as the respiratory growth condition yielded the greatest number of

binary protein complex abundance changes (nearly 400, Fig 1C).

Yeast cells are known to undergo widespread transcriptional

changes during a diauxic shift (DeRisi et al, 1997; Gasch et al,

2000). To obtain relative mRNA expression data, cells were grown

in selective media supplemented with dextrose as a pre-culture and

then shifted to selective media containing ethanol as the sole carbon

source, with samples taken at 0, 0.5, 1, 4, and 12 h after the transfer

(see Dataset EV5).

We sought to use relative mRNA levels in an approximate (“first-

order”) model that could predict relative binary protein complex

levels, using principles from the law of mass action. We made

several simplifying modeling decisions, including: (i) modeling rela-

tive protein levels as moving in concert with relative mRNA levels;

(ii) modeling binary protein complex dynamics in isolation, for

example, such that involvement of a protein in one complex did not

deplete its availability for another; (iii) treating each interaction as

occurring at relatively high affinity; (iv) using an aggregate of

measurements in previous studies to estimate the baseline concen-

tration of each protein (see Materials and Methods). Although each

of these modeling decisions should be revisited in more advanced

models, we found that predictions of relative binary complex abun-

dance using this “first-order” model yielded striking correspondence

with the observed growth changes observed in BC-PCA. The highest

correlation was observed at 4 h after the shift to ethanol (r = 0.46,

Figs 4A and EV4), and these correlations were not evident in non-

selective media (r = 0.03, P = 0.1).

We then estimated the proportion of all observations in the BC-

PCA assay that could be explained by the underlying transcriptome

response using our model. A direct use of the r = 0.46 correlation

(explaining ~21% of linear variance) may substantially underesti-

mate the true correspondence between actual binary complex levels

and transcription-based prediction of binary complex levels, given

that even a perfect correlation would be degraded by unavoidable

experimental measurement error. We therefore simulated a scenario

in which mRNA expression explains all binary protein complex

abundance changes, but is subject to the observed experimental

variability in mRNA and BC-PCA measurements. In this model,

expression levels are subject to the same uncertainty as observed

between the 1 and 4 h time points and the resulting modeled

BC-PCA ratios are subject to the observed uncertainty introduced by

different biological replicates and DNA barcodes in ethanol (see

Materials and Methods). Taking into account experimental error

using this approach, we estimate that ~34% of the linear variance in

the BC-PCA assay could be explained by transcriptome changes

(Fig EV4D). Alternatively, when we related only the significant

binary complex changes under ethanol to the mass action model,

we estimated that 47% of significant changes correspond to the

underlying transcriptome response (Fig EV4E). Because of the many

approximations used in predicting binary complex level changes,

▸Figure 4. Relating mRNA expression changes to PPI changes.

A Protein complex changes under the respiratory growth condition (i.e., in ethanol-containing medium) measured by BC-PCA (y-axis), compared to those predicted by a
mass action model based on mRNA expression data (x-axis). Each dot represents a binary protein complex.

B Percent of mRNA-based predictions validated by BC-PCA as a function of the predicted effect size (measured as log2(R), averaged between UP- and DOWN-tags). As
the mRNA-predicted effect size increases, the rate of validation increases for both accumulated and diminished PPIs. Lightly shaded areas show the 95% confidence
intervals determined by 1,000 iterations of data resampling.

C First-neighbor dynamic interactions of hexose transporter protein 1 (Hxt1), and the heat-shock protein 30 (Hsp30). Nodes are colored according to their
transcriptional change observed at 4 h after the shift from glucose to ethanol-containing media. Edges are colored according to the complex abundance change,
either predicted by mRNA changes (left) or observed by BC-PCA (right).

D First-neighbor dynamic interactions of Lsp1, using the same schematic as in (C).
E mRNA-based prediction accuracy for complex abundance changes, comparing binary complexes involving hubs having a directional bias in ethanol (see Fig 3B) with

binary complexes involving other hubs. Error bars show 95% confidence intervals in the accuracy.
F Density histogram of protein complex log-ratios (x-axis) resulting from selective repression of RBD2. The log-ratios of first- and second-neighbor Rbd2 interactions

(i.e., complexes that contain Rbd2-interacting proteins, but not Rbd2 itself) are shown in purple and blue, respectively. All other interactions are shown in gray.
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we take both these figures as a conservatively low estimate of the

contribution of mRNA to the observed binary complex level

changes.

We next sought to determine qualitative accuracy of an mRNA-

based protein–protein interaction predictor, in which binary

complexes are more simply predicted to either increase or decrease

in level under a given environmental change. Using a stringent filter

for mass-action-predicted binary complex abundance change

(|log2(R)| 2), 75% of predictions of accumulated complexes and

86% of depleted complexes were verified by the BC-PCA assay

A

E F

B

C D

Figure 4.
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(Fig 4B) indicating that the use of mRNA levels can predict accumu-

lated or depleted binary complexes with high specificity during a

diauxic shift.

The success of our mRNA-level-based predictions is consistent

with protein-centric changes being responsible for many binary

complex abundance changes. For example, the mass action model

accurately predicted that numerous binary complexes involving the

glucose transporter Hxt1 become depleted during respiration, based

on Hxt1 transcript levels that were significantly reduced in this

condition (Fig 4C). Similarly, the increase in HSP30 transcript abun-

dance led to the mass-action-based model predicting accumulated

complexes consistent with our observed data (Fig 4C). These results

suggest that the transcriptional regulation of these hubs during the

shift from fermentative to respiratory growth influences a large

number of protein interaction network changes.

