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Abstract

Background: Gene set enrichment analysis and overrepresentation analyses are commonly used methods to
determine the biological processes affected by a differential expression experiment. This approach requires
biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many
organisms without extensively curated resources. New feature learning approaches can now be paired with existing
data collections to directly extract functional gene sets from big data.

Results: Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene
sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from
public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are
differentially active under a given treatment. Our results demonstrate that these signatures represent biological
processes that are perturbed by the experiment. Because these signatures are directly learned from data without
supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for
the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both
an R package (ADAGEpath) and a web server (http://adage.greenelab.com) to run these analyses. Both are open-source
to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to
an example dataset in which wild-type and Aanr mutant cells were grown as biofilms on the Cystic Fibrosis genotype
bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways
identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also
identified a signature that revealed the molecularly supported link between the MexT regulon and Anr.

Conclusions: \We designed ADAGE signature analysis to perform gene set analysis using data-defined functional gene
signatures. This approach addresses an important gap for biologists studying non-traditional model organisms and those
without extensive curated resources available. We built both an R package and web server to provide ADAGE signature
analysis to the community.
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Background

High-throughput genome-scale measurements are now
widely used because they can provide a global view of a
biological system. Typical experiments involve a control
and some sort of treatment, and the typical output is a
list of genes with expression levels that were significantly
altered. In addition to examining genes of interest indi-
vidually, researchers often summarize results with gene
set overrepresentation analysis (also called pathway ana-
lysis) to infer the biological basis of the gene list. These
analyses aim to link groups of perturbed genes by their
biological themes and help researchers understand the
effect of an experiment on biological pathways.

Two primary components comprise gene set analyses:
a testing algorithm and pre-defined sets of biologically
themed genes. While the first part has been extensively
explored [1-3], the second part has not drawn much at-
tention because the creation and maintenance of gene
sets remains a largely manual process requiring substan-
tial curator effort. Currently, gene sets are primarily con-
tributed by consortia of curators, such as the GO
consortium [4, 5]. Manual annotation ensures the quality
of the gene sets but is slow, can be tedious, and leads to
gene sets with certain biases [6]. Furthermore, while a
small set of primary model organisms has received sub-
stantial curator effort, other organisms remain sparsely
annotated. Accurately transferring annotations across or-
ganisms using computational prediction algorithms re-
mains challenging, particularly for biological processes
[7]. Due to the limited availability and sparse coverage of
gene sets, the potential of gene set analysis remains lim-
ited for most non-traditional model organisms.

In contrast to the paucity of carefully curated gene sets
specific to these non-traditional models, the amount of
genome-wide gene expression data has grown rapidly,
especially for microbes which have a relatively small
transcriptome and are inexpensive to assay [8]. For
single-cell organisms, a complete compendium of public
data ideally captures expression under numerous condi-
tions. We may expect these compendia to extensively
characterize many of the organism’s transcriptional regu-
latory processes and to be well-suited targets for the ex-
traction of pathway-like signatures. There are resources,
such as MSigDB [9], that have been generated by the
computational analysis of curated and labeled experi-
ments. But such labeled compendia are often also un-
available in the same settings where curated gene sets
are limited: MSigDB only contains gene sets for Homo
sapiens, Macaca mulatta, Mouse, Mus musculus, Rattus
norvegicus, and Danio rerio.

We previously developed ADAGE, an algorithm that
extracts meaningful gene sets from unlabeled genome-
wide gene expression compendia [10]. ADAGE models
are unsupervised neural network models of large
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publicly available gene expression compendia. Specific-
ally, ADAGE models are denoising autoencoder neural
networks [11, 12], which means that they are trained to
take input where noise has been intentionally added
and remove the added noise. This process of noise
addition and removal has been shown to make robust
unsupervised models that capture the essential features
of the underlying data [12]. We built these models from
gene expression data and found that the genes that
most influence each node formed gene sets that resem-
bled human-annotated biological processes and path-
ways, likely because these processes and pathways are
often coexpressed across large gene expression com-
pendia [10, 13]. Though the model is unsupervised, the
highest weight genes for each neural network node can
often be interpreted either in the context of curated
gene sets or by biologists who recognize biological
commonalities among genes. We have termed each
high-weight set an ADAGE signature. Additional ap-
proaches can be layered on top of this base strategy: for
example we developed eADAGE, which summarizes
multiple ADAGE models into an ensemble model,
which covered more biological pathways more precisely
[13]. Subsequent interpretation of the eADAGE model
revealed that, beyond curated pathway sets, eADAGE
also extracted signatures that grouped genes that match
known but uncurated pathways suggesting that some
others may capture biological processes that have not
yet been fully described.

To fully leverage signatures built by eADAGE or other
robust feature construction approaches, we introduce an
ADAGE signature analysis pipeline. ADAGE signature
analysis aims to identify one or more signatures that re-
spond to an experimental treatment. As with gene set
analyses, these signatures represent biological processes
that may be perturbed by the treatment. The approach
is similar to traditional gene set analysis but replaces
human-annotated gene sets with ADAGE-learned
signatures. ADAGE signature analysis complements
pathway-style analysis in any organism by providing an
unsupervised perspective, and is usable for non-
traditional model organisms or other organisms for
which curated pathways are unavailable. Here we dem-
onstrate ADAGE signature analysis in the bacterial
pathogen Pseudomonas aeruginosa. We chose P. aerugi-
nosa as our model organism because it has sufficient
public gene expression data to construct a model and a
dedicated research community. Though sparsely curated
in the recent past, its pathway annotations have been
growing rapidly due to a community annotation initia-
tive [14]. This allows us to validate the biological rele-
vance of gene signatures learned by ADAGE, while also
demonstrating its ability to identify as yet unannotated
biological processes. To facilitate the use of ADAGE
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signature analysis, we developed both an R package for
users with bioinformatics background and an easy-to-
use web server intended for use by bench biologists.

