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Abstract

can provide insight into stress-related pathophysiology.

FKBP5 encodes the FK506 binding protein 5, a glucocorticoid receptor (GR) binding protein known to play an
important role in the physiological stress response. However, results from previous studies examining the association
between common variants of FKBP5 and stress have been inconsistent. To investigate whether the loss of FKBP5 affects
the stress response, we examined the behavior of mice following the induction of chronic restraint stress between
homozygous wild-type and Fkbp5 knock-out mice. After 21 days of exposure to restraint stress, WT mice showed
anhedonia, a core symptom of depression, which could be measured by a sucrose preference test. However, Fkbp5-
deficient mice did not exhibit significant depressive-like behavior compared to the WT after exposure to chronic
restraint stress. To investigate the molecular mechanism underlying stress resilience, we performed RNA sequencing
analysis. The differentially expressed gene (DEG) analysis showed that chronic stress induced changes in various
biological processes involved in cell-cell adhesion and inflammatory response. Weighted gene co-expression network
analysis identified 60 characteristic modules that correlated with stress or the FKBP5 genotype. Among them, M55
showed a gene expression pattern consistent with behavioral changes after stress exposure, and the gene ontology
analysis revealed that this was involved in nervous system development, gland morphogenesis, and inflammatory
response. These results suggest that FKBP5 may be a crucial factor for the stress response, and that transcriptomic data
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Main text

Depression is one of the most common mental disorders
affecting people of all ages, and can arise from a variety of
causes, including genetic susceptibility, endocrine dysreg-
ulation, and stresses in life [1]. When exposed to acute
and temporary stress, while the body can protect itself
from stress, chronic stress can disturb the function of the
brain system. Chronic accumulation of stress leads to
abnormal and excessive cortisol secretion in the
hypothalamic-pituitary-adrenal axis, which affects a var-
iety of physical activities, including brain function, leading
to mental disorders such as depression or post-traumatic
stress disorder (PTSD) [2]. Proper regulation through
negative feedback of glucocorticoid receptors (GR) is im-
portant for the stress response, and long-term or excessive
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activation of this system is associated with the develop-
ment of depression or anxiety disorders [3]. The FK506-
binding protein 51 (FKBP5) is a co-chaperone of Hsp90 in
the GR molecular complex and is a key modulator of GR
sensitivity [4, 5]. Although FKBP5 is an important factor
that is responsible for coping behavior as well as neuroen-
docrine responses [6], results from previous studies inves-
tigating the association between Fkbp5 gene variants and
stress remain controversial. In order to investigate
whether genetic FKBPS variants affect behavior in re-
sponse to chronic restraint stress exposure, we examined
the behavior of mice following the induction of chronic
restraint stress in homozygous wild-type (WT) and
knock-out (KO) mice. After 21 days of exposure to re-
straint stress, while WT mice showed anhedonia in the su-
crose preference test, Fkbp5-deficient mice did not exhibit
significant depressive-like behavior compared to the WT
(Fig. 1)a and b.
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Fig. 1 (See legend on next page.)
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Fig. 1 Transcriptome analyses of the mPFC in homozygous wild-type (WT) and Fkbp5 knock-out (KO) mice following chronic stress. a Schematic
timeline of the induction of chronic restraint stress. b Effect of CRS on sucrose preference. Data were combined with the 1st and 2nd sucrose
preference test (SPT) results. Control mice (CT) n=9; CRS-exposed WT mice (WT_ST) n =6; CRS-exposed Fkbp5 KO mice (KO_ST) n=6. One-way
ANOVA (F[2,39]1=11.67, p=0.0001); Fisher's LSD: ***p < 0.001. ¢ Multidimensional scaling (MDS) plot for transcriptomes of individual samples of CT
(yellow), WT_ST (blue) or KO_ST (red). d The interleaved scatter plots of modules which have a significant negative correlation with stress. Data
represent mean + SEM. One-way ANOVA; Fisher's LSD: *p < 0.05, **p < 0.01. e A heatmap showing the expression of M55 genes in the mPFC of
CT (left), WT_ST (middle) and KO_ST (right). f A network plot of M55 genes and their intramodular connections. The ten hub genes (the top ten
genes with highest intramodular connectivity; Cul9, Polm, Ttll8, Vmn1r90, Tacc3, Mir877, Mmp25, Bhlhe23, Wtip and Ube2d-ps) are shown in red.
Note their central position in the network, suggesting high intramodular connectivity. g Enrichment dot plot for Gene Ontology (GO) analysis of

M55 genes. The 13 GO terms with the lowest p-value each annotation cluster are plotted in order of gene ratio. The dot size represents the
number of genes associated with a specific term. The dot color represents the adjusted p-value