We also found binary complex abundance changes which appear

to be unrelated to an underlying transcriptome response. For exam-

ple, Lsp1, a cortical patch protein associated with endocytosis, is a

hub in which many interactions were changed that did not corre-

spond to mRNA-based predictions (Fig 4D). For these binary

complexes, many alternative modes of regulation may be possible,

such as changes in protein stability, localization, or post-transla-

tional modification (e.g., phosphorylation, Mascaraque et al, 2013),

although these mechanisms were not investigated here. Given the

observation of many concerted hubs in ethanol and that Lsp1 was

not observed to exhibit concerted behavior (Fig 3B), we sought to

determine whether “concerted” hubs were more consistent with the

underlying transcriptome response than other hubs. We found that

mRNA-based predictions were 88% accurate when predicting the

direction of significant binary complex abundance changes involv-

ing concerted hubs, compared to 72% when predicting binary

complex abundance changes involving other hubs (Fig 4E, P =

4.8e-05). Thus, transcriptional change response is a useful predictor

for all hubs, but more accurate for hubs with “concerted” binary

complex abundance changes. This suggests that transcription is a

predominant cause of the concerted hub changes in ethanol and that

interaction-specific changes around other hubs likely diminish its

predictive power.

Transcriptional repression of the hub Rbd2 directly affects the
abundance of binary protein complexes

To verify an in vivo causal relationship between mRNA expression

and binary protein complex abundance in at least one example, we

implemented a Tet-inducible CRISPRi system to repress the tran-

scription of a target gene in a controlled manner. In this system,

anhydrotetracycline (ATc)-induced expression of a guide RNA

(gRNA) recruits a dCas9-Mxi1-repressor fusion protein to a locus of

interest (Smith et al, 2016, 2017). We attempted to repress several

“hub” genes by creating inducible gRNAs targeting their promoters,

and validation by quantitative PCR showed that the gRNA targeting

the RBD2 gene displayed the clearest effects (Fig EV5A), with RBD2

transcripts repressed ~8-fold (Fig EV5B). The BC-PCA pool was

therefore transformed with a plasmid encoding the RBD2-gRNA and

dCas9-Mxi1 fusion protein and then grown in selective media in the

presence or absence of ATc (see Dataset EV2). Collectively, the

growth rates of the 32 strains representing Rbd2 binary complexes

were significantly reduced compared to other strains in the pool

(Fig 4F, P = 2.8e-13), and thus reducing the transcript levels of

Rbd2 had clear effects on the abundance of Rbd2-containing binary

complexes. In principle, altering transcript levels could lead to a

cascade of perturbations in the PPI networks beyond a protein’s first

neighbors. However, we found no evidence of this phenomenon for

Rbd2’s second neighbors (Fig 4F, P = 0.41), and therefore, our

results are consistent with the predicted effects of concentration

changes remaining largely confined to the local network (Maslov &

Ispolatov, 2007).

Discussion

Here, we described the multiplex in vivo measurement of 1,379

protein–protein interactions in 14 environmental conditions, to our

knowledge the most extensive direct study of how protein interac-

tion networks respond dynamically to extrinsic environmental

perturbations. The most striking finding was the prevalence of

dynamic binary complexes. More than half of the PPIs we consid-

ered (757 of 1,379) responded to at least one perturbation. The envi-

ronmental perturbations that yielded the largest number of changes

relative to our reference condition were respiratory growth in

ethanol, heat shock, oxidative stress, and DNA damage. That these

responses were the most profound might have been expected, as

these conditions are likely to have been frequently experienced in

the evolutionary history of yeast (Gasch & Werner-Washburne,

2002; Gasch, 2007), allowing for selection and maintenance of a

complex adaptive regulatory strategy. We observed that proteins

with certain functions were more likely to participate in dynamic

binary complexes. For example, proteins localized to the plasma

membrane were enriched for participation in dynamic binary

complexes, consistent with known plasma membrane protein

changes in response to salt stress (Szopinska et al, 2011), and more

generally to the known role of transmembrane gene families such as

the ABC transporters in the stress response (Jungwirth & Kuchler,

2006). Although some dynamics were to be expected, we were

surprised by the widespread nature of the phenomenon.

Functional analysis of PPIs that changed in specific conditions

revealed both known and novel relationships. For example, the

immunosuppressant FK506 enhanced the interaction between drug-

efflux pumps (such as Pdr5 and Snq2) as previously described

(Schlecht et al, 2012). Here, we found that binary complexes involv-

ing Yor1 (a multidrug transporter homologous to the human cystic

fibrosis transmembrane receptor) also accumulated in FK506.

Among the novel chemical-dependent changes we identified here

was the depletion of binary complexes involved in yeast’s lipid

metabolic process by atorvastatin, an inhibitor of HMG-CoA reduc-

tase and a widely used cholesterol-lowering drug (Endo, 1992).

In some cases, the changed interactions had a clear relationship to

the environmental perturbation. For example, growth in methion-

ine-supplemented media led to depletion of binary complexes

containing the methionine permease Mup1, as well as other proteins

important for methionine metabolism.