Methods

ADAGE signature analysis workflow

ADAGE signature analysis has three major steps: data
preparation, active signature detection, and signature in-
terpretation (Fig. 1). In addition to the input dataset to
be analyzed, ADAGE signature analysis also requires an
ADAGE model and the gene expression compendium of
an organism from which the model was built. The P.
aeruginosa compendium and (e)ADAGE models can be
built following instructions in [10, 13].

Data preparation

Gene expression data must be normalized to be compat-
ible with the ADAGE model. Raw microarray data mea-
sured on the same chip platform as the compendium are
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analyzed with Robust Multi-array Average (RMA) [15].
RMA includes background correction, quantile
normalization, and probe summarization; however,
quantile normalization is performed against the quantile
distribution of the compendium so that the resulting ex-
pression values are comparable with the compendium.
Other types of gene expression data must first be proc-
essed into gene-level expression values. Gene identifiers
used in the input data are mapped to the gene identifiers
used in the compendium. We next impute the expres-
sion of missing genes using k-nearest neighbors - the
neighbors are computed based on similarity in the com-
pendium. For processed microarray data, we apply quan-
tile normalization using the compendium’s quantiles.
For RNA-seq data, expression values are normalized to
the compendium via TDM [16]. The last step in data
preparation for all types of input data is a zero-one lin-
ear transformation using the compendium as reference.
Measurements outside the range observed in the
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Fig. 1 ADAGE signature analysis workflow. An input dataset is first processed to be compatible with a provided ADAGE model trained on the
provided expression compendium. Raw microarray measurements are transformed by RMA, while processed data first have missing values
imputed and then are normalized to the compendium. The second step is detecting active signatures in the dataset. Signature activity for each
sample in the dataset is computed. Statistical test on the signature activity is used to identify signatures respond to an experimental treatment.
Redundant signatures are further removed. The last step is interpreting the biological meaning of active signatures through evaluating genes in
the signatures, pathways associated with the signatures, datasets related to the signatures, and a gene-gene network built upon the signatures




Tan et al. BMC Bioinformatics (2017) 18:512

compendium are set to zero or one according to
whether they are below or above the range. After
processing, the dataset is ready for ADAGE signature
analysis.

Active signature detection

The concept of ADAGE signature was first introduced
in [13]. To recap, in an ADAGE model, genes connect
to nodes via weights and this vector of weights charac-
terizes each node (Fig. 2). The distribution of the weight
vector centers near zero and is close to normal, with a
small number of genes contributing high weights. As
opposed to a simple set of genes, the signature is a gene
set with a weight value for each gene that indicates the
gene’s importance to the set. We group genes with
weights more extreme than 2.5 standard deviations from
the mean on the positive side and the negative side of
the weight distribution separately. These two gene sets
form the positive signature and negative signature of a
node and are simply named as “NodeXXpos” and
“NodeXXneg”. We elected to split these signatures be-
cause we were uncomfortable making a strong assump-
tion that the positive and negative signatures of the
same node must always directly share transcriptional

Nodel

Genes'in Genes in
Nodelneg Nodelpos
Weight distribution
K 1 N\
0
Negative HW Positive HW
cutoff cutoff

Fig. 2 ADAGE model and gene signatures. In an ADAGE model, every
gene is linked to every node through an edge. The edge weight is
fixed after model training and its magnitude is reflected by edge
thickness. The distribution of gene weights to a node is centered

at zero and close to normal. Genes giving weights higher than the
positive high-weight (HW) cutoff together form the positive gene
signature for that node (genes in the orange circle). Similarly, genes
giving weights lower than the negative HW cutoff together form
negative gene signature for that node (genes in the blue circle)
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regulatory programs. For simplicity and because the
positive and negative sides of the distribution are already
separated, we ignore the signs of weight values.

After data preparation, we calculate each signature’s
activity for every sample in the input dataset. The signa-
ture’s activity reflects how active that signature is in each
sample and is defined as the average expression values
of signature genes weighted by genes’ absolute weights
in the signature. This results in a matrix of activity
values, where each row is a signature and each column
is a sample, which can be shown in an activity heatmap
(Fig. 1). To detect signatures associated with an experi-
mental treatment, we apply statistical tests to signature
activities. The most appropriate statistical test depends
on the experimental design. After applying the selected
test, we can identify a list of the signatures with the
greatest changes in activity in response to a particular
experimental treatment.

We have observed that multiple signatures can share
many genes. Signature overlap may be due in part to the
random noise added during training; however, we cannot
rule out the possibility that the subtle differences be-
tween two overlapping signatures are biologically mean-
ingful. Therefore, we must carefully handle signature
overlap to remove redundant signatures but retain those
relevant to a specific dataset. To accomplish this, we cal-
culate marginal activities of every combination of two
signatures. The marginal activity for a signature pair is
the activity of one signature after removing genes that it
overlaps with the second signature. After removal, we
test whether the marginal activities still respond signifi-
cantly to the treatment. We ignore signatures when their
activity is no longer significant after removing the effect
of another signature, as long as the other signature is
not also removed through this process. In a special case
where a group of signatures all become non-significant
after removing each other, we keep the one that is most
significantly altered. This process results in a final list of
signatures affected by an experimental treatment.

