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Abstract
Object recognition is the ability to identify an object or category based on
the combination of visual features observed. It is a remarkable feat of the
human brain, given that the patterns of light received by the eye associated
with the properties of a given object vary widely with simple changes in
viewing angle, ambient lighting, and distance. Furthermore, different
exemplars of a specific object category can vary widely in visual
appearance, such that successful categorization requires generalization
across disparate visual features. In this review, we discuss recent advances
in understanding the neural representations underlying object recognition in
the human brain. We highlight three current trends in the approach towards
this goal within the field of cognitive neuroscience. Firstly, we consider the
influence of deep neural networks both as potential models of object vision
and in how their representations relate to those in the human brain.
Secondly, we review the contribution that time-series neuroimaging
methods have made towards understanding the temporal dynamics of
object representations beyond their spatial organization within different
brain regions. Finally, we argue that an increasing emphasis on the context
(both visual and task) within which object recognition occurs has led to a
broader conceptualization of what constitutes an object representation for
the brain. We conclude by identifying some current challenges facing the
experimental pursuit of understanding object recognition and outline some
emerging directions that are likely to yield new insight into this complex
cognitive process.
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Introduction
Object recognition is one of the classic “problems” of vision1. 
The underlying neural substrate in humans was revealed by 
classic neuropsychological studies which pointed to selective 
deficits in visual object recognition following lesions to spe-
cific brain regions2,3, yet we still do not understand how the brain 
achieves this remarkable behavior. How is it that we reliably4 
and rapidly5 recognize objects despite considerable retinal 
image transformations arising from changes in viewing angle, 
position, image size, and lighting? Much experimental and com-
putational work has focused on this problem of invariance4,6–13. 
Early neuroimaging studies of object recognition using func-
tional magnetic resonance imaging (fMRI) focused on regions 
in the lateral occipital and ventral temporal cortex, which were 
found to respond more strongly to the presentation of objects 
than to textures or scrambled objects14,15. More recently, the 
application of multivariate analysis techniques has led to broader 
investigation of the structure of object representationsa 
throughout the ventral temporal cortex16,17 and their temporal 
dynamics across the whole brain18,19. While these representa-
tions are assumed to contribute to object recognition behavior, 
they may also contribute to other tasks. This shift toward 
object representations has also accompanied a greater focus on 
revealing how a broad range of different object categories are 
represented rather than investigating the invariant representa-
tion of single objects. Such object categorization involves a 
similar issue of extrapolation across changes in visual features 
as invariance, since exemplars (e.g. Great Dane and Chihuahua) 
of a category (e.g. “dog”) often have significantly different 
visual features from one another.

The aim of this review is to provide an overview of recent 
advances in understanding object recognition in the human 
brain. In this review, we primarily consider contemporary work 
from the past three years in human cognitive neuroscience, iden-
tifying the current trends in the field rather than providing an 
exhaustive summary. In addition, we focus on the neural basis 
of visual object recognition in the human brain (for reviews 
including non-human primate studies, see 20,21) rather than 
the related topics of computer vision, object memory, and 
semantic object knowledge. We define visual objects as mean-
ingful conjunctions of visual features13 and object recognition 
as the ability to distinguish an object identity or category 
from all other objects21. Face recognition is not covered in this 
review, as faces are a unique object class that are processed 
within a specialized network of regions22,23.

We identify three current trends in the approach towards 
understanding object recognition within the field of cognitive 
neuroscience. Firstly, the rapidly growing popularity of deep 
neural networks (DNNs) has influenced both the type of analytic 
approach used and the framework from which the questions 
are asked. Secondly, the adaptation of multivariate methods 

to time-series neuroimaging methods such as magnetoen-
cephalography (MEG) and electroencephalography (EEG) has 
highlighted the importance of considering the temporal dynamics 
in the neural processing of object recognition at a resolution not 
accessible with fMRI. Finally, the field has begun to move 
away from examining single objects in isolation towards 
examining objects within more naturalistic contexts including 
a variety of both task and visual contexts. In the sections below, 
we examine each of these trends in turn.

