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Abstract

In 2015–2016, simultaneous circulation of dengue, Zika and chikungunya in the municipality
of Rio de Janeiro (Brazil) was reported. We conducted an ecological study to analyse the spa-
tial distribution of dengue, Zika and chikungunya cases and to investigate socioeconomic fac-
tors associated with individual and combined disease incidence in 2015–2016. We then
constructed thematic maps and analysed the bivariate global Moran indices. Classical and spa-
tial models were used. A distinct spatial distribution pattern for dengue, Zika and chikun-
gunya was identified in the municipality of Rio de Janeiro. The bivariate global Moran
indices (P < 0.05) revealed negative spatial correlations between rates of dengue, Zika, chikun-
gunya and combined arboviruses incidence and social development index and mean income.
The regression models (P < 0.05) identified a negative relationship between mean income and
each of these rates and between sewage and Zika incidence rates, as well as a positive relation-
ship between urban areas and chikungunya incidence rates. In our study, spatial analysis tech-
niques helped to identify high-risk and social determinants at the local level for the three
arboviruses. Our findings may aid in backing effective interventions for the prevention and
control of epidemics of these diseases.

Introduction

Arboviruses represent a significant global public health challenge, having emerged in and spread
to many countries in recent decades. In 2020, 2 350 286 cases of dengue, Zika and chikungunya
were reported in the Americas. Among these cases, 64.5% were reported in Brazil [1].

Two emerging arboviruses transmitted by the same vector, Aedes aegypti, are Zika virus fever
and chikungunya fever.Until the 2000s, these diseaseswere considered rare andwere circumscribed
to a few locations worldwide. They later spread to various countries, causing important epidemics.
Chikungunya can cause incapacitating and prolonged symptoms, especially in the joints, while
Zika is associated with congenital malformation syndrome, which includes microcephaly [2].

Since the re-emergence of dengue in the 1980s in Brazil [3], the city of Rio de Janeiro
experienced alternating endemic and epidemic periods. Autochthonous cases of chikungunya
and Zika, and simultaneous circulation of the three arboviruses in the city were reported for
the first time in 2015 [4].

The proliferation of the A. aegypti vector is affected by ecological and socioenvironmental
factors. High temperatures, which are typical of the summer, and extend into part of autumn
in Rio de Janeiro, can accelerate mosquito egg development and increase the adult population.
The human population concentration in urbanised areas with precarious sanitation conditions
favours the emergence of potential mosquito breeding sites [4, 5].

Spatial analysis techniques have been used to investigate spatial and spatiotemporal patterns
for dengue, Zika and chikungunya and associated risk factors in different locations and scales
[5–8]. However, there are still gaps in the knowledge of these factors in the context of the sim-
ultaneous occurrence of the three arboviruses on the local scale.

The present study aimed to analyse the spatial distribution of dengue, Zika and chikun-
gunya cases in 2015−2016 and to identify associated socioeconomic factors for each of
these diseases. We also aimed to analyse the three arboviruses jointly to investigate the spatial
dynamics of diseases transmitted by a single vector, A. aegypti, in the territory.

Methods

This cross-sectional ecological, epidemiological study analysed data for areas demarcated
according to neighbourhoods.
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Location and study period

The study area consisted of the city of Rio de Janeiro, the capital
of the state of Rio de Janeiro, located in the southeast region of
Brazil, which is situated at 23°04′10′′ S and 43°47′40′′ W. With
6 320 446 inhabitants in 2010, Rio de Janeiro is the second-largest
city in Brazil and is home to 39.5% of the population in the state
with the same name (Fig. 1).

Rio de Janeiro is marked by social and economic heterogene-
ities, with economically more privileged areas surrounded by pre-
carious housing conditions and deficient sanitation infrastructure.