Signature interpretation

It is important to note that a benefit of ADAGE signa-
ture analysis, as opposed to attempting to interpret the
entire set of signatures, is that investigators only need to
examine signatures that are affected by their experiment.
Signatures are gene sets formed based on the expression
patterns in a gene expression compendium. They are
not annotated to a specific biological process, but we
have used several strategies to help understand the bio-
logical meaning behind a signature. The most intuitive
way is to examine its gene composition. If some genes
have been previously characterized and share a biological
theme, they may suggest the biological process repre-
sented by the signature. Users can also link existing
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curated biological knowledge such as KEGG [17] path-
ways and GO terms [18] to signatures through an en-
richment test, though such annotations are not always
available. Even when they exist, annotations are not ex-
pected to be comprehensive for non-traditional model
organisms. Finally, users can probe a signature by ana-
lyzing the compendium and extracting experiments in
which the signature has its largest activity ranges. We
expect these to be experimental conditions in which the
biological processes represented by the signature are
perturbed. Taken together or individually, these steps
allow researchers to quickly interpret signatures of inter-
est without curating a complete collection of pathways.

To visualize which genes are in signatures and how
they are related across the overall model, we construct a
gene-gene network using genes in selected signatures of
interest. The network is built upon gene-gene relation-
ships extracted from an ADAGE model. In the network,
two genes are linked by an edge if the correlation be-
tween their weight vectors, i.e. how strongly connected
they are to each node, is higher than a tunable cutoff.
Depending on how they are linked with each other,
genes can form modules in the network. These modules
highlight functional units of genes in differentially active
signatures. The network can be interactively explored
and its use is facilitated by overlaid information, such as
gene descriptions, differential expression in the experi-
ment being analyzed, and annotations for each gene
from GO and KEGG where available.

User interface

There are two ways for users to access ADAGE signature
analysis. We provide an R package, intended for computa-
tionally inclined users and a web server intended for those
without familiarity with the R programming language. The
R package and the web server are both preloaded with a
Pseudomonas aeruginosa gene expression compendium
containing microarray samples measured on the Pae_Gla
Affymetrix Pseudomonas aeruginosa array that were avail-
able on the ArrayExpress database [19] before July 31
2015, a previously published eADAGE model built on this
compendium [13], and P.a. gene information retrieved
from NCBI’s ftp site. Both are open source and licensed
freely, so that investigators can add their own machine
learning models and additional organisms. We also plan
to expand both resources to include additional non-
traditional model organisms.

Web server

We developed a web server that implements the most
central components of ADAGE signature analysis. The
web server is designed with a clean separation between a
backend API and a JavaScript application frontend. This
allows programmatic access to the server if desired. To

Page 5 of 15

briefly introduce the software stack, the backend is writ-
ten in Python using the Django framework. The fron-
tend is implemented in Angular]S with Vega and D3
used to provide interactive visualizations. Both the back-
end and frontend are available under the permissive 3-
clause BSD open source license. Advanced users can
initialize their own instance of the ADAGE web server,
load models of their choosing, and supply this interface
to users. We document a deployment process, via
Docker containers, that users can follow to initialize
their own server along with sample input files. This
process is detailed in the README file of the https://
github.com/greenelab/adage-server repository.

Our public instance of the ADAGE web server is
hosted on Amazon Web Services. Here we describe the
main features provided by the web server. Users first
need to choose a machine learning model on the home-
page and all the following analyses are model specific.
Then users can explore assays and experiments and per-
form signature analysis (Analyze), explore genes’ similar-
ities in the model through a gene-gene network
(GeneNetwork), explore signatures in the model (Signa-
ture), and obtain annotations for the underlying sample
compendium (Download).

The Analyze feature guides users to perform the entire
ADAGE signature analysis pipeline (Fig. 3). To begin the
analysis, users first search experiments or samples with a
keyword. Next users identify experiments or samples of
interest and add them to the analysis basket. Clicking
the analysis basket takes users to the Sample page, where
sample information is listed. A heatmap is plotted show-
ing signature activities in all samples and can be clus-
tered by sample or signature. To compare two groups of
samples, users assign samples to either a treatment
(yellow) or a control (purple) group. Then a differential
activation test between the two groups is performed
and its result is presented in a volcano plot showing
difference in mean activity in the x-axis and signifi-
cance p-value in the y-axis. Signatures with positive ac-
tivity differences are active in the comparison group.
Users choose signatures that are highly differentially
active and examine them either in the Signature page
or the GeneNetwork page described below.