Deep neural networks as models of object vision
DNNs are a class of brain-inspired computer vision 
algorithms24–26. Although there are many variants of the specific 
network architecture, the term DNN refers to artificial neural net-
works in which there are multiple (i.e. “deep”) layers in-between 
the input and output stages27. DNNs have risen to prominence 
within cognitive neuroscience relatively recently given high 
levels of performance in object classification28, in some cases 
even performing as well as humans29. This has led to consid-
eration of the utility of DNNs as potential models of biological 
vision26,30. However, overall performance does not necessarily 
indicate that the underlying processing is similar to that in the 
brain. In this section, we highlight several fundamental differ-
ences between state-of-the-art DNNs and the brain and consider 
the potential of DNNs to inform our understanding of human 
object recognition given these differences.

DNNs have recently achieved human levels of performance 
in terms of accuracy for image classification29. Specifically, 
this had been achieved for images from the large database 
ImageNet and not yet for real world images taken in the wild. An 
interesting question is to what degree the pattern of successful 
classification and errors made by DNNs mirror those made by 
humans making perceptual judgments. Several studies have 
reported both similarities and differences between human 
behavior and DNNs. For example, while DNNs can capture 
human shape sensitivity (with stimuli very different to those on 
which they were trained)31, they perform less well than simple 
categorical models in capturing similarity judgements32,33 and 
do not capture human sensitivity to properties such as 
symmetry33. One study that revealed clear differences between 
human and DNN representations compared the perform-
ance of humans, macaque monkeys, and DNNs on an invariant 
object recognition task34. Stimuli were rendered 3D objects 
of 24 basic-level categories (e.g. zebra, calculator) superim-
posed on a natural image background at different orientations/ 
viewpoints (Figure 1a). Monkey and human subjects viewed 
these images and then a binary response screen with two 
objects in canonical view was shown, and their task was to 
match the object from the previous stimulus (Figure 1b). Nota-
bly, while results for object-level confusion were similar among 
humans, monkeys, and DNNs (Figure 1c), performance at 
the image level did not match between domains (Figure 1d). 
This difference in error patterns suggests that accuracy is not an 
adequate measure of the similarity between humans and 
DNNs, as vastly different response patterns can yield comparable 
accuracy.

a We use the term ‘object representations’ here to mean the measured 
patterns of response in the brain associated with object perception, rather 
than a specific internal representation.
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Figure 1. Deep neural networks and object recognition. (a–b) Stimuli and behavioral experimental design used in 34. On each trial, human 
and monkey observers briefly viewed a synthetic test image of a rotated object placed on a random scene background. They then reported 
which object had been presented by making a binary choice from one of two objects presented in canonical view on the test screen. (c) 
Results showed that for object category, humans and several different deep neural networks (DNNs) performed similarly. However, humans 
made different errors than DNNs at the image level (d). (e) Example images from 35. A DNN was more likely to classify an image based on 
texture (Indian elephant) than shape (tabby cat), whereas human observers do the reverse. Figures a-d were adapted from Rajalingham  
et al.34 under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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The observation that humans and DNNs do not show similar 
patterns of errors at the image level implies that DNNs and 
humans are not solving the task in the same way or are not 
relying on the same source of information. A striking demon-
stration showed that DNNs can be fooled into misclassifying 
an object by making small changes to the image that are 
barely perceptible to human observers34. The human visual 
system is also better able to generalize classification across dif-
ferent forms of noise than DNNs36. An example of clear diver-
gence in the source of information used by humans compared to 
DNNs is the demonstration that DNNs may favor texture over 
shape in classifying objects, with the reverse true for human 
observers35. For example, DNNs such as ResNet-50 trained on 
ImageNet labelled a picture of a tabby cat rendered with the tex-
ture of elephant skin as an “Indian elephant”, whereas human 
observers would label it as “cat” (Figure 1e). Interestingly, 
re-training the ResNet-50 architecture to learn a shape-based 
representation using stylized images in which texture was not 
predictive of object category led to performance more similar to 
human observers. Furthermore, there were surprising perform-
ance benefits that emerged from the shape-based network, such 
as greater tolerance to image distortions and better object 
detection performance.