The patterns of PPI changes we observed, such as concerted

“hub-centered” binary complex abundance changes, were consistent

with a model wherein numerous PPI changes occur as a result of

alterations in a single or small number of proteins. This suggests

that control at the protein level (as opposed to the interaction level)
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is particularly important for understanding PPI network rewiring.

Future analyses might yield an expanded view of dynamic PPI

modularity. For example, using co-expression data, hub proteins

have been divided into “party” and “date” hubs based on the degree

of co-expression with their partners (Han et al, 2004). Party hubs

are predicted to interact with all their partners at the same time and

space, whereas date hubs are predicted to interact with their

partners at different times and/or spaces. More extensive dynamic

interaction analysis may reveal distinct roles for these two different

hub types in PPI modulation.

We found a striking correlation between transcript abundance

and binary protein complex abundance changes during a carbon

source shift from glucose to ethanol, which we estimate to explain

~47% of the observed changes. This observation systematically

extends the small number of examples of expression-dependent

interactions previously described in other environments (Schlecht

et al, 2012). While we found a strong concordance between mRNA

expression and binary complex levels during a diauxic shift, this

relationship may vary depending on the condition. Changes in

protein localization may have the capacity to impact complex levels

more than changes in total protein abundance (Levy et al, 2014).

Indeed, Rochette et al (2014) observed that the effects of methyl

methanesulfonate (MMS) on differential localization explained more

modulated PPIs than did differential protein abundance, although

both had significant explanatory power. The recent availability of

high-throughput conditional protein localization and abundance

data (Chong et al, 2015) should allow a straightforward extension

of a mass-action-based model (guided by BC-PCA experiments in

the same conditions) that accounts for changes in co-localization (as

well as expression) to explain dynamic protein complexes.

Identifying cases where transcription does not play a direct role

may be of special interest in investigating other mechanisms of

binary complex abundance changes. For example, we found that

mRNA levels in ethanol were not predictive of binary complex

abundance changes involving Lsp1 (Fig 4D). This assay could be

used to prioritize investigations of post-translational modification

[such as phosphorylation in the case of Lsp1 (Mascaraque et al,

2013)] on the observed binary protein complex abundance changes.

One strong feature of our assay is the small culture volume

(700 ll), which enables interrogation of a large number of condi-

tions (including small molecules that are available only in limited

quantities) in parallel. The assay is also readily amenable to next-

generation sequencing approaches that quantify molecular barcode

sequence abundance (Smith et al, 2009, 2010), which could further

enhance assay throughput and resolution. More broadly, the pooled

format makes it straightforward to perform direct manipulations

and investigate the resulting PPI changes. For example, we were

able to directly relate transcription changes to PPI changes using a

CRISPRi-based approach and found that the down-regulation of the

RBD2 gene led to a specific loss of many direct interactions of its

gene product. Combining BC-PCA with targeted transcriptional

repression could be used to systematically validate quantitative

predictions of transcriptionally mediated network effects. Such an

approach could be used, for example, to study the architecture of

large complexes by altering constituent protein levels in a controlled

manner (Diss et al, 2013), in understanding gene knockdown and

overexpression phenotypes, and ultimately to predict downstream

functional consequences of altered gene expression.

A limitation of our assay is that we are restricted to a set of PPIs

known in a “standard” reference condition. While our assay is able

to determine both accumulation and depletion of interactions within

this standard set, condition-specific interactions where the interac-

tion is undetectable in the reference were beyond the scope of this

study. The large number of dynamic binary complexes we identified

suggests that condition-specific interactions are prevalent. Finding

such interactions will require further improvements in the scalabil-

ity of PCA, as performing a separate exhaustive screen in every

condition tested using the current approach is not feasible. Another

limitation is that the mDHFR PCA uses survival and growth as a

readout of PPIs. Thus, while it can be used to understand overall

binary protein complex abundance changes, it may not capture

highly transient dynamic interactions. Applying BC-PCA with vari-

ants based on reversible fluorescence and performing selection

using cell sorting may enable multiplexed analysis of transient inter-

action changes (Remy & Michnick, 1999; Morell et al, 2008; Li et al,

2014; Tchekanda et al, 2014).

The in vivo nature of BC-PCA should readily allow future integra-

tion of genome-scale phenotype data to global protein–protein inter-

action remodeling. The apparent prevalence of “protein-centric”

changes strongly warrants the investigation of other phenomena

such as differential localization and post-translational modification.

Ultimately, this may guide the understanding of in vivo PPI remodel-

ing principles.

Materials and Methods

Media and growth conditions

Rich media (YPD) consisted of 1% yeast extract, 2% bactopeptone,

and 2% glucose. Minimal media contained 1.7 g yeast nitrogen

base, 20 g dextrose, 5 g ammonium sulfate, 50 mg histidine, 50 mg

leucine, 20 mg uracil per liter (non-selective media). This media

was supplemented with 100 lg/ml methotrexate (MTX) to select for

binary protein complexes (selective media). Isogenic cultures

(100 ll) were inoculated at a concentration of 0.02 OD600/ml and

grown in 96-well microtiter plates at 30°C. Optical density was

measured every 15 min over the course of several hours (as indi-

cated in graphs) using a GENios microplate reader (Tecan). The

growth rate of a strain was calculated as follows: (i) the first 10 OD

readings were averaged and subtracted from all OD readings of the

corresponding curve in order to set the baseline of the growth curve

to zero, (ii) the area under the curve (AUC) was then calculated as

the sum of all OD readings. 300 reads (corresponding to 75 h) were

used to verify previously published PCA strains in Fig EV1. In

Fig EV2, where we compared the growth rate of each strain in the

presence of condition to a control, a relative growth value was

calculated as follows: (AUCcondition�AUCcontrol)/AUCcontrol.