The GeneNetwork feature allows users to investigate a
gene or a group of genes in an ADAGE-derived gene-
gene network. Users input genes of interest from the or-
ganism associated with that machine learning model. A
network including input genes and their connecting
genes drawn from the machine learning model will be
shown. The default view presents genes connected by an
absolute edge correlation higher than 0.5. Users can ad-
just the correlation range to examine more strongly or
weakly connected genes. Another way to obtain genes of
interest is from a two-group comparison through the
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Fig. 3 ADAGE web server interface and analysis workflow. The ADAGE web server interface has six tabs on the top. The signature analysis pipeline
starts with choosing a machine learning model on the homepage (step1) and choosing to explore assays and experiments (step2). In the Analyze
page, users can search datasets or samples using keywords (step3). After clicking the “+" button beside each dataset or sample, the dataset with all
samples in it or an individual sample is added into the analysis basket (step4). After users add samples, clicking the basket brings users to the Sample
page (step5). The Sample page provides experimental information about each sample and a signature activity heatmap. Users can define a two-group
comparison by selecting samples and assigning them to either treatment (yellow) group or control (purple) group (step6). The signatures that are
differentially active between two groups of samples can be examined in a volcano plot (step7). Next users select signatures in the volcano plot (step8)
and further inspect them in the Signature page (step9). The Signature page provides information about gene composition, gene set association, and
related datasets of a signature. Lastly, users can visualize their interested signatures in a gene-gene network (step10). Users can also directly examine
genes in the gene-gene network through the GeneNetwork tab and examine a signature through the Signature tab
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Analysis feature as described above. If the gene-gene
network results from this process, then the color of each
gene in the network reflects gene expression fold
change. Otherwise, the node color is grey. Gene infor-
mation such as names and function description are pro-
vided when clicking on a node. Signatures shared by two
connecting genes are shown when clicking on an edge.

The Signature feature helps users to interpret the bio-
logical meaning of an ADAGE signature. After choosing
a machine learning model, users can directly examine a
signature in the model. The Signature page lists each
gene in a signature and its known functions. It also pre-
sents a table of GO and KEGG pathways associated with
the signature. To help identify other public datasets that
have the signature active, it also shows experiments with
the highest activity range for that signature.

The Download feature allows users to download sam-
ple annotations. These annotations are manually curated
experimental information for each sample in the training
compendium [13].

R package

We built an R package called ADAGEpath to perform
ADAGE signature analysis. It is written exclusively in
R using the devtools package [20] and is available on
github (https://github.com/greenelab/ ADAGEpath)
under the BSD-3-clause license. The R package pro-
vides functions for loading in public or user-defined
datasets either from a local machine or directly from
ArrayExpress via an accession number. The recom-
mended input format for Affymetrix microarray data
is a set of raw CEL files, which can be directly proc-
essed from the probe level with the help of the affy
[21], affyio [22], and preprocessCore [23] packages
from Bioconductor. For other data types, information
can also be loaded via the load_dataset() function.
We provide a vignette demonstrating how RNA-seq
data can be loaded into the package (https://github.-
com/greenelab/ ADAGEpath/blob/master/vignettes/
RNAseq-example.Rmd). This vignette implements data
loading and transformation with the TDM package
[24] followed by linear transformation to the 0 to 1
range.

We also provide functionality to calculate each signa-
ture’s activity for each sample in the dataset. After this
step, limma [25] is applied to test differential activation.
For the most frequently used two-group comparison we
provide a build_limma() wrapper function. This provides
helper functions for visualization such as plot_volcano()
and another helper, get_active_signatures(), to retrieve
signatures based on three potential criteria: filtering by
significance, sorting by absolute activity difference, and
optimizing significance and activity difference simultan-
eously through choosing signatures from the top Pareto
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fronts. In multi-objective optimization, if there is no
other solution that outperforms a specific solution over
all objectives, that solution is said to be Pareto optimal.
All such solutions make up the Pareto front. We also
provide helper functions to probe, visualize, and poten-
tially remove redundant signatures for two-group com-
parisons. These functions (calculate_marginal_activity,
plot_marginal_activation, plot_signature_overlap, and
remove_redundant_signatures) can be applied in series
to identify those signatures most affected by a treatment.

Limma also supports many types of experimental de-
signs, such as factorial design and time-course experi-
ments. We provide examples of analyzing a time-course
experiment and a factorial-design experiment using
limma in the package vignettes. Users can also apply
other statistical tests to identify activated signatures if
desired.

We also provide helper functions for signature inter-
pretation. These include annotate_genes_in_signatures(),
which will return the genes that comprise a signature, and
annotate_signatures_with_genesets(), which will download
GO terms and KEGG pathways [17] from the TRIBE web
server [26] and use them to annotate signatures. The
TRIBE web server also allows users to build and share
their own custom gene sets, so the connection to this re-
source enables custom gene set analysis as well. Users can
also visualize signatures via gene-gene networks using the
function visualize_gene_network(). The network is built
with the help of the R package igraph [27] and made inter-
active with the package visNetwork [28].

ADAGEpath is built upon many existing R packages. In
addition to the packages mentioned above, ADAGEpath
uses functions from gplots [29], corrplot [30], leaflet [31],
and plotly [32] for plotting; httr [33] and jsonlite [34] for
data querying; readr [35], data.table [36), tibble [37], dplyr
[38], magrittr [39], R.utils [40], and reshape2 [41].

A comparison between two user interfaces

The web server and R package target users with different
backgrounds and needs. For bench scientists, the web
server is straightforward to use and does not require fa-
miliarity with any programming language. For bioinfor-
maticians, the R package provides more flexibility. It
allows programmatic access and integration with other
analysis pipelines. Powered by rich statistical resources
in R, the R package tests the differential activation using
the more robust linear model (provided by the limma R
package). The web server currently supports the two-
sample t-test for differential activation. Therefore, it’s
normal to get slightly different results from the two plat-
forms. To avoid security and privacy issues with data
storage and management, the web server currently
supports only public datasets. The overlapping signature
removal function is not available in the web server at
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this time. Users who wish to automatically filter overlap-
ping signatures or analyze datasets that are not publicly
available should use the R package.