Beyond comparing network performance with human behav-
ior, recent studies have also compared the representations for 
objects and scenes within different layers of DNNs to human 
brain representations measured with fMRI or MEG37–45. Generally, 
these studies have found that lower layers of DNNs correlate 
more with earlier regions within the visual processing hierarchy 
and higher layers with later regions such as the ventral temporal 
cortex39,45–48. Similarly, time-resolved neuroimaging methods 
(see also next section) such as MEG have revealed that lower 
layers of DNNs correlate with human brain activity earlier in 
time than higher network layers37,40,47. However, substantial differ-
ences among the human brain, behavior, and DNN representations 
are also reported, which show that the relationship among them 
is complex38,39,41,44. For example, for a stimulus set that bal-
anced animacy and appearance, DNNs represented animacy over 
visual appearance, with the opposite relationship in the ventral 
temporal cortex38. Similarly, despite striking differences in the 
representational structure of behavior and fMRI responses, they 
both showed strong correlations with DNN representations39. 
Critically, simply calculating correlations is not sufficient for 
characterizing the similarity between object representations in 
the human brain and the representations measured by human 
behavior or in artificial networks. This is because the correla-
tion among these different representations (i.e. among the brain, 
behavior, and/or DNNs) can be equal in magnitude but explain 
different parts of the underlying variance. Fundamental 
progress will be made when we have better methods of reveal-
ing what is driving the correlation among representations in 
DNNs, behavior, and the human brain, where such correlations 
do exist.

There are several emerging directions that may increase 
the utility of DNNs for advancing our understanding of human 
object recognition. It is already clear that the link between 

visual object representations in the brain and DNN representations 
for the same objects is not straightforward38,39,41. Most compari-
sons have been made with existing pre-trained DNNs; however, 
deeper insights are likely to emerge from training DNNs to 
test specific predictions35, which requires systematically varying 
the task or stimulus set. The addition of biologically plausible 
architecture to DNNs such as spike-timing-dependent plastic-
ity and latency coding49,50 may further facilitate the compari-
son of DNNs and the human brain. For example, the inclusion 
of recurrent connections more closely captures the dynamic 
representation of objects in the human brain51,52. Similarly, 
transforming the input images to DNNs in a manner similar to 
the perturbations resulting from the optics of the human eye, 
for example by applying retinal filters34, may increase the 
similarity in the underlying representations between these net-
works and the brain or behavior. One of the most interesting find-
ings thus far has been that DNNs occasionally spontaneously 
demonstrate features of visual processing that mirror human 
perception such as generalization over shape or image 
distortion31,35. Examination of the conditions under which this 
occurs may be enlightening for understanding how the human 
brain achieves object recognition under much more varied 
viewing conditions and tasks than even state-of-the-art DNNs.

The temporal dynamics in neural object 
representations
In recent years, the application of multivariate analyses 
to time-series neuroimaging methods such as MEG and EEG 
has facilitated new investigation into the temporal dynamics of 
cognitive processes. Visual object recognition has been one of 
the main subfields of cognitive neuroscience to first adapt these 
methods53. Object recognition is fast5; we can recognize 
an object in tens of milliseconds. This is much faster than 
the typical resolution of BOLD fMRI (e.g. 2 seconds); thus, 
unpacking the temporal evolution of object representations 
requires alternative neuroimaging methods with millisecond 
precision. Here we focus on recent work that has revealed the 
temporal dynamics of object representations in the human brain.

Object representations potentially reflect a number of differ-
ent properties, which together can be considered to form an 
“object concept”54. For example, an object concept might 
include its visual features, the conceptual knowledge associ-
ated with an object such as its function, and its relationship 
to other objects. Neuroimaging methods with high temporal 
resolution offer the potential to examine the time course of 
the contribution of these different properties to the underlying 
object representations. MEG decoding studies have revealed 
that object identity and category can be decoded in under 
100 milliseconds following visual stimulus onset18,19. The 
facilitation of objects presented in typical rather than atypical 
visual field locations occurs around 140 milliseconds55, sug-
gestive of a relatively early contribution of expectation based 
on visual experience. In contrast, contextual facilitation for clas-
sifying the animacy of degraded objects in scenes compared 
to the same objects presented in the absence of scene context 
occurs relatively late, 320 milliseconds after stimulus onset, 
suggestive of a feedback mechanism56.
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The contribution of conceptual information to object rep-
resentations develops after initial visual processing. The 
emergence of categorical structure based on animacy and real- 
world object size occurs around 150 milliseconds57. This is 
consistent with estimates of the lower bound of the formation 
of conceptual object representations37. Using MEG data 
recorded for two stimulus sets of 84 object concepts, generaliza-
tion across exemplars emerged ~150 milliseconds after onset. 
The shared semantic relationships between the objects was 
assessed with the Global Vectors for Word Representation 
(GloVe) model58, an unsupervised algorithm trained on word 
co-occurrences. Consistent with the time course of gener-
alization around 150 milliseconds, Figure 2a shows that the 
correlation with the MEG data for behavioral similarity 
judgements on the stimuli and the GloVe model of semantic 
information based on word representations both peaked around 
this time and later than the correlation with representations 
of the stimuli from an early layer of a DNN. Similarly, the cor-
relation between dynamic MEG representations of objects 