The city is divided into five planning areas (PAs), 33 adminis-
trative regions, and 160 neighbourhoods (Fig. 1). Historically, the
city has four main regions: the North Zone, South Zone, Central
Zone, and West Zone (Fig. 1). The Central Zone (PA 1), which
includes the historical and downtown parts of the city, underwent
major urban development over the years and includes a large
commercial and business area. The North Zone (PA 2.2 and PA
3) is the most heavily populated part of the city, with slightly
more than half of the city’s neighbourhoods and 42% of the popu-
lation. The South Zone (PA 2.1) is located close to the Central
Zone, between the Atlantic Ocean and the Tijuca Massif. The
South Zone’s neighbourhoods have the highest Social
Development Indices (SDI). The West Zone (PA 4 and PA 5) is
the most recently occupied area of the city with the lowest popu-
lation density, occupying the largest portion of the city’s territory.
Neighbourhoods with lower SDI are predominant in the West
and North Zones [9].

The study period was restricted from the epidemiological week
(EW) 44/2015 to EW 34/2016, as we aimed to cover phases in the
growth and decline in the number of reported cases of the three
diseases based on the date of the symptoms’ onset.

Data source

Socioeconomic and demograph data were obtained from the 2010
Nationl Census performed by the Brazilian Institute of Geography
and Statistics, which is available by neighbourhoods through the

official open data platform of the government of the municipality
of Rio de Janeiro (DATA.RIO, (http://www.data.rio/). The digital
map grids population was also extracted from DATA.RIO.

Data related to income and basic sanitation conditions pro-
duced by the Census have already been used as indicators of eco-
nomic and social aspects of populations in ecological studies on
disease risk factors [8, 10].

We selected a set of variables that reflected infrastructure, basic
sanitation, socioeconomic status, population density, and urbanisa-
tion according to the neighbourhood: percentage of households
connected to the public water supply (WATER), percentage of
households with adequate sewage disposal (SEWAGE), percentage
of households with public garbage collection (GARBAGE
COLLECTION), social development index (SDI), population dens-
ity (POPULATION DENSITY), percentage of the urban area
(URBAN AREA) and mean income of the head-of-household
(MEAN INCOME). The SDI is a composite indicator inspired by
the human development index (HDI), which add information
regarding basic sanitation, housing quality, schooling and income
to more appropriately reflect the neighbourhood’s social and
urban characteristics [9].

The study utilised arboviruses data contained within the
Brazilian National Notifiable Diseases Information System
(Sistema de Informação de Agravos de Notificação (SINAN)).
SINAN data have been used in many epidemiological studies
[10–13]. Cases included in the national list of compulsory notifica-
tions are investigated and recorded in this system at the municipal
level. SINAN data provided by the municipal epidemiological sur-
veillance service, aggregated by neighbourhood and by epidemio-
logical weeks were extracted from the following website: http://
www.rio.rj.gov.br/web/sms/vigilancia-epidemiologica-da. The study
covered all reported cases of dengue, Zika and chikungunya exclud-
ing those occurring in neighbourhoods that could not be identified.

Statistical methods

The crude mean incidence rates were calculated as cases per hun-
dred thousand inhabitants. The local empirical Bayesian method

Fig. 1. Maps of Brazil with divisions by state, the State of
Rio de Janeiro with divisions by municipality, and the
Municipality of Rio de Janeiro with divisions by region
(legend) and planning areas (PA, codes).
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was used, including information from neighbouring areas to esti-
mate each spatial unit’s smoothed rate [14]. This procedure aims
to reduce the effect of possible underreporting in spatial units. In
addition to the incidence rates for Zika, dengue and chikungunya,
the combined arboviruses incidence rates were calculated by insert-
ing the sum of cases for the numerator’s three diseases. To approxi-
mate a normal distribuition, log transformations of the smoothed
incidence rates and covariables were used for regression models.

The exploratory stage involved building thematic maps of inci-
dence rates and calculating the univariate global Moran indices
for the crude incidence rates and bivariate global indices between
the smoothed rates and covariables. Maps were made using QGIS
3.10 [15] and the Moran indices were calculated using GeoDa
1.12.1.59 [16].