Recent studies performed in humans and rodents have
suggested that long-term stress and pathological anxiety
leads to structural degeneration and functional alteration
of the frontal cortex, and increases the risk of mental
disorders [7, 8]. In addition, it has been suggested that
the medial prefrontal cortex (mPFC), a region control-
ling higher brain function including cognition and emo-
tion, is a primary target of stress hormones [9, 10].
However, little is known about the molecular mecha-
nisms in the mPFC involved in stress-associated psychi-
atric disorders. Transcriptome profiling has helped
provide an unbiased insight into the pathophysiological
mechanism underlying complicated brain disorders [11].
Therefore, using RNA sequencing (RNAseq) analysis, we
investigated the dynamic transcriptomic changes that
occur after stress in the mPFC of Fkbp5-deficient mice.

Multidimensional scaling analysis showed a clear separ-
ation between the stressed and the non-stressed control
(CT) mice. There was also a slight overlap between the
CRS-exposed WT mice (WT_ST) and CRS-exposed
Fkbp5 KO mice (KO_ST) groups, which were clustered
according to their genotype (Fig. 1)c. To identify the geno-
types and genes affected by stress, we analyzed differen-
tially expressed genes (DEG) between each group
(Additional file 1). Of the 24,532 mRNA genes profiled,
224 (0.91%; CT vs WT_ST), 258 (1.05%; CT vs KO_ST),
and 135 (0.55%; WT_ST vs KO_ST) genes were dysregu-
lated in the mPFC following chronic restraint stress, and
the percentage of DEG induced by stress was higher than
the percentage of DEG by genotype (Additional file 2: Fig-
ure S1, Additional file 3: Table S1-S3). Gene ontology
(GO) enrichment analysis of these expression profiles
showed functional categories that were potentially dysreg-
ulated, including lipid metabolic process (Benjamini ad-
justed p=9.63x 10" %), regulation of immune response
(Benjamini adjusted p = 7.24 x 10~ *), cell adhesion (Benja-
mini adjusted p = 1.52 x 10~ %), regulation of cell differen-
tiation  (Bemjamini  adjusted p=1.17x10"%), and
neurogenesis (Benjamini adjusted p =7.66 x 10~7) (Add-
itional file 4: Table S4-S6).

To compare the differences in expression observed in
the multidimensional data set with the pattern of stress-

response behavior, we performed a weighted gene co-
expression network analysis (WGCNA) [12]. Through
WGCNA, we identified 60 modules of co-expressed
genes following chronic restraint stress in both WT and
KO homozygous genotypes (Additional file 5: Figure S2,
Additional file 6: Table S7). Among the 60 modules, we
identified characteristic modules which showed a signifi-
cant correlation to the genotype (M3, M6, M25, M33,
M39, M44 and M57) and to the stress exposure (M3,
M10, M18, M21, M31, M34, M50 and M55) (Fig. 1,
Additional file 7: Figure S3)d, a-c. Interestingly, one of
the modules that negatively correlated with stress, M55,
had a pattern similar to the stress resilience behavior of
Fkbp5-deficient mice. This was down-regulated, consist-
ent with depression-like behavior in the WT_ST group,
and was restored in the KO_ST group (Fig. 1)d and e.
GO enrichment analysis of M55 revealed the biological
functions potentially involved, including gland morpho-
genesis (p = 1.25 x 10™ ), activation of immune response
(p =225 x 10 ?), and nervous system development (p =
7.65 x 10~ %) (Fig. 1, Additional file 8: Table S8)f and g.
Hub genes, with the highest degree of connectivity
within a module of the M55 include Mmp25. This gene
has been functionally implicated in the regulation of im-
mune response through NF-B signaling [13] and has
been linked to neuropsychiatric disorders including
PTSD [14].

In this study, we compared brain transcriptome altered
by chronic stress in the mPFC between FkbpS5-deficient
and wild-type mice by RNAseq analysis. In addition to the
DEG analysis, by employing WGCNA, we identified a dis-
tinct co-expression network module associated with stress
resilience caused by FkbpS5 knock-out, and characterized
the biological processes affected by this module, leading to
this unique behavior. Our systematic transcriptome ana-
lysis demonstrated that aberration in the development of
the neuroendocrine system, and regulation of the immune
response may underlie the stress resilient behavior ob-
served in the Fkbp5 deficient mice. This is the first study,
to the best of our knowledge, to identify the stress resili-
ence associated genes through gene co-expression net-
work analysis in FkbpS5 deficient mice. Altogether, we
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confirmed that FKBP5 may be an important component
of the stress response, suggesting that identification of the
module associated with the stress response can provide a
treatment strategy and therapeutic target to attenuate the
depressive symptoms caused by stress.
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