on their natural backgrounds and measures of behavioral simi-
larity based on shape, color, function, background, or free 
arrangement is all before 200 milliseconds41 and consists of 
overlapping representations in time (Figure 2b). For individual 
object representations, a model that combines a visual fea-
ture model (e.g. HMax59 or AlexNet28 DNN) with a model of 
semantic features better predicts neural representations 
measured with MEG than using visual features alone60,61. The 
contribution of semantic information to object representations 
has been linked to activity in the perirhinal cortex62 and anterior 
temporal cortex63. Collectively, these results are indicative of 
a relatively early role for conceptual information in object 
representations that follows the initial visual processing.

Another advantage of studying object representations with 
high temporal resolution is the potential to disentangle the role 
of feedforward versus feedback processes in their formation. 
Feedback is theoretically difficult to study empirically and 
although its role in visual perception has been acknowledged 

Figure 2. Temporal dynamics of object recognition. (a) The correlation over time between magnetoencephalography (MEG) whole-brain 
object representations and the representations from several models based on deep neural network (DNN) layers, behavioral similarity 
judgments, and the Global Vectors for Word Representations (GloVe) model37. Note that the lower DNN layer has an earlier peak than the 
higher layer. (b) Correlation over time between whole-brain MEG object representations and models based on several different visual and 
conceptual features41. (c) Functional magnetic resonance imaging–MEG “fusion” reveals a peak correlation between whole-brain MEG object 
representations and those in the primary visual cortex (V1) at 101 milliseconds (ms) and ventral temporal cortex at 132 ms19. Figure b is 
adapted from Cichy et al.41 under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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for decades, the advent of recurrent connections in 
DNNs52 has reignited interest in attempting to separate the con-
tribution of feedback vs. feedforward processes in object rec-
ognition. For example, a computational model incorporating 
recurrent connections could partially account for occluded 
object representations measured with MEG, which had a decod-
ing peak much later in time than un-occluded objects43. This 
suggests feedback processes assist in processing objects 
under more ambiguous viewing conditions such as occlusion. 
One recent approach towards isolating the contribution of 
feedback has been to use the rapid serial visual presentation of 
objects at very brief presentations under the assumption that 
rapid presentation disrupts feedback processing of the preceding 
object(s)64,65.

One of the challenges the contribution of time-resolved neu-
roimaging has brought to light is how best to integrate fMRI 
results with MEG/EEG to elucidate the combined spatial and 
temporal processing of object recognition. One approach is 
to use source localization to model the spatial source of the 
MEG signal in the brain52. An alternative method, fMRI–MEG 
“fusion”, correlates dissimilarity matrices constructed sepa-
rately from fMRI and MEG data over time (MEG) and regions 
of interest (fMRI)19,66. This approach has been used successfully 
to demonstrate that whole-brain object representations meas-
ured with MEG have a peak correlation earlier in time with 
the primary visual cortex (V1) and later in time with the ventral 
temporal cortex19,66 (Figure 2c). Furthermore, fusion revealed 
temporal differences in the contribution of task versus object 
representations across the visual hierarchy67. Although these 
results provide a useful validation of the method, the interpreta-
tion of fusion results is not straightforward, particularly because 
of the substantial differences in the spatial resolution between 
fMRI and MEG. For example, one pair of studies used an object 
stimulus set that controlled for shape (e.g. snake and rope) 
across category in order to examine the influence of perceptual 
and categorical similarity on object representations. Even though 
the studies used identical stimuli, the results were different 
between the two neuroimaging modalities: they found more evi-
dence for categorical similarity with fMRI68 and perceptual 
similarity with MEG69.