Chemical reagents and environmental conditions

FK506 (catalog no. 10007965) was purchased from Cayman Chemi-

cal. Methotrexate (catalog no. M4010), doxorubicin (catalog no.

D1515), D-sorbitol (catalog no. S1876), L-methionine (catalog no.

M-9625), copper(II) sulfate (catalog no. 451657), sodium chloride

(catalog no. S7653), anhydrotetracycline hydrochloride (catalog no.

ª 2017 The Authors Molecular Systems Biology 13: 934 | 2017

Albi Celaj et al Quantitative protein network dynamics Molecular Systems Biology

11



37919), hydrogen peroxide solution (catalog no. 216763), atorvas-

tatin calcium salt trihydrate (catalog no. PZ0001) were purchased

from Sigma-Aldrich. A full description of environmental conditions

is listed in Dataset EV1.

PCA pool construction and microarray experiments

We purchased the Yeast Interactome Collection (YSC5849) from

Open Biosystems and used it as a source of mDHFR-tagged strains.

We chose 2,394 of the 2,770 PCA-PPIs published in (Tarassov et al,

2008) and cherry-picked the corresponding MATa (mDHFR-F[1,2]-

NatMX fusions) and MATa (mDHFR-F[3]-HphMX fusions) strains.

The MATa strains were mated individually with their MATa partner

strains on high-density arrays using a Singer ROTOR robot. Diploids

were selected on rich media supplemented with hygromycin B and

nourseothricin. To determine the growth rate of each individual

strain, we monitored optical density of isogenic cultures in selective

media for 75 h using a GENios microplate reader (Tecan). The

growth rate was calculated as the area under the curve (AUC) as

described above. Strains with AUC > 8 were defined as hosting a

binary protein complex; 1,701 strains passed this step. The corre-

sponding 1,701 MATa strains, as well as several additional strains

of interest, were then tagged with unique barcodes by integrative

transformation into the HO-locus. A small number of PPIs were also

tagged with two different barcodes. Barcodes were constructed as

described previously (Schlecht et al, 2012). Tagged strains were

then mated individually with their MATa partner strains on high-

density arrays using a Singer ROTOR robot, and diploids were

selected on minimal media lacking methionine and lysine. 1,432

strains, representing 1,428 unique interactions, were successfully

transformed and mated. To construct the pool of BC-PCA strains, all

colonies were scraped off plates and resuspended in YPD. Aliquots

of the pool were kept as frozen stocks (OD600/ml = 9). Frozen

aliquots of the pool were recovered for 10 generations in non-selec-

tive media, and then cells were diluted in selective and non-selective

media to an OD600/ml of 0.02. Cells were then grown in the pres-

ence of DMSO (1%), a compound, or a specific condition (a panel

of 14 perturbations in total) in 700 ll cultures in a 48-well micro-

plate. After three pool doublings, cells were harvested and pellets

stored at �20°C. Genomic DNA was extracted with the YeaStar

Genomic DNA kit (Zymo Research, catalog no. D2002) and using

the QIAXtractor (Qiagen). PCR-amplification of barcodes and

hybridization to Genflex tag 16k arrays (Affymetrix) were performed

as described previously (Suresh et al, 2016).

Identification of dynamic binary protein complexes

All cells carry two tags that hybridize to the Genflex tag 16k array,

an “UP-tag” and a “DOWN-tag”. From each array, we extracted the

fluorescence intensity values for every UP-tag and DOWN-tag

associated with the 1,432 strains in the barcoded PCA pool. These

raw fluorescence values were quantile-normalized and then log2-

transformed using the normalize.quantiles function of the prepro-

cessCore package in R. Quantile normalization was performed

separately for UP-tags and DOWN-tags, as these samples were PCR-

amplified separately and therefore may contain a different amount

of labeled nucleic acid material (Suresh et al, 2016). Fourteen exper-

imental conditions were measured in duplicate, and the control

condition (DMSO) was measured with six replicates. To calculate a

log2-ratio between the control and experimental condition (log2(R)),

the mean of the six control replicates was subtracted from the mean

of the two treatment replicates. This log2-ratio was calculated sepa-

rately for UP- and DOWN-tags. A moderated t-statistic was then

calculated using the R package LIMMA, and the derived P-values

were further converted to q-values using Benjamini and Hochberg

false discovery rate (FDR) correction using the P.adjust function in

R. A separate q-value was calculated for UP- and DOWN-tags.

PCA strains with a significant increase in their tag abundance in

response to an experimental condition were identified using q-

value < 0.05 (for both UP-tag and DOWN-tag) and log2(R) > 0.25

(for both UP- and DOWN-tag) as cutoffs. PCA strains with a signifi-

cant decrease in tag abundance were identified using q-value < 0.05

(for both UP-tag and DOWN-tag) and log2(R) < �0.25 (for both UP-

and DOWN-tag) as cutoffs. The complete list of q-values and R

values for all experimental conditions is provided in Dataset EV2.

