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Background: Myocardial ischemia occurs in pediatrics, as a result of both congenital

and acquired heart diseases, and can lead to further adverse cardiac events if untreated.

The aim of this work is to assess the feasibility of fully automated, high resolution,

quantitative stress myocardial perfusion cardiac magnetic resonance (CMR) in a cohort

of pediatric patients and to evaluate its agreement with the coronary anatomical status

of the patients.

Methods: Fourteen pediatric patients, with 16 scans, who underwent dual-bolus stress

perfusion CMR were retrospectively analyzed. All patients also had anatomical coronary

assessment with either CMR, CT, or X-ray angiography. The perfusion CMR images were

automatically processed and quantified using an analysis pipeline previously developed

in adults.

Results: Automated perfusion quantification was successful in 15/16 cases. The

coronary perfusion territories supplied by vessels affected by a medium/large aneurysm

or stenosis (according to the AHA guidelines), induced by Kawasaki disease, an

anomalous origin, or interarterial course had significantly reduced myocardial blood flow

(MBF) (median (interquartile range), 1.26 (1.05, 1.67) ml/min/g) as compared to territories

supplied by unaffected coronaries [2.57 (2.02, 2.69) ml/min/g, p < 0.001] and territories

supplied by vessels with a small aneurysm [2.52 (2.45, 2.83) ml/min/g, p = 0.002].

Conclusion: Automatic CMR-derivedMBF quantification is feasible in pediatric patients,

and the technology could be potentially used for objective non-invasive assessment of

ischemia in children with congenital and acquired heart diseases.

Keywords: cardiac magnetic resonance, automated quantitative stress perfusion, deep learning, pediatrics,

Kawasaki disease

INTRODUCTION

Cardiac magnetic resonance (CMR) has been gaining in importance as a technique for the
assessment of a wide variety of congenital and acquired heart diseases in children. It provides
both functional and anatomical assessment, with good spatial resolution, without exposing patients
to ionizing radiation. This is of particular importance as children are more likely to develop
radiation-induced cancer than adults (1) and they frequently require multiple follow-up scans
to monitor disease progression or the effects of an intervention. CMR has been applied to the
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assessment of the great vessels using contrast-enhanced CMR
angiography (CMRA) (2–5) and recent technical advances have
made non-contrast CMRA possible (6, 7). CMRA is now
widely used for the diagnosis of vascular diseases in pediatrics,
frequently in place of an invasive coronary catheterization (1, 8).
CMR has been further used for cardiac chamber quantification
(9), flow quantification (10), and the assessment of myocardial
perfusion (11–15).

Stress perfusion CMR has been repeatedly shown to possess
both good sensitivity and good specificity for the non-invasive
assessment of myocardial ischemia (16–19). Although it is
known that myocardial ischemia can occur in pediatric patients,
the aforementioned studies have been conducted in adult
populations and there is still limited data on the efficacy of the
technique in pediatric populations (11). The feasibility of stress
perfusion CMR in pediatrics has been long since reported (11,
20–24) and retrospective studies have reported a high diagnostic
accuracy for the detection of ischemia (13, 25). The limitation of
work in this field is that it has been primarily conducted in highly
specialized centers with significant local expertise, and this high
diagnostic accuracy may not translate to less specialized centers.

The quantification of myocardial blood flow (MBF) from
stress perfusion CMR is possible and has been shown to be
of high diagnostic and prognostic value (26, 27). Recently,
methods for the automated analysis of the images have become
available (28, 29), including robust motion compensation (30),
reducing the need for expert operators with high levels of
training. As such, the fully automated quantification of MBF
may facilitate the adoption of stress perfusion CMR in clinical
routine. In this study, we aimed to assess the feasibility of
automated high-resolution quantitative stress perfusion CMR in
pediatric patients.

METHODS

Study Population
Pediatric cardiac MRI perfusion datasets from a single institution
(Evelina London Children’s Hospital, United Kingdom),
acquired between 2010 and 2018 were retrospectively analyzed.
This study was performed under the ethical approval of the
local ethics committee (Ethics No. RJ109/N112). Patients who
underwent dual-bolus perfusion protocol (31) were included in
this study. These patients had congenital heart disease affecting
the coronary arteries (anomalous origin of the left coronary
artery arising from the pulmonary artery (ALCAPA), malignant
course of left coronary artery arising from the inappropriate
sinus, repaired tetralogy of Fallot with known coronary artery
proximity with main pulmonary artery) or acquired heart
disease such as Kawasaki disease. Due to the available expertise
in pediatric CMR in this institution, coronary artery anatomy
was predominantly imaged using CMR as reference standard.
Computed tomography (CT) angiogram or invasive fluoroscopic
angiogram were carried out if further correlation was needed or
if the MR image quality was deemed inadequate.

