
Intrauterine Candida albicans infection elicits severe 
inflammation in fetal sheep

Matthew S. Payne1,ǂ, Matthew W. Kemp1,ǂ,Ω, Suhas G. Kallapur1,2, Paranthaman 
Senthamarai Kannan2, Masatoshi Saito1,3, Yuichiro Miura1,3, John P. Newnham1, Sarah 
Stock1,5, Demelza J. Ireland1, Boris W. Kramer1,4, and Alan H. Jobe1,2

1School of Women’s and Infants’ Health, The University of Western Australia, Perth, Western 
Australia 2Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Centre, 
University of Cincinnati School of Medicine Cincinnati, Ohio USA 3Division of Perinatal Medicine, 
Tohoku University Hospital, Sendai, Japan 4Department of Paediatrics, School of Oncology and 
Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands 5MRC 
Centre for Reproductive Health Queen’s Medical Research Institute University of Edinburgh 
Edinburgh, UK

Abstract

Background—Preventing preterm birth and subsequent adverse neonatal sequelae is among the 

greatest clinical challenges of our time. Recent studies suggest a role for Candida spp. in preterm 

birth and fetal injury, as a result of their colonization of either the vagina and/or the amniotic 

cavity. We hypothesised that intraamniotic C. albicans would cause a vigorous, acute fetal 

inflammatory response.

Methods—Sheep carrying singleton pregnancies received single intraamniotic (IA) injections of 

either saline (control) or 107 CFU C. albicans 1 or 2 d prior to surgical delivery and euthanasia at 

124 ± 2 d gestation.

Results—Colonization of the amniotic cavity by C. albicans resulted in a modest inflammatory 

response at 1 d and florid inflammation at 2 d, characterised by fetal thrombocytopenia, 

lymphopenia and significant increases of inflammatory cytokines/chemokines in the fetal 

membranes skin, lung and the amniotic fluid.

Conclusion—Acute colonization of the amniotic cavity by C. albicans causes severe 

intrauterine inflammation and fetal injury. C. albicans is a potent fetal pathogen which can 

contribute to adverse pregnancy outcomes.
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Introduction

Preterm birth remains a leading cause of neonatal mortality and morbidity worldwide. 

Although the causes of preterm birth are multi-factorial, infection of the amniotic cavity and 

subsequent intrauterine inflammation are both strongly associated with preterm delivery and 

adverse neonatal outcomes (including respiratory, gastrointestinal and neurological injuries), 

most notably in deliveries occurring at ≤ 32 weeks completed gestation 1–3. Culture and 

molecular-based analyses have identified bacterial genera including Ureaplasma, 

Fusobacterium, Streptococcus, Bacteroides and Gardnerella spp. as the microorganisms 

most commonly isolated from preterm deliveries 1,4,5. Recent studies suggest that many of 

the intrauterine infections associated with preterm labour are polymicrobial in nature 5,6.

Historically, the role of Candida spp. in preterm birth and neonatal injury has been 

somewhat unclear. However, recent molecular data suggest that Candida albicans may 

colonise the amniotic cavity more frequently than initially suggested by culture-based 

analyses, and cases of congenital candidiasis have been reported in the literature 7–12. Rode 

and colleagues have suggested a possible association between serial amniocenteses and 

candida chorioamnionitis 13. More recently, Bean et al. published the resolution of two cases 

of intraamniotic Candida albicans infection with maternal and intraamniotic fluconazole. 

Key conclusions of this case report were that intraamniotic Candida albicans infection has 

devastating implications for the fetus and that prompt diagnosis and treatment of infection is 

essential for pregnancy wellbeing 14.