The criterion stipulated by the National Dengue Control Plan
was used to characterise the spatial distribution of arboviruses.
This criterion, classifies the incidence rates (i.e. cases per hundred
thousand inhabitants) as low (0−100 cases), average (101−299),
and high (300 cases or more) [17]. For the construction of the-
matic maps, a fourth category reflecting more than 700 cases
per hundred thousand inhabitants was created.

Spatial autocorrelation indices indicate the degree of association
between a variable’s measure and its localisation. They express the
degree of similarity between each unit and its neighbours. The glo-
bal Moran I coefficient varies from −1 to +1. Positive values

indicate that neighbouring areas are similar to the mean of the tar-
get variable’s values in the entire study area. Negative values indi-
cate negative autocorrelation, and null values indicate the absence
of spatial dependence. Bivariate Moran I measures the spatial
dependence of the covariance between two attributes [18].

Classical and spatial models were then developed. Variables exhi-
biting statistically significant coefficients in the bivariate analyses, for
each outcome were selected for the initial models. A Spearman cor-
relation matrix was constructed for the independent variables. When
two variables exhibited a correlation equal to or greater than 0.5,
with statistical significance, only one was included in the model.

Linear regression models were built for target outcomes with
the selected covariables. Next, a test diagnosis of multicollinearity
variance inflation factor (VIF) was performed. The Moran index
was calculated to assess the autocorrelation of residuals.

The spatial error or conditional auto-regressive (CAR) model
was also used for the incidents rates with the covariables. This
model is a global spatial model that captures the spatial depend-
ence structure in a parameter added to the traditional regression
model. In this method, spatial dependence is incorporated into
the error’s structure, and the spatial effects are considered some-
thing to be removed:

Y = Xb+ 1, 1 = lW1+ j

Fig. 2. A – Maps of incidence rates for dengue, Zika and chikungunya. B – Number of arboviruses with rates greater than 300 cases per 100 000 inhabitants in each
neighbourhood. City of Rio de Janeiro, RJ, Brazil. Epidemiological week 44/2015 to 34/2016.
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where λ is the autoregressive coefficient, Wϵ is the component of
the error with spatial effects, and ξ is the component of the error
with constant and non-correlated variance, under the null
hypothesis of absence of spatial dependence (i.e. λ = 0) [19].

Another class of CAR model was also used, following the
Bayesian hierarchical approach. The models were estimated
under the assumption that the number of cases of dengue, Zika,
chikungunya and the three combined arboviruses follows the
Poisson distribution and the population was considered as an off-
set [20].

The variables and interaction terms were gradually maintained
or discarded according significance of the coefficients (P < 0.05).
For the final model’s definition, all the linear regresson models
and the two spatials models were compared, considering the
Akaike information criterion (AIC) and the Moran Index of the
residuals.

Regression analysis was performed using RStudio 1.1.463 [21]
with the following packages of the R software, version 4.0.5 [22]:
rgdal, sp, spdep, faraway, spatialreg and CARBayess.

Results

During the study period, there were 26 816 cases of dengue, 38
413 cases of Zika, and 13 624 cases of chikungunya. Among the
reported cases, 2060 (7.7%) cases of dengue and 37 (0.01%)
cases of Zika were excluded because the neighbourhoods were
not identified.

High Zika incidence rates (more than 300 cases per 100 000
inhabitants) were observed in all city areas. The highest dengue
incidence rates were in neighbourhoods in the West Zone and
North Zone, while the highest chikungunya incidence rates
were in the North Zone and some neighbourhoods in the
Central Zone (Fig. 2A). Despite the occurrence of a triple epi-
demic at the municipal level, only 25% of the neighbourhoods
simultaneously exhibit high dengue, Zika and chikungunya inci-
dence rates (Fig. 2B).

The global Moran indices indicated a statistically significant spa-
tial autocorrelation (P < 0.05) for incidence rates of Zika, chikun-
gunya and the three arboviruses combined, meaning that adjacent
neighbourhoods tended to have similar incidence rates (Table 1).