CEL files are available via the NCBI’s Gene Expression Omnibus

under accession number GSE72425.

Identification of PCA-fragment tag effects

In order to systematically account for cases where the presence of

the mDHFR-fragment interferes with the function of the tagged

protein, we included control cultures grown in the same 14 environ-

mental conditions but in non-selective media. These control experi-

ments were also performed in duplicate. To identify problematic

strains, we chose the same cutoffs for log-ratios (log2(R) > 0.25 or

log2(R) < �0.25 for both UP- and DOWN-tags, in the same direc-

tion) and statistical significance (q-values < 0.05 for both UP- and

DOWN-tags) as above. We identified several strains meeting these

criteria, indicating that in these strains, the protein tags had

heterozygous condition-dependent effects on growth. In most condi-

tions, the number of such cases was small (i.e., < 2% of all strains

in the pool were affected); however, growth in ethanol as an alter-

native carbon source and the exposure to hydrogen peroxide identi-

fied a larger number of strains with significant changes in growth

rate in non-selective media. In most cases, the introduction of the

PCA fragment led to a decrease in growth rate. From each condi-

tion, we excluded from further analysis all complexes that were

found to elicit a condition-specific fitness effect in the absence of

methotrexate selection (Dataset EV2). In total, 176 of 1,383 strains

displayed a selection-independent growth change in at least one

condition (Dataset EV2). In addition, we also excluded all binary

protein complexes containing a specific F[1,2]- or F[3]-fragment if

that fragment occurred more than once in the list of strains that

displayed a selection-independent growth change. For example, 16

of the 25 strains containing HNM1-F[1,2] showed a significant

growth defect in ethanol without the presence of MTX. Therefore,

all 25 HNM1-F[1,2] containing strains were excluded from the

ethanol dataset from further analysis. These strains are listed in

Dataset EV2 (in the excluded –MTX tab) and are marked as “by

association”.

Hierarchical clustering

For the cluster analysis in Fig 1A, we included all 757 complexes

which displayed a significant change in complex abundance (i.e.,
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log2(R) > 0.25 or log2(R) < �0.25 for both UP- and DOWN-tags, and

q-value < 0.05 for both UP- and DOWN-tags) in at least one of the

conditions. Clustering along both experiment and PPI axes was

performed on log2(R) values (averaged UP- and DOWN-tags) using

Gene Cluster 3.0 and Java Treeview. For hierarchical clustering,

experiment and gene data were first median-centered and then

clustered using the Correlation (uncentered) similarity metric and

average linkage clustering.

GO term enrichment analysis

To analyze GO term enrichment among frequently perturbed inter-

actions (changing in four or more conditions), we took the set of

genes connected to complexes which participated in these interac-

tions, and used the set of all genes in the pool as the background

set.

For GO analysis in each condition, we took the set of genes

connected to complexes which had changed interaction strength in

a desired direction in a given condition (either accumulated or

depleted) and then ranked the genes by the effect size (maximum

|log2(RDOWNtag)+log2(RUPtag)| of its significantly changed interactions

in the desired direction) in decreasing order, with ties shuffled. The

background was taken as the set of genes participating in any non-

excluded interaction measured in that condition.

All GO enrichment analyses were performed using the FuncAssoci-

ate 2.1 web service (Berriz et al, 2003; Berriz et al, 2009), which

takes as input list of genes (ranked or unranked) and calculates signif-

icance of enrichment for each GO term by comparing the observed

nominal P-value from a hypergeometric test for that GO term with the

most significant nominal P-value observed from any GO term using a

either random collections of genes (when performing an unranked

test) or randomly ranked lists of similar size (when performing a

ranked test), drawn from the same background set of genes. The

following parameters were used in the FuncAssociate 2.1 webserver:

The GO association file was taken from the provided Saccharomyces

cerevisiae annotations in the sgd_systematic namespace with default

evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, ISS, ISO, ISA, ISM, IGC,

RCA, TAS, NAS, IC, IEA). For each query, 10,000 iterations were

used, with an adjusted significance cutoff of P_adj (q) < 0.05. The

search was only performed for over-represented terms.

Dynamic subnetwork simulations

In Fig 3C, we generated random dynamic subnetworks for each

condition by sampling from the set of all measured BC-PCA interac-

tions in that condition with different sampling procedures that

yielded varying proportions of protein-centric and interaction-

specific effects and examined which procedure yielded random

dynamic subnetworks that were the most consistent with the

largest component sizes observed in our data. To this end, we

performed iterative random sampling in which the number of accu-

mulated, depleted, and unchanged interactions observed in a

certain condition were generated using a combination of two

models: protein centric (referred here as “node-based”) and interac-

tion specific (referred here as “edge-based”). In each scenario, a

given number of interactions were first sampled using the node-

based method, and the remainder were then sampled using the

edge-based method.

We used a node-based sampling procedure in which a random

protein in the network (i.e., a node) is first proposed to have all of

its interactions change in a given direction. If these proposed

changes would not cause the simulation to exceed the desired

number of node-based dynamic interactions in that direction, they

are accepted and the dynamic subnetwork is modified. Otherwise,

another node is chosen at random until this condition is satisfied.