Coronary artery aneurysms are assessed according to the
American Heart Association scientific statement 2017 (32), with
a z-score cut off point of≥2.5 to define abnormality, based on the

anatomical images by an experienced operator (PD). Aneurysms
were classified on the basis of absolute dimensions. Dilation or
small aneurysms are defined as a localized dilation of the internal
lumen diameter but <4mm. Medium aneurysms are defined as
an internal lumen diameter ≥4mm but ≤8mm. Large or giant
aneurysms are defined as those with an internal lumen diameter
>8 mm.

All patients had anatomic coronary artery changes
(stenosis or dilatation) and either symptoms of angina or
electrocardiographic evidence of ischemic changes at rest or
during exercise.

CMR Perfusion Imaging
Perfusion images were acquired in three left ventricular (LV)
short-axis slices (apical, mid-cavity, and basal) at mid-expiration
when possible. Due to the young age of the patients and the
potential side effect of adenosine infusion, younger patients
required general anesthesia during CMR study, with volatile
anesthetics (isoflurane and sevoflurane). Heart rate lowering
medications, such as remifentanil, were not used. Where the
heart rate did not permit the acquisition of three slices in
every heartbeat, the basal and mid-cavity slices were acquired.
Imaging was performed with a saturation-recovery acquisition
sequence on either a 1.5T (Ingenia, Philips Healthcare, Best, The
Netherlands) or 3T system (Achieva, Philips Healthcare, Best,
The Netherlands). The typical imaging parameters were at 1.5T
with a 12-channel cardiac phased array receiver coil: balanced
gradient echo readout, repetition time/echo time 3.0 ms/1.5ms,
flip angle 50◦, saturation-recovery delay 100ms and at 3.0Twith a
32-channel coil: gradient echo readout, repetition time/echo time
2.5 ms/0.9ms, flip angle 20◦, saturation-recovery delay 120ms.
Five-fold k-t sensitivity encoding (k-t SENSE) acceleration with
11 training profiles was used to achieve a representative spatial
resolution of 1.25× 1.25× 10 mm3. Stress images were acquired
during adenosine-induced hyperemia (140 µg/kg/min). 0.075
mmol/kg of bodyweight gadolinium (Gd) extracellular contrast
agent (gadobutrol, Gadovist, Bayer, Germany) was injected at
4 mL/s followed by a 20-mL saline flush for each perfusion
acquisition. Each bolus of gadobutrol was preceded by a diluted
pre-bolus with 10% of the dose to allow quantification of
perfusion, according to published methods (31).

Image Processing
The perfusion images were corrected for respiratory motion (30)
and processed fully-automatically using our deep learning-based
processing pipeline (29). In light of the smaller heart sizes, more
conservative myocardial segmentations are needed, as compared
to in adults. For this reason, test-time data augmentation
was employed. That is that, where multiple segmentations are
computed for different transformed versions of the image and a
pixel is deemed to be in the myocardium if it is predicted to be
in the myocardium 8/10 times. Pixel-wise time signal intensity
curves were extracted from the myocardial mask and signal
intensity curves were subsequently split into the time intervals
corresponding to the pre bolus injection and the main bolus
injection for quantification. Quantitative MBF was estimated on
a pixel-wise level by fitting the observed arterial input function
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and myocardial tissue curves to a two-compartment exchange
model (33), as commonly used for quantitative myocardial
perfusion analysis (34). For the relation of pixel-wise MBF
estimates to coronary artery territories, pixels were assigned to
standard American Heart Association (AHA) segments using
the automatically computed right ventricular insertion points
and AHA segments were assigned to their respective perfusion
territory (35). The MBF value recorded for a specific coronary
perfusion territory was the mean value of the 2 lowest segments
in that territory, as previously validated (26).

Statistical Analysis
The descriptive statistics are presented as mean ± standard
deviation (SD) or median [inter-quartile range (IQR)] for non-
normally distributed variables. The distributions of quantitative
MBF values are compared using the non-parametric Mann-
Whitney U test. The significance level α = 0.05 was used to
determine statistical significance. This analysis was performed
using SciPy (36).

RESULTS

A total of 42 patients underwent stress perfusion cardiovascular
magnetic resonance scans between 2010 and 2018. Fourteen
patients (with 16 scans) underwent scans being performed with
a dual-bolus acquisition and thus were included in the study.
Fourteen scans were done at 1.5 T and 2 scans were done at
3 T. Two patients underwent a repeat stress perfusion scan for
follow up. 12/16 scans were performed under general anesthesia.
The patient’s demographic and baseline data are given in Table 1.
In 3/16 cases images were acquired in two rather than three
LV slices as high heart rates prevented the acquisition of three
slices in a single R-R interval. Four scans were visually positive
for perfusion defects (in a total of 14 AHA segments) with a
perfusion abnormality identified in the left anterior descending
(LAD) territory in 2 cases and in the left circumflex (LCx)
territory in the other 2 cases.MBF for 15/16 stress perfusion CMR
scans were assessed quantitatively, one was excluded due to the
presence of severe parallel imaging artifacts in the reconstructed
images The automated image processing was successful in all
these 15 cases. Rest images were not analyzed as they were not
acquired in all cases.