The bivariate global Moran indices indicated that the mean
Zika incidence rate exhibited negative spatial correlations with
SDI, MEAN INCOME, SEWAGE, WATER and POPULATION
DENSITY. The dengue incidence rates exhibited a negative spatial
correlations with SDI, MEAN INCOME and POPULATION
DENSITY. The chikungunya incidence rates exhibited negative
spatial correlations with SDI, MEAN INCOME, as well as positive
spatial correlations with SEWAGE, WATER, URBAN AREA and
POPULATION DENSITY. The combined arboviruses incidence
rates exhibited negative spatial dependence with SDI, MEAN
INCOME and SEWAGE. Notably, the dengue, Zika and chikun-
gunya incidence rates and the combined incidence rates of the
three arboviruses exhibited a negative spatial association with
MEAN INCOME and SDI (Table 1).

Table 1. Global Moran indices (P values in brackets) for incidence rates of Zika, dengue, chikungunya and the three arboviruses combined

Zika Dengue Chikungunya The three arboviruses

Univariate Moran (with crude rates) 0. 12 (0.02) 0.06 (0.07) 0.34 (0.00) 0.13 (0.01)

Bivariate Moran (with smoothed rates) Zika Dengue Chikungunya The three Arboviruses

Mean income −0.12 (0.00) −0.14 (0.00)) −0.20 (0.00) −0.18 (0.00)

Social development index− SDI −0.22 (0.00) −0.13 (0.00) −0.09 (0.01) −0.20 (0.00)

Sewage −0.29 (0.00) 0.02 (0.27) 0.19 (0.00) −0.11 (0.01)

Garbage collection −0.02 (0.22) −0.02 (0.24) −0.04 (0.16) −0.04 (0.16)

Water −0.17 (0.00) 0.01 (0.45) 0.11 0.01 −0.05 (0.08)

Urban area −0.04 (0.07) 0.03 (0.24) 0.26 (0.00) −0.06 (0.44)

Population density −0.13 (0.00) −0.01 (0.45) 0.13 (0.00) −0.03 (0.17)

City of Rio de Janeiro, RJ, Brazil. Epidemiological week 44/2015 to 34/2016.

Table 2. Spearman’ correlation matrix (P values in brackets)

Social development
index - SDI Sewage

Mean
income

Garbage
collection Water

Urban
area

Population
density

Social development
index - SDI

1.0

Sewage 0.64 (0.0) 1.0

Mean income 0.87 (0.0) 0.39 (0.0) 1.0

Garbage collection 0.19 (0.01) 0.06 (0.40) 0.13 (0.05) 1.0

Water 0.40 (0.0) 0,62 (0,0) 0.19 (0.01) 0.11 (0.15) 1.0

Urban area 0.11 (0.17) 0.39 (0.0) −0.13 (0.1) 0.13 (0.1) 0.41 (0.01) 1.0

Population density 0.17 (0.02) 0.43 (0.0) −0.05 (0.5) −0.12 (0.13) 0.40 (0.0) 0.65 (0.0) 1.0
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The Spearman correlation matrix of the independent variables
identified a significant correlation between SDI and MEAN
INCOME, between SDI and SEWAGE, between SEWAGE and
WATER, and between POPULATION DENSITY and URBAN
AREA (Table 2). The coefficients of the bivariate models were
listed in Table 3.

The estimated CAR models for the dengue and chikungunya
incidence rates vielded a lower AIC than the linear regression
models. AIC was similar for the CAR and linear regression mod-
els for Zika incidence rates, but the Moran index indicated auto-
correlation of the residuals of the linear model. Zika incidence
rates were negatively associated with MEAN INCOME and
SEWAGE. Dengue incidences were negatively associated with
MEAN INCOME. Chikungunya incidence rates were positively
associated with URBAN AREA, and negatively associated with
MEAN INCOME. The adjusted classic model for the incidence
rates of the combined arboviruses revealed a negative association
between incidence rates of the three arboviruses combined and
MEAN INCOME, and the AIC was lower for the linear regression
model than for the CAR model. For all outcomes, the AIC of the
Poisson models was higher than that of the other models. The
residuals Moran Index of the final models did not indicate spatial
dependence (Tables 4 and 5).