Results

Here we demonstrate ADAGE signature analysis on an
example dataset (GSE67006). This dataset contains wild-
type and Aanr mutant grown as biofilms on the Cystic
Fibrosis genotype bronchial epithelial cells (CFBE) in
order to model cystic fibrosis airways infections. Anr is a
transcriptional regulator responsible for the aerobic to
anaerobic transition [42]. We performed ADAGE signa-
ture analysis to identify biological processes that were af-
fected by Anr on CFBE cells. The script that reproduces
the following analysis is available on Github (https://
github.com/greenelab/Signature Analysis-CaseStudy).
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We first ran a two-group limma test between wild-
type samples and mutant samples to detect signatures
with significantly different activities. We visualized test
results as a volcano plot with activity difference on the
x-axis and test significance on the y-axis (Fig. 4a). Many
signatures passed the 0.05 significance cutoff. To focus
on the most differentially active signatures, we consid-
ered both activity differences and statistical significance
by selecting signatures that were on the top 10 layers of
Pareto fronts. This resulted in 36 signatures and their
activities in each sample were visualized with a heatmap
in which yellow indicated high activity and blue indi-
cated low activity (Fig. 4b).

Because signatures could overlap in their gene compo-
sitions, we evaluated the effects of ADAGE parameters
on overlap. We observed that signatures tend to have
more overlapping genes when the model is trained with
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higher corruption level (the amount of noise added)
(Additional file 1: Figure S1A, B). For each overlap, we
cannot rule out the possibility that subtle differences are
biologically meaningful. Supporting the potential bio-
logical distinctions between similar signatures, models
trained with more noise also cover more biological path-
ways within a reasonable corruption range (0% to 25%
corruption) (Additional file 1: Figure S1C). For this
reason, we employed a data-driven process to remove
overlapping signatures before performing detailed inves-
tigation of specific signatures.

We calculated the marginal activity for each combin-
ation of signature pairs and tested its significance in dif-
ferentiating the wild-type and deletion strains. Figure 4c
shows the test significance (adjusted p-values in the
-log10 scale) when the signature in each column was re-
moved from the signature in the row and the diagonal
shows the significance of each signature. A cross sign in-
dicates non-significant p-values. We define a signature
to be redundant if it becomes non-significant after re-
moving the effect of another signature. Following these
rules, we dropped the following signatures: Nodel19pos,
Node214neg, Node299pos, Nodel30pos, Node250neg,
Nodel54pos, Node63neg, Node39neg, Node228pos,
Nodel58neg, Nodel40Opos, Node269neg, Node31lneg,
Nodel85neg, Node275pos, Node278pos, and Node285-
neg. Interestingly, Node34pos and Node28neg shared
many genes (Fig. 4d), but they each contained additional
genes and both remained significant in the marginal ac-
tivation test. It is important to note that this approach
considers signature overlap in the context of a specific
dataset: in a different dataset, different overlapping sig-
natures might be removed if they were more signifi-
cantly associated in that context. At this stage, there
were 19 differentially active signatures remaining. These
were visualized together in a gene-gene network (edge
correlation cutoff =0.5) (Fig. 5a); the edges between
genes in this network revealed sets of genes that have
transcriptional relationships as detected in the ADAGE
model. Network modules, discrete clusters within the
network, can reveal regulons. For example, the sets of
genes involved in denitrification (Fig. 5¢).

We next performed analyses designed to suggest the
biological basis of the activated signatures. We linked
signatures to KEGG pathways through enrichment tests.
Twelve of the nineteen signatures were significantly
enriched for one or more of 14 KEGG pathways (Table 1,
pathway association significance). We then tested
whether these KEGG pathways were differentially active
between wild-type and Aanr mutants using only genes
shared by signatures and their associated pathways.
Genes in seven of the 14 KEGG pathways were signifi-
cantly activated (adjusted p-value <=0.05) (Table 1, path-
way activation significance). As a comparison, we also
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performed the popular gene set enrichment analysis
(GSEA) [9] and considered pathways with FDR g-values
lower than 0.05 in GSEA’s permutation test (Table 2).
Five pathways were detected by both GSEA and
ADAGE: Type VI secretion system; Cytochrome c oxi-
dase, cbb3-type; Nitrogen metabolism; Denitrification,
nitrate = > nitrogen; Biosynthesis of siderophore group
nonribosomal peptides. These pathways have been
shown to be regulated by Anr [43]. Eight pathways were
only detected by GSEA (Table 2, pathways with white
background). Many are large pathways including the
Ribosome and bacterial secretion system pathways (size
of 56 and 90 respectively). GSEA has been found to
be biased towards large gene sets [44]. Three of the
GSEA-only pathways were associated with signatures
that nearly met the signature selection criteria
(Additional file 2: Figure S2), and two were not asso-
ciated with any ADAGE signatures. Nine KEGG
pathways were not significantly enriched in GSEA
but were associated with active ADAGE signatures
(Table 1, pathways with white background). Among them,
two pathways (Cyanoamino acid metabolism and Iron
complex transport system) were considered activated
by ADAGE signature analysis and also achieved high
enrichment scores in GSEA (Table 2). The other
seven pathways did not appear activated in this data-
set. This primarily occurred when one signature was
associated with several KEGG pathways, though some-
times only one or two of the pathways were strongly
activated in this dataset. The fact that several pathways
are grouped into one signature indicates that their
expression frequently co-varies across the compendium.
Therefore, pathways that are associated with active signa-
tures but are not active themselves in a dataset should be
viewed critically. They could be co-regulated pathways
whose activities did not peak at the time of experiment or
pathways that are co-regulated but only under conditions
not relevant to this experiment.