Candida spp., (most commonly C. albicans) are believed to asymptomatically colonise the 

vagina of 20% of healthy women (more frequently during pregnancy), and invasive 

candidiasis can be a primary cause of death and neurological injury in extremely low birth-

weight infants (<1000 g) 5,15–17. Although a causal association for bacterial infection in 

early preterm labour is well established, the role of Candida spp. in uterine infection and 

preterm delivery is more controversial 5,16. A large multi-centre study of pregnancy 

outcomes and Candida spp. colonization in 13,914 women concluded that colonization with 

Candida spp. was not associated with low birth weight or preterm delivery 18. In direct 

contrast, a retrospective study of 38,151 infants, identified a 34–64% reduction in preterm 

birth in a subset (8.1%) born to mothers that received Clotrimazole (anti-Candida spp.) 

treatment during pregnancy 19. In addition, more recent smaller intervention studies reported 

either a significant reduction or a trend to reduction in preterm birth in groups receiving 

treatment for asymptomatic vaginal candidiasis 16,20. Of particular interest is research 

suggesting an apparent association between indwelling contraceptives and cervical cerclage 

with Candida spp. infection of the amniotic cavity 5.

We have previously utilised pregnant sheep to investigate the effects of E.coli 

lipopolysaccharides (LPS)21, antenatal corticosteroids 22, interleukin (IL)-1 23 and live 

Ureaplasma spp. 24 on the fetal lung 25, gut26 and skin27 and modulation of the fetal 

immune system 28. In light of emerging clinical data, animal studies are now needed to 

clarify the impact of acute intraamniotic C. albicans infection. To that end, we tested the 

pathogenicity of acute intrauterine C. albicans infection in a sheep model of human 
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pregnancy. We hypothesised that intraamniotic C. albicans would cause a vigorous, acute 

fetal inflammatory response.

Materials and Methods

Animals

All procedures involving animals were performed at The University of Western Australia 

(Perth, Western Australia) following review and approval by the animal care and use 

committees of The University of Western Australia and Cincinnati Children’s Hospital 

(Cincinnati, OH.). Twenty nine date-mated Australian merino ewes with singleton 

pregnancies were randomised to receive either: i) a single ultrasound-guided intraamniotic 

injection of 2 mL saline (n=13); or ii) a single ultrasound-guided intraamniotic injection of 

107 CFU C. albicans (Western Australian clinical isolate) in 2 mL saline with delivery after 

1 d (1 d Candida group; n=8) or 2 d (2 d Candida group; n=8). Successful placement of 

intraamniotic injections were confirmed with electrolyte (Cl−) analysis of amniotic fluid 

using a Siemens Rapidlab 1265 Analyser (Siemens, Munich, Germany). No fetal losses 

occurred in the 1 d Candida, 2 d Candida or Saline control groups.

Fetuses were surgically delivered at 124 ± 2 d GA, and euthanized with intravenous 

pentobarbitone (100 mg/kg). Fetal lung fluid and tissues for protein and mRNA expression 

analyses were collected at autopsy and snap frozen in liquid nitrogen. To eliminate a 

potential sampling bias, fetal skin was selectively collected from the fetal groins. A 

minimum of five, randomly selected animals were analysed from each group. Fetal lung 

tissues for histological analysis were inflation fixed in 10% neutral buffered formalin for 24 

h before paraffin embedding. Fetal skin tissues for histological analysis were cryopreserved 

in OCT.

Candida albicans culture for intraamniotic injection

A single Western Australian clinical isolate of C. albicans was cultured on Difco Sabaraud-

Dextrose agar (Becton Dickinson & Co., Franklin Lakes, NJ.) at 37°C for 48 h and single 

colonies were inoculated into sterile 1 × phosphate buffered saline (Sigma-Aldrich, St. 

Loius, MO.). C. albicans colony morphology was confirmed by growth on Brilliance 

Candida Agar (Oxoid). Inoculums were quantified using a plate dilution series as per 

standard microbiological methods and recorded as CFU/mL. Quantified inoculums (107 

CFU in 2 mL 1 × phosphate buffered saline) were stored at −80°C prior to use.