Discussion

In the present study, we conducted a spatial analysis of the inci-
dence of dengue, Zika and chikungunya and their socioeconomic
determinants in the city of Rio de Janeiro, Brazil. Our analysis
identified a distinct spatial distribution pattern for dengue, Zika
and chikungunya; the first time a triple epidemic of these arbo-
viruses was recorded in Rio de Janeiro. The analysis also revealed
a spatial relationship between low economic status and higher
incidence rates of arboviruses.

Zika incidence rates presented greater spatial dispersion and Zika
was present in all regions of the city. In most neighbourhoods, thereTa
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Table 4. Final models, according to the AIC criterion and absence of
autocorrelation of residues, for Dengue, Zika and Chikungunya and combined
arbovirus incidence rates and covariates

Variables Coefficients CI (95%)

Zika
CAR
AIC = 371.2
I = 0.0
P = 0.182

Mean income −0.22 (−0.43, −0.01)

Sewage −0.70 (−1.38, −0.03)

Dengue
CAR
AIC = 407.2
I =−0.01
P = 0.42

Mean income −0.43 (−0.66, −0.19)

Chikungunya
CAR
AIC = 394.1
I =−0.001,
P = 042

Mean income −0.49 (−0.72, −0.26)

Urban area −0.33 (0.10, 0.56)

Arboviruses
LM
AIC = 375
I = 0.0
P = 0.28

Mean income −0.37 (−0.58, −0.18)

Epidemiological week 44/2015–34/2016 (Rio de Janeiro, RJ, Brazil).

Epidemiology and Infection 5



were no simultaneous records of high dengue, Zika and chikun-
gunya incidence rates, which may indicate that the circulation of
one arbovirus partially inhibited the circulation of the other two
arboviruses. This finding is an accordance with those of previous
R studies, such as another conducted in the city of Rio de
Janeiro, in which clusters of the three arboviruses did not coincide
in time and space due to competition between the viruses or vector
control activities conducted in previous outbreaks [13]. A study in
the Dominican Republican also reported asynchronous spatial and
temporal characteristics of the three arboviruses. The authors sug-
gested that previous immunity to any of the arboviruses or problems
in confirming the diagnosis may have contributed to this finding
[23]. Another study conducted in Salvador (Bahia, Brazil), reported
a reduction in the detection of positive cases in laboratory tests for
dengue in patients with acute febrile syndrome during and immedi-
ately after a Zika epidemic. The authors hypothesised that Zika
infection conferred immunity to dengue [24].

In contrast, a previous ecological study conducted in Brazil
evaluated the effect of previous immunity against dengue on the
occurrence of microcephaly due to Zika. The authors estimated
that, when the dengue epidemic occurred up to 6 years before
the Zika epidemic, this conferred a protective effect against micro-
cephaly. However, the occurrence of a Zika epidemic 7–12 years
after a dengue epidemic increased the risk of microcephaly [25].

Fuller et al. [6] reported spatial juxtaposition of Zika and chi-
kungunya in cities within the state of Rio de Janeiro. According to
the authors, the increase in the incidence rate of chikungunya
began after the decline in Zika incidence, indicating possible com-
petition between the arboviruses in the vector.

In the exploratory phase of the current study, spatial depend-
ence analysis indentified a spatial relationship between low SDI,
low income and higher Zika, dengue chikungunya incidence
rates. Spatial modelling corroborated the importance of socio-
economic factors and sanitation conditions in the spatial distribu-
tion of each of these rates. Other studies have demonstrated an

association between low income indicators and a higher risk of
dengue [8, 12, 26]. These findings emphasise the need for specific
interventions to contain epidemics and promote health in less
economically favoured regions that present with complex realities,
such as geographical constraints and public security problems.
However, other studies have reported conflicting results regarding
the association between indicators of socioeconomic vulnerability
and dengue incidence, suggesting that this relationship requires
more in-depth investigation [27, 28].