After successfully sampling one node, the simulated direction is

switched (e.g., from “accumulated” to “depleted”) and this process

is repeated until the desired number of both accumulated and

depleted interactions are sampled. If the limit of dynamic interac-

tions in a given direction has been reached, further sampling steps

in that direction are skipped. If at any point in this sampling process

there is a conflict in the assigned direction (i.e., an interaction was

previously assigned to change in one direction but the current

sampling step assigns the opposite direction), then the most recent

assignment takes precedence.

For “edge-based” sampling methods (referred to as “interaction-

specific” sampling in the text), the desired number of accumulated

and depleted interaction labels is assigned uniformly at random to

existing edges. In scenarios involving a combination of the two

models, “edge-based” interactions are randomly assigned to the list

of static edges in the network (i.e., those which were not already

sampled using the “node-based” method).

After successfully simulating a dynamic subnetwork using the

desired sampling method(s), the largest connected component (de-

fined as the number of nodes in the largest subgraph such that any

two proteins in that subgraph can be connected by dynamic interac-

tions of the same sign) was determined using the igraph package in

R for both the accumulated and depleted dynamic subnetworks. The

size of the largest connected component (“largest component size”)

in each of 1,000 simulated networks was determined separately for

accumulated and depleted interactions. From simulations, we

extracted the 5 percentile and 95 percentile values for both accumu-

lated and depleted subnetworks. This allowed us to indicate cases

where an observed network was consistent with simulations; that

is, they had largest component sizes that fell between these values

for both accumulated and depleted subnetworks (Fig 3C, gray shad-

ing). Cases where the observed network behavior was inconsistent

are indicated (Fig 3C; orange if either observed largest component

exceeds 95 percentile or blue if either observed largest component

falls below 5 percentile). For both accumulated and depleted inter-

actions, departure of a simulation from observation was measured

by difference between the percentile of the observed largest compo-

nent size and 50 percentile. The most consistent simulation overall

was taken to be that which minimized the largest departure

observed for accumulated and depleted interactions (Fig 3C). The

same analysis was repeated for Fig 3D using overall graph density

rather than component size as a comparison metric to the BC-PCA

data. Graph density was measured as 2|E|/|V|(|V|�1) where |E| is the

number of complex changes in a given direction and |V| is the

number of nodes participating in at least one complex change in that

direction.

Analysis of binary protein complexes containing hub proteins

For the analysis depicted in Fig 3B, we first defined 74 “hubs” as

proteins having 10 or more interaction partners in the network.
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Binary complexes containing a hub protein were then identified. In

order to systematically define “directional bias”, we first extracted

the log2(R) values (for both UP- and DOWN-tag) measured in the 14

conditions for binary complexes involving these hubs. For each UP-

and DOWN-tag pair corresponding to a given interaction, we used

the log2(R) value which was closest to zero as a conservative

measure of change in binary complex level. For each hub in each

condition, we then compared the conservative log2(R) values associ-

ated with that hub to all other conservative log2(R) values. For

example, in the case of Hxt1, a protein that is present in 23 interac-

tions in the network (represented by 23 strains), the conservative

log2(R) values of these 23 strains were compared to the conservative

log2(R) values of the remaining 1,360 strains in each condition. A

Mann–Whitney U-test was performed comparing these two log2(R)-

value distributions. The derived P-values were corrected for multi-

ple testing using the P.adjust function in R with the BH correction

method. Figure 3B plots the directional bias of 50 hubs showing

bias in at least one condition (q < 0.05 for both “complex depletion

bias” and “complex accumulation bias”).

Quantitative RT-PCR experiments

RNA was extracted from BC-PCA pool strains transformed with

CRISPRi plasmids targeting the RBD2 locus. An overnight culture

of the pool was diluted to an OD600/ml of 0.03 and grown for

24 h in minimal media supplemented with leucine and histidine

and in the presence or absence of 250 ng/ml anhydrotetracycline

(ATc). Cultures (5 ml) were then harvested, and total RNA was

extracted using the RiboPure-Yeast kit (Ambion, catalog no.

AM1926). cDNA was synthesized in 20 ll reactions using the

High-Capacity RNA-to-cDNA Kit (Applied Biosystems, catalog no.

4387406) and then diluted 10-fold using nuclease-free water.

Primers for quantitative PCR were designed using primer3; the

program’s default settings were used to select primers that

produced 75- to 125-bp amplicons. Quantitative PCR mixes (10 ll)
contained 1× SYBR Green PCR Master Mix (Applied Biosystems,

catalog no. 4309159) and 5 lM of each primer. Data were

collected and analyzed on a StepOne Real-Time PCR System

(Applied Biosystems). Ct-values report the cycle at which SYBR

fluorescence crosses a threshold; the threshold was automatically

set at a point within the exponential phase of the PCRs. Gene-

specific differences in Ct-values were calculated by subtracting

Ct[ATc;gene] � Ct[DMSO;gene] (DCt[ATc;gene]) and normalizing

against the DCt for the control gene ACT1 (DCt[ATc;ACT1]). Ratios

reported were calculated from this equation:

2ððDCt ½ATc;ACT1�Þ�ðDCt ½ATc;gene�ÞÞ:

Total RNA isolation, cDNA target synthesis, and
GeneChip hybridization

For the expression time course experiment described in Fig 4, a

PCA pool culture was grown overnight in non-selective media and

then resuspended in selective media containing ethanol instead of

dextrose as the sole carbon source. 10 ml aliquots were then

harvested at 0, 0.5, 4, and 12 h, and total RNA was extracted from

these samples using the RiboPure-Yeast kit (Ambion, catalog no.