The median pixel-wise MBF estimate across all subjects was
2.34 (1.82, 2.97) ml/min/g. The median pixel-wise MBF in
patients with visual ischemia was 1.84 (1.34, 2.14) ml/min/g,
which was significantly lower than that in patients with no visual
perfusion defect 2.48 (1.97, 3.04) ml/min/g (p< 0.001). TheMBF
estimate in patients with Kawasaki disease but with no significant
coronary involvement was 2.57 (2.02, 2.69) ml/min/g. This was
not significantly different to theMBF [2.52 (2.45, 2.83) ml/min/g]
in coronary territories with a small aneurysm p = 0.525. There
was a reduction in MBF in coronary territories perfused by
vessels with a medium/large aneurysm, a stenosis, an anomalous
origin, or an interarterial course to 1.26 (1.05, 1.67) ml/min/g.
This was significantly lower as compared to normal patients (p
< 0.001) and territories with small aneurysm (p = 0.002) with
the distributions of the per-coronary perfusion territory MBF

TABLE 1 | Demographic and baseline data.

N = 16

examinations/N = 14

patients

Age (years) [median (IQR)] 8.0 (3.5, 13.75)

Gender 7 male (50%)

Weight (kg) [median (IQR)] 28.45 (17.2, 58.75)

BMI (kg/m2) [median (IQR)] 18.8 (16.1, 22.1)

Systolic function

Normal (LVEF > 55%) 13 (81.3%)

Impaired 3 (18.8%)

LVEDI (ml/m2 ) (mean ± SD) 76.3 ± 25.8

LVEF (%) (mean ± SD) 58.4 ± 8.9

Diagnosis

Kawasaki Disease 11 (68.8%)

Reimplantation of Left Coronary Artery

(LCA) (ALCAPA), malignant LCA course

3 (18.8%)

Tetralogy of Fallot with abnormal LAD 1 (6.3%)

Neonatal myocardial infarction 1 (6.3%)

Heart rate (beats per minute)

Rest (mean ± SD) 76.7 ± 14.7

Stress (mean ± SD) 99.8 ± 17.8

Data are reported as N (percentage%), median [Interquartile range (IQR), or mean ±

standard deviation (SD)].

FIGURE 1 | The distributions of quantitative MBF estimates on a per-coronary

perfusion territory level for normal coronary vessels, small aneurysms, and

medium/large aneurysms, stenosis, anomalous origin, or interarterial course,

respectively.

values visualized in Figure 1. Figures 2, 3 show raw perfusion
MR images with the pixel-wise MBF maps and corresponding
anatomical images.

DISCUSSION

Myocardial ischemia in children is known to result from
congenital coronary anomalies (20) as well as from acquired
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FIGURE 2 | The CMR angiography (top row) and stress perfusion CMR for a patient with a small left main coronary artery aneurysm. The small aneurysm does not

seem to inhibit perfusion as reflected by the uniformly high MBF values. Ao, Aorta; PA, pulmonary artery; MPA, main pulmonary artery; LAD, left anterior descending

artery; LCx, left circumflex artery.

causes, including inflammatory diseases affecting the coronary
arteries, such as Kawasaki disease (21). Untreated Kawasaki
disease can lead to coronary artery aneurysms in ∼25% of cases
(32), predisposing to thrombosis, stenosis and occlusion (37).
As such, the routine clinical adoption of myocardial perfusion
imaging in the pediatric population has a huge potential benefit.
It may allow the early identification of myocardial ischemia
and help to avoid further adverse events, including irreversible
myocardial dysfunction.

Stress perfusion imaging is potentially beneficial in these
patients as it can assess the functional significance of partially
occluded lesions and provide information on segments distal to
the coronary artery aneurysms which may not appear occluded
but are functionally different as compared to unaffected arteries.

Alternative myocardial perfusion imaging modalities include
single photon emission computed tomography (SPECT) and
positron emission tomography (PET) but both subject the patient
to ionizing radiation and are limited in spatial resolution as
compared to CMR. Furthermore, adenosine stress perfusion
CMR is considered to have a good safety profile amongst
pediatrics (14), making it a strong candidate for clinical adoption.