ADAGE built not only signatures resembling existing
pathways but also novel signatures that are unavailable
in traditional pathway analysis. Seven differentially active
signatures were not enriched for KEGG pathways, in-
cluding Node35pos (Fig. 5b), the most active signature
in the Aanr mutant (Fig. 4a). We also attempted to in-
terpret Node35pos using GO terms but, as with our
KEGG analysis, found it associated with no existing GO
terms. Node35pos contains genes mexEF and oprN,
which encode multidrug efflux protein, and many
uncharacterized genes. The majority of the genes in
Node35pos were highly expressed in Aanr mutants. To
examine whether or not Node35pos captured a regula-
tory module, we analyzed the three most highly differen-
tially expressed uncharacterized genes (PA4881, PA3229,
and PA2486) in the STRING network [45] and found
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that they all returned similar networks that were subsets
of Node35pos (Additional file 3: Figure S3). Interestingly,
these STRING networks were primarily built upon text
mining. The reference papers used by STRING that per-
formed a transcriptional profiling either did not release
data [46] or used RNA-seq [47] and thus they were not
included in the eADAGE model training set. Therefore,
we concluded that signature Node35pos captured a tran-
scriptional process, which was independently supported
by the STRING network. MexEF-OprN is known to be
regulated by MexT [48], which is connected to genes in
Node35pos but is not in Node35pos itself (Fig. 5b). Fur-
ther examination showed that genes in Node35pos over-
lapped the MexT regulon (FDR q-value of 8.7e-23,
MexT regulon obtained from CollecTF database [49]).
The link between MexT and Anr has not been explicitly
studied before. In strains lacking anr, the expression of
mexT and MexT-regulated genes was higher. Because it

has been shown that the MexT regulon, including the
mexEF-oprN operon, is induced in response to nitrosa-
tive stress [50], we predict that the lack of the Anr- regu-
lated denitrification genes nar, nir, and nor reduced
detoxification of endogenously generated reactive nitro-
gen species [51-53], thereby activating MexT. The
strong up-regulation of MexT, a redox-responsive regu-
lator, may also be more active in Aanr mutant due to
other changes in intracellular redox [54].

Through examining the overlapping genes in the seven
uncharacterized signatures, we divided them into two
groups (Additional file 4: Figure S4). Group 1 contains
MexT regulatory programs as represented by Node35-
pos. Group 2 contains many quorum sensing controlled
genes, which are lower in the Aanr mutant. Interest-
ingly, the visualization of these pathways in output gen-
erated by this tool prompted the examination of
connections between the MexT regulon and quorum
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Table 1 Signatures selected by ADAGE signature analysis for the example dataset and their associated KEGG pathways

Pathway  Pathway
association activation
significance significance
(adj.p.val) (adj.p.val)
Node276neg  KEGG-Module-M00156: Cytochrome ¢ oxidase, cbb3-type 1.10E-03  0.00E+00*
Node34pos  KEGG-Module-M00156: Cytochrome ¢ oxidase, cbb3-type 4.20E-03 1.00E-04*

Signature Pathway

Node28neg  KEGG-Module-M00529: Denitrification, nitrate => nitrogen 1.00E-04  4.00E-04*

KEGG-Pathway-pae00460: Cyanoamino acid metabolism -

- - %

NG 18 Pseudomonas aeruginosa PAO1 2RI AL HERL
Node57neg KEGG-Module-M00240: Iron complex transport system 2.00E-04 7.50E-03*
Nodel55neg KEGG-Module-M00240: Iron complex transport system 4.50E-03 1.48E-02*
KEGG-Pathway-pae01053: Biosynthesis of siderophore group "

Recalbs e nonribosomal peptides - Pseudomonas aeruginosa PAO1 R
KEGG-Pathway-pae01053: Biosynthesis of siderophore group "

WIS nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E%00  1.51E-02
KEGG-Pathway-pae01053: Biosynthesis of siderophore group "

WEES(Ees nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E%00  1.52E-02
Node205ne KEGG-Pathway-pae01053: Biosynthesis of siderophore group 0.00E400  1.53E-02*

& nonribosomal peptides - Pseudomonas aeruginosa PAO1 : :

KEGG-Pathway-pac01053: Biosynthesis of siderophore group "

Nt nonribosomal peptides - Pseudomonas aeruginosa PAO1 2A0E-03  1.59E-02

Node33neg KEGG-Module-M00644: Vanadium resistance, efflux pump 300E-04 2.88E-0]

MexGHI-OpmD
Nodel55neg KEGG-Module-M00242: Zinc transport system 1.35E-02  1.00E+00