AM1926). cDNA was synthesized in 10 ll reactions containing

1 lg/ll total RNA, 12.5 ng/ll Oligo(dT)12–18 primer (Invitrogen,

catalog no. 18418-012), 15 units/ll SuperScript II (Invitrogen, cata-
log no. 18064-014), 1× First Strand Buffer, 10 mM DTT, and

10 mM dNTPs (Invitrogen, catalog no. 18427013). After the RNA

and primers were denatured for 10 min at 70°C, the remaining

reagents were added, and the reaction was incubated at 42°C for

60 min. To remove the RNA template, two units of RNase H were

then added and the mix was incubated at 37°C for 20 min and then

at 95°C for 5 min. Quality of total RNA and cDNA was monitored

using RNA Nano 6000 chips processed using the 2100 BioAnalyzer

(Agilent). 220 ll hybridization cocktail containing heat-fragmented

and biotin-labeled cDNA at a concentration of 0.05 lg/ll were

injected into GeneChips and incubated at 45°C on a rotator in a

Hybridization Oven 640 (Affymetrix) overnight at 60 rpm. The

arrays were washed and stained with a streptavidin–phycoerythrin

conjugate (SAPE; Molecular Probes). The Gene Chips were

processed in a GeneArray Scanner (Agilent) using the default

settings. CEL files containing the raw data were computed from

DAT array image files using the statistical algorithm implemented

in MAS 5.0 (Affymetrix). Log2-transformed raw data were prepro-

cessed (background adjustment, normalization, and summarization

of probe sets) by using the Robust Multiarray Analysis (RMA)

package from BioConductor. CEL feature-level data are available

via the NCBI’s Gene Expression Omnibus under accession number

GSE72425.

Predicting protein complex levels and complex level abundance
changes using gene and protein expression

In order to predict the change in each protein complex using gene

and protein expression, we modeled every complex as binary and

acting independently. We took the resting total cellular concentra-

tion of two proteins (CP1, CP2) in a complex as the value reported in

PaxDB (Wang et al, 2012; values given are in ppm). When no

concentration was available, the median genomewide value was

used instead. Using a previously established approach (Maslov &

Ispolatov, 2007), we modeled the dissociation constant (Kd) of each

complex to be proportional to the maximum total concentration of

the proteins in the complex max(CP1, CP2)/20. Using the law of mass

action Kd ¼ ðCP1�CP1::P2ÞðCP2�CP1::P2Þ
CP1::P2

, an expression can be made in terms

of the predicted complex concentration CP1::P2:

CP1::P2¼1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
P1�2CP1ðCP2�KdÞþðCP2þKdÞ2

q
þCP1þCP2þKd

� �
:

In the limit where Kd approaches 0, this reduces to:

lim
Kd!0

CP1::P2 ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
P1 � 2CP1CP2 þ C2

P2

q
þ CP1 þ CP2

� �

¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCP1 � CP2Þ2

q
þ CP1 þ CP2

� �

¼ 1

2
CP1 þ CP2 � jCP1 � CP2jð Þ

¼ minðCP1;CP2Þ:

In Fig EV1C, min(CP1, CP2) was used to approximate an esti-

mated protein complex level for direct comparison to Freschi et al

(2013). In Figs 4 and EV4, the full formula for CP1::P2 was used to
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estimate CP1::P2EtOH=CP1::P2DMSO
as the predicted ratio of each complex

based on the mRNA expression data. To estimate CP1::P2EtOH , we first

estimated a concentration ratio (R) of each protein under a diauxic

shift (“EtOH”) from the mRNA expression data according to the

change in processed fluorescence intensity (I) from the control

condition (“DMSO”), such that RP1 ¼ ImRNA1EtOH=ImRNA1DMSO
and

RP2 ¼ ImRNA2EtOH=ImRNA2DMSO
. R was assigned as 1 for proteins with

missing mRNA expression measurements in either condition. Then,

RP1CP1 was assigned as CP1EtOH and RP2CP2 was assigned as CP2EtOH to

calculate CP1::P2EtOH . Strains with a lack of barcode correspondence

(|log2(RUPtag)�log2(RDOWNtag)| > 1)were excluded in Figs 4 and EV4.

Precision of protein complex abundance estimates from our
mass action model

Even perfectly accurate and precise predictions of protein complex

abundance will exhibit imperfect correlation with observation,

because of experimental measurement error in both expression and

BC-PCA data. To isolate errors intrinsic to the model from those

caused by experimental variation, we carried out a multistep analy-

sis. First, we estimated experimental error in both expression and

BC-PCA data. Second, we used a generative model to produce

“noise-added” BC-PCA data by: (i) adding experimental error to the

observed expression data to produce replicates of simulated expres-

sion data; (ii) using our mass action model to generate a predicted

BC-PCA dataset from each simulated expression dataset; and (iii)

adding experimental error to each replicate predicted BC-PCA

dataset. Correlation was then measured between “noise-added” PCA

replicates. Separately, we used the expression data more directly to

predict BC-PCA data from our mass action model and measured

correlation between predicted and observed BC-PCA data. Disagree-

ment between prediction and observation stems from model inaccu-

racy as well as errors in expression and BC-PCA data. By contrast,

disagreement between “noise-added” BC-PCA datasets depends only

on errors in expression and BC-PCA data. Thus, the extent to which

correlation between prediction and observation is lower than corre-

lation between “noise-added” replicate BC-PCA data allowed us to

estimate intrinsic model error.