The results reviewed above demonstrate the importance 
of understanding the temporal dynamics of object recogni-
tion. So far, multivariate methods applied to MEG and EEG data 
with high temporal resolution have yielded new insights into the 
temporal dynamics of semantic versus visual features in object 
representations and highlighted a possible role for feedback 
from higher visual areas in the representation of degraded and 
occluded objects as well as in task-relevant representations. The 
development of a new generation of wearable MEG systems 
based on arrays of optically pumped magnetometers prom-
ises further advancement in the measurement of brain activity 
at a high temporal resolution in more varied contexts70,71. Sig-
nificant progress will be made with further improvements in 
linking spatial and temporal neuroimaging data.

Contextual effects on object representations
Traditionally, object perception has been studied empiri-
cally by presenting single objects in isolation on blank 
backgrounds17,72,73. This approach facilitates studying aspects 
of object recognition such as viewpoint and position invari-
ance without a contribution from the background; however, it 
likely over-emphasizes the role of object shape. More recently, 
the context in which object recognition occurs has been increas-
ingly considered in studies aiming to understand the underlying 
neural mechanisms. This can be the visual context, such as 
the placement of an object in a scene (either relevant39,56 or 
irrelevant34), the action of an agent (e.g. person) involv-
ing the object74, or even the use of 3D real objects rather than 
2D images75,76. Or, alternatively, this can be task context, with 
neural object representations measured as participants perform 
different tasks on the same object stimuli77. An advantage 
of all of these approaches with broader scope is that they exam-
ine object recognition in circumstances that more closely mimic 
real-world perception. The results we review here suggest 
that both visual and task context play a significant role in 
object processing.

Visual context: interactions with people and scenes
The simplest form of visual context is to present two 
objects at a time instead of one. In object-selective cortex, the 
brain activation patterns to two objects are well-predicted 
by the average responses to the objects presented in isolation78,79.  
More recently, it has been shown that even without the 
visual context of a detailed scene, the brain representations 
of objects are affected by expectation driven by context. For 
example, a fMRI study looked at object pairs taken from 
scenes (such as a sofa and TV, car and traffic light) presented in 
their original location versus interchanged locations relative 
to each other on a blank background80. In the object-selective 
cortex, the mean of the activation patterns for two isolated 
objects presented centrally was less similar to the activation 
patterns for the object pairs when they were in their original 
location compared with the interchanged location, but this was 
not the case in the early visual cortex. This suggests that the 
object-selective cortex is sensitive to the expected location 
of different objects relative to each other.

A related observation is that the location of objects within 
scenes in the real world is not arbitrary, and objects occur within 
relatively predictable locations related to their function81. In 
some cases, this produces a statistical regularity in the visual 
field location (Figure 3c). There is some evidence that object 
processing is facilitated when this expectation is adhered 
to and objects occur in their typical retinotopic visual field loca-
tion (i.e. their position relative to the direction of eye gaze). 
For example, in the object-selective cortex, objects in their typi-
cal visual field location (e.g. hat in upper visual field, shoe in 
lower visual field) could be decoded at a higher rate from 
the fMRI activation patterns than when they were in the atypi-
cal portion of the visual field (Figure 3d)82. Other higher visual 
areas in ventral temporal cortex did not show such a difference. 
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Figure 3. Effect of visual context on the neural representation of objects. (a) Some objects are associated with a typical visual field 
position in which they tend to occur82. The top row shows object locations from a labelled image database, and the bottom row shows the 
placement of objects by human observers. (b) In the lateral occipital cortex (LOC), decoding accuracy was higher for objects presented 
in their typical (e.g. hat in upper visual field) than their atypical (e.g. hat in lower visual field) location. (c) Example stimuli used in 74 of 
objects in “interacting” and “non-interacting” contexts. A decoding searchlight analysis revealed areas that had higher decoding accuracy 
for interacting than non-interacting objects. (d) Super-additive decoding accuracy in object-selective lateral occipital and posterior fusiform 
regions for degraded objects in scenes compared to decoding accuracy for isolated objects or scenes alone56. EBA, extrastriate body 
area; pSTS, posterior superior temporal sulcus Figure d is adapted from Brandman and Peelan56 under the terms of the Creative Commons 
Attribution 4.0 International license (CC-BY 4.0).
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EEG results suggest there is a difference in the representa-
tion of objects in typical vs. atypical locations as early as 
140 milliseconds after stimulus onset55. Overall, the sensitiv-
ity of the object-selective cortex to statistical regularities in 
the location of objects is consistent with the idea of efficient 
coding in the visual system83, which argues that statistical 
regularities in the environment can be exploited by neural cod-
ing in order to conserve the amount of brain resources engaged 
in representing the complex visual world.