The spatial relationship between inadequate sewage disposal and
Zika incidence rates is consistent with previous dengue results.
Sewage disposal services can be considered a proxy for sanitation
conditions, including water supply and garbage collection. These
findings highlight for intervention targeting these factors [7, 10].

The current study also revealed an association between a high
percentage of urban area and higher chikungunya incidence rates.
Studies suggest that high population density and high proportion
of urbanisation are associated with higher dengue incidence rates
because they provide favourable conditions for the proliferation of
the disease’s vector, which is heavily adapted to household envir-
onments [7, 29, 30].

This study had some limitations. The use of secondary data
aggregated by neighbourhoods with arbitrary limits in this
study may not have captured local nuances and heterogeneities.
Topological aspects and transport networks, and urban mobility
were not considered. The lack of laboratory confirmation in this
study, which involved three diseases with similar symptoms, the
emphasis of the epidemiological surveillance service on Zika
virus infections, declared as Public Health Emergency of
International Concern in 2016 may have favoured the occurrence
of information bias. However, the analysis of the joint incidence
rates for all three arboviruses allowed the spatial investigation of
these diseases transmitted by the same vector in the city.

In this ecological study, spatial analysis techniques were used to
identify areas with a more intense circulation of symptomatic cases

Table 5. Final models between incidence rates (linear regression and CAR) or number of cases (spatial Bayesian Poisson) of Zika, Dengue and Chikungunya and
covariates obtained using three different approaches

Linear regression CAR Spatial Bayesian Poisson

Zika Mean incomea −0.20 (−0.40, −0.003) Mean income −0.22 (−0.43, −0.01) SDI −3.18 (−5.18, −1.41)

Sewagea −0.81 (−1.43, −1.18) Sewage −0.70 (−1.38, −0.03)

AIC = 371.6 AIC = 371.2 AIC = 1376.84

I−0.04, P = 0.02 I = 0.0, P = 0.182 I =−0.0, P = 0.42

Dengue Mean income −0.49 (−0.71, −0.27) Mean income −0.43 (−0.66, −0.19) Mean income −0.10 (−0.14, −0.06)

AIC = 410.87 AIC = 407.2 AIC = 1282.7

I =−0.01, P = 0.42 I = 0.02, P = 0.08

Chikungunya Mean incomea −0.52 (−0.74, −0.29) Mean income −0.49 (−0.72, −0.26) SDI −4.85 (−7.39, −1.92)

Urban areaa 0.46 (0.24, 0.67) Urban area −0.33 (0.10, 0.56) Urban area 0.016 (0.01, 0.02)

AIC = 408.98 AIC = 394.1 AIC = 1184.8

I = 0.16 P = 0.00 I =−0.001, P = 042 I = 0.01, P = 0.1

Arboviruses Mean income −0.37 (−0.58, −0.18) Mean income 0.37 (−0.57, −0.17) SDI −3.84 (−5.42, −1.46)

AIC = 375 AIC = 377 AIC = 1509.9

I = 0.0, P = 0.28 I = 00, P = 0.39 I =−0.2, P = 0.73

Epidemiological week 44/2015–34/2016 (Rio de Janeiro, RJ, Brazil).
aVIF < 1.1.
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of these three important arboviruses in the first occurrence of a triple
epidemic. These techniques thus allow identifying areas at risk and
social determinants of the occurrence of these diseases in any place.
These findings may help to subside the choice of priority areas for
the allocation of health surveillance and assistance resources.

Importantly, increasing the knowledge on each of these three
arboviruses’ spatial dynamics and their determinants at the
local level is essential for backing effective interventions in the
prevention and control of their epidemics.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821001801.
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