In order to create “noise-added” BC-PCA data, the first goal was

to figure out how much noise to add in steps (i) and (iii) so that it

reasonably reflects the uncertainty in the experiment. Intuitively,

the experimental noise at each step can be estimated using the

correlation between two replicate observations. If we treat the

correlation between two replicate observations as reflecting the

correspondence between two noisy measurements of an “ideal”

variable X with random error e1 and e2, then we can derive the

amount of error to add to X in order to achieve the observed corre-

lation q(X + e1, X + e2). The correlation between two measurements

of an “ideal” variable X with random errors e1 and e2 such that

re1 ¼ re2 is

qðX þ e1;X þ e2Þ ¼ covðX þ e1;X þ e2Þ
rXþe1rXþe2

¼ r2X
r2X þ r2e1

:

Thus, the amount of normally distributed error to add to “refer-

ence” experimental data in our simulation such that two noisy

observations are expected to have the same correlation as seen in

the experiment is:

re1 ¼ rX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qðX þ e1;X þ e2Þ � 1

s
:

In step (i), the simulation takes gene expression ratio as input for

each protein complex pair. We used the log2-transformed expression

ratio between t = 0 h and t = 4 h under ethanol as the reference (X)

to which noise was added. In order to estimate the amount of noise

to add to this input using the above formula, we used the correlation

between the t = 1 h and t = 4 h ratios, as these observations had

the most correspondence to each other. In step (ii), the model then

takes these “noisy” expression ratios (as well as an estimate of rest-

ing concentrations for each protein, to which we did not simulate

any error) to give an estimated PCA output. In step (iii) we then

take the output from this model and use the same approach as in (i)

to add normally distributed error to the output of the model. In this

case, however, the error reflects both the experimental error intro-

duced by biological variability (by taking the observed correlation

between the two replicates for the same DNA tag) and DNA tag vari-

ability (by taking the observed correlation within the same replicate,

using different DNA tags). To determine the distribution of our esti-

mates, we simulated 100 “noise-added” replicates and performed a

pairwise correlation for all
100
2

� �
= 4,950 combinations, each of

which estimate q2ðX;XþeexpÞ:

Given a distribution of estimates for q2ðX;XþeexpÞ, our second goal

was to estimate the “intrinsic” model correspondence to the data

q2ðX;XþemodÞ. For this estimate, we use the difference between the

correlation of “noise-added” PCA datasets (which depends only on

experimental errors) and a difference in correlation between the

model predictions and observed experimental output (which

depends both on experimental errors and intrinsic model errors).

The correlation of a variable X compared to the same variable with

added random error (X + e) can be expressed as q2ðX;XþeÞ ¼ r2X
r2Xþr2e

.

Using this definition, we can partition the total error variance r2e
into the variance introduced by experimental error (r2eexp ) and the

residual variance, which we take in this case to be introduced by

the “true” lack of model correspondence r2emod

� �
: r2etotal ¼ r2eexpþ

r2emod
, so that q2ðX;XþemodÞ ¼ r2X

r2Xþr2etotal�r2eexp
. Using these relationships, it

is possible to restate q2ðX;XþemodÞ as a comparison of the “noise-added”

PCA correlation q2ðX;XþeexpÞ and the overall model correspondence to

the data q2ðX;XþeexpþemodÞ:

q2ðX;XþemodÞ ¼
1

1
q2ðX;XþeexpþemodÞ

� 1
q2ðX;Xþeexp Þ

þ 1
:

As we have obtained a distribution of q2ðX;XþeexpÞ from “noise-

added” replicates, we then sought to obtain a distribution of

q2ðX;XþemodÞ estimates. To this end, we resampled the observed model-

to-experiment correspondence to estimate a separate q2ðX;XþeexpþemodÞ
for each of the 4,950 q2ðX;XþeexpÞ estimates. We plotted the distribution

of estimates generated by each of these q2ðX;XþeexpÞ and q2ðX;XþeexpþemodÞ
combinations in Fig EV4D and E.

CRISPRi plasmid construction

We employed a single-plasmid system encoding the dCas9-Mxi1

repressor and guide RNA (gRNA) for inducible and targeted repres-

sion of the RBD2 gene (Smith et al, 2016, 2017). The sequence
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encoding the specificity-determining region of the RBD2-guide RNA

is GAAGAATAGGGGGATGGGAA.

Availability of data and materials

All data used in the publication are available as EV files attached to

the manuscript. CEL feature-level microarray data are available via

the NCBI’s Gene Expression Omnibus under accession number

GSE72425. Scripts used for the analysis are available on GitHub:

https://github.com/a3cel2/bc_pca_git.

List of abbreviations

Protein–protein interaction (PPI), protein-fragment complementa-

tion assay (PCA), murine dihydrofolate reductase (mDHFR),

methotrexate (MTX), base pairs (bp), area under the curve (AUC),

dimethyl sulfoxide (DMSO), anhydrotetracycline (ATc), guide RNA

(gRNA), clustered regularly interspaced palindromic repeats

(CRISPR), CRISPR interference (CRISPRi).

Expanded View for this article is available online.
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