Nucleic acid extraction

To develop a standard curve for quantitation of C. albicans in fetal tissues, total RNA was 

extracted from 250 μL of C. albicans (the same Western Australian clinical isolate used in 

vivo in this study) using the Versant Sample Preparation kit 1.0 (Siemens, Munich, 

Germany) on a Kingfisher automated extraction platform (Thermo Scientific, Rockford, IL.) 

as per manufacturer’s instructions. Total RNA was extracted from liquid nitrogen-

homogenised fetal tissues using TRIzol as previously reported21. Extracted RNA was treated 

with Turbo-DNase (Life Technologies, Carlsbad, CA.) to remove any residual DNA and 
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subsequently quantified on a Qubit fluorometer (Life Technologies) using a broad-range 

RNA quantitation kit. RNA yields from fetal tissues were normalised to 100 ng/μL.

Candida albicans detection/quantitation

RNA extracted from fetal lung, skin, chorioamnion and spleen was screened using a real-

time PCR assay targeting the RNase P RNA gene of C. albicans 29. RNA-based reactions 

were performed using an EXPRESS One-Step SuperScript qRT-PCR Kit (Life 

Technologies) with 0.5 μM each primer, 0.2 μM probe, 400 ng template RNA and water to a 

final volume of 20 μL. To enable quantitation of C. albicans within each sample, a standard 

curve of pure C. albicans (study isolate) RNA was included in each assay at a final 

concentration of 40, 4 and 0.4 ng per 20 uL reaction. Reaction cycling conditions were as 

follows: 15 min reverse transcription at 50°C and an initial denaturation at 95°C for 20 s, 

followed by 40 cycles of 95°C for 3 s and 60°C for 30 s. All reactions were performed in 96 

well plates on a ViiA7 real-time PCR thermocycler (Life Technologies). The presence of 

viable C. albicans in amniotic fluid samples was determined using a Sabaraud-Dextrose agar 

plate dilution series as described above. Three single colonies from positive plates were 

subsequently inoculated onto Candida Brilliance agar (Oxoid, Basingstoke, UK) for 

confirmation of isolate identification.

Relative quantification of mRNA expression

Ovine-specific PCR primers and hydrolysis probes for IL-1β, IL-6, IL-8, TNF-α, MCP-1 

and MCP-2 (Life Technologies) were used to perform quantitative PCR reactions on RNA 

from fetal lung, skin, and chorioamnion tissue. Reactions were performed using an 

EXPRESS One-Step SuperScript qRT-PCR Kit (Life Technologies) with 400 ng template 

RNA in a total volume of 20 μL. Reaction cycling conditions were as described above. Cq 

values were normalised to 18s rRNA and expressed as fold changes relative to pooled 

control values. Reaction efficiencies were within limits proposed in the MIQE guidelines 30.

Enzyme-linked immunosorbent assays

Quantification of IL-1β and IL-8 protein concentrations in AF was performed as previously 

described 31. AF samples were diluted 1:5 in assay buffer. Quantification of IL-6 protein 

concentration in ovine AF was performed using an identical protocol with the following 

modifications: Plate wells were coated overnight at 4°C with 5 μg/mL capture antibody 

(MCA1659; ABD Serotech, Kidlington, UK). Recombinant sheep IL-6 protein standards 

(Protein Express, Cincinnati, OH.) and AF samples, diluted 1:2 in assay buffer, were 

incubated overnight at 4°C. The detection antibody (AHP424; ABD Serotech) was diluted 

1:750 in assay buffer. All samples and standards were assayed in duplicate. Cortisol 

measurements were performed with a Cortisol EIA kit (Oxford Biomedical Research, 

Rochester Hills, MI.) on 1:10 diluted fetal arterial cord blood plasma according to the 

manufacturer’s instructions.

Haematology

Complete blood counts (CBC) and differential analyses were performed with an automated 

Coulter counter customised for sheep blood.
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Histology

5 μm-thick sections from formalin fixed lung (right upper lobe) tissues embedded in paraffin 

blocks or 10 μm-thick sections from cryopreserved skin tissues embedded in OCT were 

stained with haematoxylin and eosin. For lung tissues, five random fields were scored for 

inflammatory cell infiltration and airway consolidation as follows: 0: Normal; 1: Airway 

inflammatory cells, no consolidation; 2: Airway inflammatory cells + microconsolidation 

focii (1–2/5 Low Power Field); 3: Airway inflammatory cells + microconsolidation focii 

(≥3/5 Low Power Field); and 4: Extensive airway inflammatory cells and consolidation. 