KEGG-Pathway-pae01503: Cationic antimicrobial peptide
Node276neg (CAMP) resistance - Pseudomonas aeruginosa PAO1 0.00E+00  1.00E+00
KEGG-PathwayTpanOS20: Amino sugar gnd nucleotide sugar 2 40E-03  1.00E-00
metabolism - Pseudomonas aeruginosa PAO1
KEGG-Module-M00721: Cationic antimicrobial peptide (CAMP) 0.00E+00  1.00E+00

Node276neg

Node276neg resistance, arnBCADTEF operon
Node9pos KEGG-Pathwgy-pae00260: Glycine, serine and threonine 5 10E-03  1.00E+00
metabolism - Pseudomonas aeruginosa PAO1
Node9pos KEGG-Pathway-pac00630: Glyoxylate and dicarboxylate 6.20E-03  1.00E--00

metabolism - Pseudomonas aeruginosa PAO1

The significance of a pathway’s association with a signature and the significance of the pathway’s activity difference between Aanr mutant and wild-type are
provided respectively. Adjusted p-values were rounded off to three decimal digits. A star indicates a significantly active pathway with adjusted p-value < =0.05.
Pathways detected both by ADAGE signature analysis and GSEA (Table 2) are colored correspondingly



Tan et al. BMC Bioinformatics (2017) 18:512 Page 12 of 15
Table 2 GSEA result for the example dataset
Path Enrichment
ey Pathway Enrichment significance
size score (FDR g-val)
KEGG-MODULE-MO00178: RIBOSOME, BACTERIA 56 0.622 0.00E+00*
KEGG-PATHWAY-PAE03010: RIBOSOME -
PSEUDOMONAS AERUGINOSA PAO1 56 0.622 0.00E+00*

KEGG-PATHWAY-PAE03070: BACTERIAL SECRETION

SYSTEM - PSEUDOMONAS AERUGINOSA PAO!1 90 0.609  4.29E-04*
KEGG-PATHWAY-PAE01053: BIOSYNTHESIS OF
SIDEROPHORE GROUP NONRIBOSOMAL PEPTIDES -
PSEUDOMONAS AERUGINOSA PAO1 6 -0.995 1.13E-03*
KEGG-MODULE-M00331: TYPE Il GENERAL
SECRETION PATHWAY 33 0.664  3.35E-03*
KEGG-MODULE-M00156: CYTOCHROME C OXIDASE,

CBB3-TYPE 8 0.877  7.24E-03*
KEGG-MODULE-M00332: TYPE Il SECRETION SYSTEM 18 0.722  9.69E-03*
KEGG-MODULE-M00529: DENITRIFICATION, NITRATE

=> NITROGEN 10 -0.81 1.06E-02*
KEGG-MODULE-M00023: TRYPTOPHAN
BIOSYNTHESIS, CHORISMATE => TRYPTOPHAN 9 -0.808  2.99E-02*
KEGG-PATHWAY-PAE00280: VALINE, LEUCINE AND
ISOLEUCINE DEGRADATION - PSEUDOMONAS
AERUGINOSA PAOI 48 0.562  3.64E-02*
KEGG-PATHWAY-PAE00970: AMINOACYL-TRNA
BIOSYNTHESIS - PSEUDOMONAS AERUGINOSA PAO1 27 0.623 4.38E-02*
KEGG-PATHWAY-PAE00460: CYANOAMINO ACID
METABOLISM - PSEUDOMONAS AERUGINOSA PAO1 11 -0.675 2.04E-01
KEGG-MODULE-M00240: IRON COMPLEX TRANSPORT
SYSTEM 10 -0.661 2.63E-01

Adjusted p-values were rounded off to three decimal digits. Pathways significantly enriched (FDR g-val < = 0.05) are highlighted by stars. Pathways detected both

by ADAGE signature analysis (Table 1) and GSEA are colored correspondingly

sensing. Indeed, high expression of mexEF-oprN is as-
sociated with decreased quorum sensing due to the ef-
flux of the QS molecule HHQ [55]. At the time we
retrieved KEGG pathways and performed this analysis,
signatures in Group 2 were still uncharacterized in
KEGG. An updated analysis showed that signatures in
Group 2 were now associated with KEGG pathways
quorum sensing and phenazine biosynthesis, which
were added to KEGG on 8-1-2016 and 3-27-2017 re-
spectively. Signatures in Group 1 were still uncharacter-
ized in the updated analysis. Quorum sensing and
phenazine biosynthesis have been studied for a long
time in P. aeruginosa with many well-characterized
genes. The time lag in their annotation hinders their
usage in traditional pathway analysis, yet ADAGE

identified them directly from public data and grouped
them into signatures. This again highlights the strength
of ADAGE-based signature analysis: it does not rely on
pre-defined pathways but uses regulatory patterns
directly extracted from large compendia of gene expres-
sion data.

Discussion

Researchers performing ADAGE signature analysis re-
verse the steps of traditional gene set analysis: they first
identify signatures with statistically significant differen-
tial expression patterns before attempting interpretation.
These researchers then only need to focus on signatures
relevant to their experiments. This is important for or-
ganisms with incomplete or absent gene sets, because
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the alternative would be to curate every possible gene
set before performing any analysis. The lag from discov-
ery to gene set annotation also hinders the application of
traditional gene set analysis to organisms with available
curated resources. Our analysis revealed that even well
characterized process, e.g. quorum sensing, can lack anno-
tation in some resources and thus would not be detectable
in traditional gene set analysis. However, biologists work-
ing in a field can often readily identify and interpret these
differentially active ADAGE signatures. ADAGE signa-
tures may also be comprised entirely of uncharacterized
genes. Though such signatures would be difficult to inter-
pret, they may represent novel biological processes. Thus
ADAGE signature analysis is well suited to hypothesis
generation in organisms about which little is known.