The limitation of stress perfusion CMR is that it requires
expertise to acquire and interpret the images (25, 38). This
problem is likely to be exacerbated in pediatric populations
due to lower image quality, inadequate spatial resolution to
allow the transmural discrimination of perfusion defects, and
higher susceptibility to imaging artifacts, such as dark rim, in
the smaller myocardial wall. Despite the fact that all patients
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FIGURE 3 | The anatomical images (top row, CT left, MR center and right) and stress perfusion CMR with quantitative MBF map (bottom row) for a patient with

Kawasaki disease and a giant aneurysm of the LMCA, indicated as *in the anatomical images. There is also calcification of the LMCA seen on the CT image (top left),

indicated by the arrow. There is globally low MBF values, possibly indicating microvascular dysfunction (bottom right). Ao, Aorta; PA, pulmonary artery; MPA, main

pulmonary artery; RVOT, right ventricular outflow tract; LAD, left anterior descending artery.

had anatomically affected coronary arteries, the visual assessment
only reported perfusion defects in 4/16 scans. Based on the
quantitative MBF values, this is likely an underestimation of the
amount of ischemia present which highlights the difficulty of the
interpretation and the need for the integration of quantitative
perfusion CMR in clinical routine.

The results of our retrospective study show that fully
automated quantification of first pass stress perfusion CMR is
feasible in pediatrics and that the CMR measurements of stress
MBF well match the corresponding anatomical images of the
patients. For the example patient shown in Figure 3, with a
giant LMCA aneurysm, global MBF is substantially reduced
to 1.25 ml/min/g, as compared to the patient in Figure 2,
who has a small LMCA aneurysm and global MBF of 2.98
ml/min/g. The widespread reduction in MBF seen in patients
with large aneurysms may also lend support to previous findings
of microvascular dysfunction in these patients (22, 25, 39, 40),
as microvascular dysfunction is known to cause ischemia and
reduced MBF by quantitative perfusion CMR (41). In particular,
this may explain the extensive ischemia and the fact that it is
not restricted to the perfusion territories of the affected coronary
arteries. This theory is supported by previous findings of global
reductions in myocardial perfusion that have been reported by

visual (25) and semi-quantitative (22) stress perfusion CMR and
PET MBF (39). The benefit of the quantitative perfusion analysis
is also shown by the example in Figure 3 as it was reported
visually as normal. Global MBF reductions are difficult to assess
visually as there is little regional differences but are clear on the
quantitative analysis. In contrast to the large aneurysms, mild
dilatations or small aneurysms yielded MBF values comparable
to cases with no macroscopic coronary artery involvement.

The technical difficulties to be dealt with in order to facilitate
the widespread clinical adoption in pediatric patients include the
need for higher temporal and spatial resolutions to cope with
the higher heart rates and smaller heart size as compared to
adults, patient motion and the inability to breath-hold. However,
solutions to these challenges are becoming available. Accelerated
MR image acquisitions and in particular, spatiotemporal data
under-sampling approaches combined with multi-element coil
spatial encoding have shown that it is feasible to acquire high
resolution images at very high heart rates while reducing dark
rim artifacts (42). Furthermore, advanced image analysis (29, 30)
and robust quantification (33) methods have been developed
which make the analysis fast, automated, and accurate. The
image analysis pipeline required very little adjustment for its
deployment in pediatrics despite the fact that it was developed
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in adults (29). This is likely because, despite the differences in
cohorts, the acquisition protocols were very similar between the
studies. Further workmay be required to allow the deployment of
the automated system to data acquired with different acquisition
protocols (43).

LIMITATIONS

The major limitation of this study is that it is a retrospective
study with a small sample size. However, in light of this
proof of feasibility, a larger study is now warranted. The
myocardial blood flow values were not compared to a gold
standard test or a control group, however, this is a frequently
encountered limitation in studies involving pediatrics due to
the ethical considerations of this vulnerable age group and the
need to avoid unnecessary procedures. Furthermore, coronary
anatomical assessment was primarily done via CMRA and not
CT or X-ray angiography, despite the latter being the gold
standard procedure. However, this is justifiable in the light of
the incorporation of CMR as an acceptable modality for coronary
assessment in many published guidelines, as well as the reduced
radiation exposure.

CONCLUSION

Voxel-wise quantification of MBF in pediatric patients is feasible
and correlates with the anatomical status of corresponding
coronary perfusion vascular territory. This makes use of
highly accelerated pulse sequences to achieve sufficient spatial
and temporal resolution. Advanced motion compensation and
automated image processing methods provide a fully objective
interpretation of perfusion, circumventing the need for time-
consuming processing and experienced operators. While further
studies are need, quantitative perfusion CMR represents a
promising tool for the non-invasivemanagement of childrenwith
heart diseases.
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