Immunohistochemical staining of fetal lung for CD3 (A0452, Dako, Glostrup, Denmark, 

working concentration 1:100) and C. albicans (B65411R, Meridian Life Science, Inc. 

Memphis, TN., working concentration 1:50) was performed as previously published32. CD3 

counts in fetal lung were obtained by counting positively stained cells in five randomly 

selected, non-overlapping fields at 20 × objective magnification.

Statistical analyses

All values are expressed as mean ± standard deviation (SD). All analyses were performed 

using IBM SPSS Statistics for Windows, software version 20.0 (IBM Corp. Armonk, NY.). 

Data were assessed for normality with Shapiro-Wilk tests and histograms. Parametric data 

were screened for outliers with Dixon’s Q-parameter and differences tested for significance 

with one-way ANOVA employing an α-value of 0.05. Multiple post-hoc comparisons were 

performed using Tukey’s test. Apparent differences in non-parametric data were tested for 

significance with Kruskal-Wallis one-way ANOVA employing an α-value of 0.05. Multiple 

post-hoc comparisons were performed using Rank Sum Tests with an α-value corrected for 

n multiple comparisons.

Results

Intrauterine infection with 107 CFU C. albicans resulted in florid intrauterine inflammation 

at 2 d post-infection. Limited histological changes in skin and lung, and relatively modest 

increases in cytokine/chemokine expression were detected in fetal tissues collected 1 d post-

infection.

Detection of viable Candida albicans

Amniotic fluid from all 1 d and 2 d C. albicans exposed animals but none of the controls 

were positive for viable C. albicans growth (data not shown). qPCR analysis demonstrated 

increased C. albicans RNA in fetal lung (3.8 ± 3 ng), chorioamnion (78 ± 32 ng) and skin 

(50 ± 48 ng) taken from animals exposed to C. albicans for 2 d, relative to fetal lung (0.2 ng 

± 0.1 ng), chorioamnion (14 ± 10 ng) and skin (6.0 ± 5.0 ng) exposed to C. albicans for 1 d 

(Figure 1a). The highest levels of C. albicans RNA were detected in chorioamnion tissue 

after a 2 d exposure (p < 0.010 vs. 2 d fetal lung). No C. albicans RNA was detected in the 

fetal spleen after either 1 d or 2 d C. albicans exposure or in any saline control animal.
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Cytokine/chemokine protein concentration in fetal plasma, amniotic fluid and fetal lung 
fluid

No changes in IL-1β, IL-6 or IL-8 protein concentration were detected in fetal plasma from 

animals exposed to C. albicans for either 1 d or 2 d, relative to control (data not shown). 

Analysis of IL-1β, IL-6 and IL-8 protein concentrations in the AF demonstrated significant 

increases in the concentration of: i) IL-1β in 2 d C.albicans exposed animals relative to 1 d 

C. albicans exposed animals (p=0.001) and control (p=0.002); and ii) IL-8 in 2 d C. albicans 

exposed animals relative to 1 d C. albicans exposed animals (p=0.044) and control 

(p=0.046). No change in IL-6 concentration was detected (Figure 1b). Analysis of IL-1β, 

IL-6 and IL-8 protein concentration in fetal lung fluid demonstrated significant increases in 

the concentration of: i) IL-1β in 2 d C. albicans exposed animals relative to control (680 ± 

900 pg/mL vs. 157 ± 10 pg/mL; p=0.048); and ii) IL-8 in 2 d C. albicans exposed animals, 

relative to control (20 ± 18.5 ng/mL vs. 1.4 ± 2.0 ng/mL p=0.002). No change in fetal lung 

fluid IL-6 concentration was detected (data not shown).

Elevated circulating fetal cortisol

Concentrations of cortisol in fetal arterial plasma demonstrated variable, but significant 

increases in concentration at 2 d post-infection relative to 1 d post-infection (p=0.007) and 

control (p=0.002) (Figure 2).