Constructing high-quality signatures in an unsuper-
vised manner requires two key components: sufficient
data and suitable feature extraction algorithms. The ideal
data compendium should be a broad survey of an organ-
ism probed under many conditions. Signature analysis is
unlikely to detect pathways that have never been per-
turbed in a compendium, and a heavily biased compen-
dium would result in limited detection of biological
processes. Though it is difficult to directly measure
data comprehensiveness, both data quantity and a
broad set of contributing research groups are ex-
pected to positively correlate with comprehensiveness.
Quantity is important because more overall conditions
are likely to have been measured, and the number of
contributing research groups is important because
they are likely to be studying different aspects of an
organism’s biology. As genome-wide measurements
continue to grow, we expect such methods to be
more broadly applied to reveal perturbed biological
processes and pathways.

Good feature extraction algorithms are also needed
to best utilize the available data. Many feature ex-
traction approaches have been applied on biological
data, such as PCA [56-58], ICA [59-61], and NMF
[62—-64]. We previously developed ADAGE, a neural
network-based approach, and found it to outperform
PCA and ICA in representing biological states [10]
and capturing KEGG pathways [13] in P. aeruginosa.
However, it is still challenging to comprehensively
evaluate the “effectiveness” of features built by differ-
ent approaches, especially for less-studied organisms.
Because every method has its own underlying as-
sumptions and objectives, we expect them to learn
different types of features and complement each
other. The concept of gene set analysis with data-
defined gene sets is not limited to ADAGE signa-
tures. Future work will focus on expanding this ana-
lysis pipeline to more feature types and providing
support for more organisms.
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Conclusions

Gene set analysis has been a powerful tool for interpret-
ing the results of high throughput experiments. How-
ever, curating biologically important gene sets requires
tremendous effort. As a result, many organisms, includ-
ing those that are widely used to study certain processes,
remain unannotated. In contrast with the sparsity of
gene set annotations, high-throughput experimental data
has accumulated rapidly. Unsupervised analysis of these
data can reveal gene sets that parallel human-curated
biological pathways. We introduced ADAGE signature
analysis, a gene set analysis method powered by signa-
tures built directly from expression data by ADAGE or
other unsupervised feature construction methods. The
approach includes three major steps: data preparation,
differentially active signature detection, and signature in-
terpretation. We compared this approach with GSEA on
an example dataset and observed that ADAGE signature
analysis and GSEA detected similar curated KEGG path-
ways. However, ADAGE signature analysis also identified
a novel regulatory relationship unannotated in KEGG.
This result highlights the advantage of ADAGE signature
analysis: it does not depend on curated knowledgebases
but instead the breadth of existing public data. ADAGE
signature analysis is implemented in an R package and a
web server for users with different backgrounds and
needs. For those without a specific dataset to analyze,
we also provided a gene-gene network view to explore
transcriptional regulatory modules learned by ADAGE.

Additional files

Additional file 1: Figure S1. The relationship between corruption level
used in building ADAGE models and the redundancy of signatures
derived from the models. The plot summarized results from 100 ADAGE
models built at each corruption level. A: The number of signature pairs
with gene compositions significantly overlapped increases with
corruption level until the corruption level reaches 30%. B: As corruption
level increases, the number of signatures in a model that enriched of the
same KEGG pathway also increases on average, indicating the signatures
become more redundant. C: ADAGE models tend to capture more
unique KEGG pathways (pathway coverage) when more noise was added
during training until the corruption level is higher than 25%. (TIFF 903 kb)

Additional file 2: Figure S2. KEGG pathways enriched in the GSEA
analysis but not associated with selected signatures in the ADAGE
signature analysis. In the same volcano plot as Fig. 4a, signatures
associated with GSEA-only pathways are highlighted in blue while
signatures lie on the first 10 Pareto fronts are highlighted in Red.
Node137pos, Node252neg, and Node113neg obtained high significances
in the activation test and would be considered if we lose the activation
cutoff. Pathways Tryptophan biosynthesis, chorismate = > tryptophan
(KEGG-Module-M00023) and Aminoacyl-trna biosynthesis
(KEGG-Pathway-pae00970) are not associated with any signature,

so they were not labeled in the plot. (TIFF 746 kb)

Additional file 3: Figure S3. Validation of Node35pos as a transcriptional
program via the STRING network. A: The largest connected module of the
gene-gene network subset by genes in Node35pos. B: Gene-gene networks

returned by STRING when searching PA2486, PA3229, and PA4881
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respectively. The STRING networks of the three genes are subsets of the
Node35pos network. (TIFF 2780 kb)

Additional file 4: Figure S4. Groups of signatures that are
uncharacterized by KEGG. A: The signature similarity heatmap of
uncharacterized signatures. Heatmap color reflects the odds ratio that two
signatures overlap in their gene contents. Signatures are divided into two
groups based on their similarity. B: The largest connected module in the
gene-gene network subset by genes in Group1 signatures. This module
contains the MexT regulatory program. C: The largest connected module in
the gene-gene network subset by genes in Group2 signatures. This module
contains many genes involved in quorum sensing. (TIFF 3586 kb)
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