Haematological analyses

Complete/differential fetal blood counts demonstrated marked thrombocytopenia and 

leukopenia after 2 d intrauterine C. albicans infection (Table 1); circulating platelets 

(p=0.026) and white blood cells (p=0.006) were significantly reduced relative to control. 

Lymphocytes at 2 d post-infection were significantly reduced relative to counts at 1 d post-

infection (p=0.015) and an apparent reduction relative to control counts closely approached 

significance (p=0.08).

Elevated cytokine/chemokine mRNA expression in the fetal lung, skin and membranes

Analysis of cytokine/chemokine expression in the fetal lung, skin and membranes identified 

a pattern of significant mRNA up-regulation at 2 d post-C. albicans infection, relative to 

both control and 1 d post-C. albicans infection tissues. Significant increases in IL-1β 

(p=0.007), IL-6 (p=0.007), IL-8 (p=0.010), TNF-α (p=0.003) and MCP-1 (p=0.003) mRNA 

expression were identified in the fetal lung at 2 d post-infection, relative to control (Figure 

3a). In the fetal skin, significant mRNA increases were observed in the expression of IL-6 at 

2 d (p=0.004), TNF-α at 2 d (p=0.019), IL-8 at 1 d (p=0.000) and 2 d (p=0.000), and MCP-2 

at 1 d (p=0.031) and 2 d (p=0.000) post-C. albicans infection, relative to control (Figure 3b). 

In fetal membranes, a significant increase was only observed in IL-8 mRNA expression 

(p=0.020) at 2 d post-C. albicans infection, relative to control (Figure 3c).

Histological analysis of the fetal lung and skin

Seven of eight fetal lung samples from the 2 d Candida group assessed for inflammation and 

consolidation were graded 2 (n=4) or 3 (n=3) (Figure 4a), consistent with robust 

inflammation of the fetal lung. A marked increase in C. albicans staining intensity and 
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distribution was apparent in lung tissues taken from 2 d C. albicans-exposed animals, 

relative to 1 d C. albicans-exposed and saline control animals (Figure 4a insert). CD3-

positive cells were significantly increased (33.0 ± 8.0 vs. 12.0 ± 4.0 cells/low power field, 

p=0.006) in the fetal lung of animals exposed to C. albicans for 2 d, relative to control 

(Figure 4b). Haemotoxylin and eosin staining of transverse fetal skin sections demonstrated 

numerous foci of basophilic infiltration of the stratum corneum at 2 d post-infection (Figure 

5a). Immunofluorescent analysis of IL-8 expression in the fetal skin demonstrated distinct 

increases in signal intensity and distribution in 1 d and 2 d C. albicans exposed tissues, 

relative to control (Figure 5b).

Discussion

Comparatively little animal data are available to describe the inflammatory response to acute 

C. albicans colonization of the amniotic cavity 33–35. We present novel data demonstrating: 

i) the colonization of the amniotic environment by C. albicans following intra-amniotic 

infection; and ii) that intrauterine infection with C.albicans rapidly progresses to an active 

infection involving multiple fetal surfaces yielding florid intrauterine inflammation and 

depletion of circulating fetal immunocytes and platelets. These findings add weight to recent 

clinical reports concluding that the prompt diagnosis and treatment of intraamniotic C. 

albicans infection is critical to pregnancy wellbeing 14.

Infection of the amniotic cavity with C. albicans was characterised by a quasi-latent period 

of at least 1 d post-infection. Although significant increases in IL-6, IL-8 and MCP-2 

mRNA transcript expression were identified in the fetal skin and IL-8 protein concentration 

in the AF at 1 d post-infection, no changes were identified in lung or chorioamnion mRNA 

expression, fetal arterial plasma cortisol levels or fetal white blood cell counts. At 2 d post-

infection, significant increases in mRNA expression were detected in the fetal skin and lung, 

with a limited (IL-8 only) response detected in the chorioamnion.

Cytokine/chemokine mRNA expression in the fetal skin and lung, and cytokine protein 

concentrations in the fetal lung fluid correlated with increased C. albicans RNA levels at 2 

d. Interestingly, the vigorous inflammatory response identified in the fetal lung in the 2d 

post-infection group was disproportionate to the comparatively low level of C. albicans 

RNA detected. Conversely, the inflammatory response detected in the chorioamnion was 

comparatively mild (given the high levels of C. albicans RNA isolated from this tissue) at 

both 1 d and 2 d. These data suggest a differential sensitivity between tissues (lung, skin and 

chorioamnion) to inflammatory stimulation by C. albicans. Surprisingly, no C. albicans 

RNA was detected in the fetal spleen in either the 1 d or 2 d post-infection groups. Although 

we did not extensively culture from aseptically harvested fetal organs, these molecular data 

indicate that C. albicans does not gain access to the fetal circulation by 2 d despite 

significant colonization of the fetal lung and skin. This observation also suggests that the 

systemic changes (alterations in leukocyte counts and fetal arterial plasma) identified in this 

study are due to inflammatory signalling derived from amniotic fluid-exposed skin/amnion 

and lung. Using chronically instrumented preterm lambs, we have previously demonstrated 

the importance of the fetal lung to acute systemic inflammation32. Those findings are 

supported by data in the present study, which also suggest that fetal lung inflammation is a 
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key mediator of a systemic fetal response. Additionally, our data also suggest that 

inflammation of the fetal skin/chorioamnion, in the absence of fetal lung inflammation, is 

sufficient to increase cytokine (IL-8) concentrations in the AF. Although not investigated in 

the present study, it would be of great interest to assess the inflammatory and structural 

changes deriving from colonization of the fourth AF-exposed fetal surface, the gastro-

intestinal tract, by C. albicans.

Our data also contrast with earlier LPS-based studies in this model, wherein intraamniotic 

injection of 10 mg LPS resulted in broad increases in mRNA expression in both the fetal 

lung and chorioamnion at 1 d post-injection36. The isolation of fetal inflammatory response 

to the skin at 1 d post C. albicans infection may derive from the complete exposure of the 

fetal skin to the AF and C. albicans’ preference this epithelial surface 37. It may also reflect 

a temporal difference in inflammatory response between skin and chorioamnion in the 

sheep . Interestingly, the magnitude and scope of inflammatory response elicited by 2 d 

infection with C. albicans was much greater than that identified in previous studies in fetal 

sheep involving E. coli lipopolysaccharides or Ureaplasma spp. over a similar time 

frame 27,38,39.

The marked increase in fetal cortisol identified in the 2 d post-infection group is consistent 

with a robust fetal inflammatory response 40 and is similar in relative size to that 

demonstrated by Challis and colleagues in chronically catheterised fetal sheep immediately 

prior to parturition41; chorioamnionitis and elevated levels of IL-1β and IL-6 have also been 

demonstrated to increase fetal cortisol production, inducing fetal lung maturation and 

reduced birth weight 40,42.

Thrombocytopenia is a salient feature of congenital and neonatal candidiasis 43,44; an 

especially striking feature of 2 d C. albicans infection in the present study was a marked 

reduction in fetal platelets. In contrast to our 2 d findings, however, congenital candidiasis is 

associated with a marked increase in total white blood cells 8,9,45. This difference may relate 

to species or gestation-dependent responses to C. albicans infection or be a function of the 

acute (2 d) nature of our experimental model.

Limitations of this study include the acute time frame over which the impact of C. albicans 

infection was assessed and that the infection was established by intraamniotic injection as 

opposed to ascending vaginal infection and penetration of the fetal membranes, the 

hypothesised route of the majority of intrauterine infection in humans 2. Further studies, 

potentially employing a low-titre inoculum and sub-chorionic infection to mimic ascending 

infection via a focal breach in the fetal membranes 46, are warranted to advance our 

understanding of the pathogenic role played by C. albicans in pregnancy.

Conclusions

An increasing number of clinical studies now suggest a role for Candida spp. in preterm 

birth and fetal injury. Our data support the recently published findings of Bean and 

colleagues 14 and further suggest a likely role for C. albicans in preterm birth and 

chorioamnionitis. Importantly, our data demonstrate that an untreated acute infection of the 
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amniotic cavity with C. albicans can cause a devastating, florid fetal inflammatory response 

that is consistent with adverse neonatal outcomes. Additional animal and clinical studies are 

warranted to further assess the role of Candida spp. in preterm birth and fetal injury, the 

potential benefits of Candida spp. screening and the best means of administering 

prophylaxis and treatment in pregnancy.
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Figure 1. 
Panel A: C. albicans RNA in fetal tissues in 1 d and 2 d post-infection groups. (1 d Candida 

n=5; 2 d Candida n=5). CHR, chorioamnion; SK, skin; RLL, right lower lobe of lung. *, 

significant difference (p < 0.010) vs. RUL. Panel B: Concentration of IL-1β (Black bars, 

Control n=10; Grey bars, 1 d Candida n=8; Hatched bars, 2 d Candida n=8) and IL-8 (Black 

bars, Control n=6; Grey bars, 1 d Candida n=6; Hatched bars, 2 d Candida n=6), but not 

IL-6 (Black bars, Control n=6; Grey bars, 1 d Candida n=6; Hatched bars, 2 d Candida n=6;) 

is increased in AF in response to IAI with C. albicans. * p<0.05 vs. control; † p<0.05 vs. 1 d 

Candida albicans exposure.
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Figure 2. 
Concentration of fetal arterial plasma cortisol (Control n=13; 1 d Candida n=8; 2 d Candida 

n=8) is increased in response to 2 d C. albicans exposure, vs. control. * p<0.05 vs. control; † 

p<0.05 vs. 1 d C. albicans exposure.
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Figure 3. 
Panel A: Expression of cytokine/chemokine mRNA is increased in the fetal lung in 

response to 2 d C. albicans exposure. Black bars, Control n=13; Grey bars, 1 d Candida n=8; 

Hatched bars, 2 d Candida n=8. * p<0.05 vs. control; † p<0.05 vs. 1 d C. albicans exposure. 

Panel B: Expression of cytokine/chemokine mRNA is variably increased in the fetal skin in 

response to 1 d and 2 d C. albicans exposure. Black bars, control n=6; Grey bars, 1 d 

Candida n=5; Hatched bars, 2 d Candida n=6. * p<0.05 vs. control; † p<0.05 vs. 1 d C. 

albicans exposure. Panel C: Only IL-8 is significantly increased in the chorioamnion in 

response to 1 d and 2 d C. albicans exposure. Black bars, Control n=6; Grey bars, 1 d 

Candida n=6; Hatched bars, 2 d Candida n=5) * p<0.05 vs. control.
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Figure 4. 
Infiltration and consolidation of the fetal lung in response to 2 d C. albicans exposure 

(Control n=13; 1 d Candida n=8; 2 d Candida n=8). Panel A: Control; Panel B: 1 d C. 

albicans exposure; and Panel C: 2 d C. albicans exposure. Inserts: Immunofluorescent 

staining for cell nuclei (DAPI; blue) and C. albicans (Alexa 594; red). All scale bars 

represent 50 μm. Panel D: Analysis of Infiltration of fetal lung by CD3-positive cells in 

response to colonization with C. albicans. (Control n=6; 1 d Candida n=5; 2 d Candida n=5) 

* p<0.05 vs. control. HPV, high power view.
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Figure 5. 
Panel A: Infiltration of the fetal skin in response to C. albicans exposure. (Control n=5; 1 d 

Candida n=5; 2 d Candida n=5). i: Control; ii: 1 d C. albicans exposure; and iii: 2 d C. 

albicans exposure. Scale bar represents 50 μm. Panel B: Relative to control, 

immunofluorescent staining for IL-8 (Alexa 488; green) is increased in the fetal dermis and 

epidermis after 1 d and 2 d C. albicans exposure. i: Control n=5 ii: 1 d Candida n=5; iii: 2 d 

Candida n=5. Cell nuclei are stained blue with DAPI. Scale bar represents 200 μm.
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