Another consideration in the representation of multiple objects 
beyond their relative location is their function. An inherent 
property of objects is their manipulability, and several studies 
have investigated how this affects their neural representation74,84,85. 
The degree to which interactions with people and scenes medi-
ates object representations is not homogenous across brain 
regions. For example, one study examined the effect of interac-
tion on object representations using a stimulus set of humans, 
guitars, and horses74 (Figure 3a). They measured brain responses 
to the isolated objects and for object pairs when they were 
both interacting (e.g. person riding a horse) and not interact-
ing (e.g. person in front of a horse). In some brain regions, the 
representation of meaningfully interacting objects was not well 
predicted by the responses to their individual parts, suggesting 
coding of the object interaction. For example, a decoding search-
light analysis of the fMRI data revealed areas overlapping 
with the body-selective extrastriate body area (EBA) and 
posterior superior temporal sulcus (pSTS) that had higher 
decoding accuracy for interacting than non-interacting objects 
(Figure 3b).

Beyond simple object pairs, similar logic has also been applied 
to examine how scene context affects object representations. 
For example, one study measured BOLD activation patterns 
to degraded objects (either animate or inanimate) presented 
both in isolation and within intact scenes56. A classifier was 
trained to distinguish activation patterns associated with ani-
mate versus inanimate objects on separate data from intact iso-
lated objects and then tested on the patterns associated with the 
degraded objects both in isolation and within a scene. In both 
lateral occipital and posterior fusiform regions, cross decoding 
accuracy for object animacy was significantly higher for the 
degraded objects within scenes than that predicted by accu-
racy for isolated degraded objects and isolated intact scenes 
(Figure 3c). However, in scene-selective regions, this was 
not the case, and decoding accuracy was only additive. These 
results suggest that object representations in object- but not 
scene-selective regions are enhanced by the presence of relevant 
visual context.

Collectively, the studies discussed above highlight the impor-
tance of considering the visual context in which objects occur. 
In the next section, we consider the importance of task context.

Task context: the stability of object representations in 
visual cortex
Given that objects are both recognizable and actionable things, 
an important question is how the neural representation of 

objects supports behavior. We can make a multitude of 
judgements about an object, as well as pick them up and use 
them in action. How do neural object representations change 
depending on the goal of the observer? In an experimental 
paradigm, this usually takes the form of keeping the visual stim-
uli constant and changing the task of the observer. Such changes 
in task may affect the relevant information and consequently 
change the distribution of attention. Within the higher visual cor-
tex, where category-selectivity emerges, the majority of results 
seem to support fairly limited transformation of object 
representations as a function of task relative to the modula-
tion by object type66,76,85–89. However, in the early visual cortex, 
there may be strong effects of task, potentially reflecting 
changes in spatial attention. Consistent with these generaliza-
tions, an MEG study found that the impact of task (semantic, 
e.g. classify the object as small or large, or perceptual, e.g. 
color discrimination) had a relatively late magnitude effect on 
object representations across the whole-brain MEG signal rather 
than a qualitative change to the nature of the representation67. 
Furthermore, MEG–fMRI fusion suggested the effect of task 
increased further up the processing hierarchy. Together, this 
suggests that other brain regions in addition to higher-level 
visual cortex have an important role in task modulation90. 
This is in contrast to the effect of visual context reviewed 
above, in which there was significant modulation of object 
representations in higher-level visual regions.

Consistent with a locus that is not restricted to the visual 
cortex, there is considerable evidence for a substantial role 
of parietal and frontal brain regions in the task modulation 
of object representations. For example, to address this ques-
tion, one fMRI study used a stimulus set of 28 objects where 
semantic category and action associated with the objects were 
dissociated86. Participants performed two tasks on the same 
stimuli while within the fMRI scanner: rate objects on a four- 
point scale from very similar to very different for either hand 
action similarity or category similarity. For example, pictures 
of a drum and hammer would be similar for action/manipulation 
similarity, but drum and violin would be more similar for 
categorical similarity (both musical instruments). An analy-
sis of the similarity of the brain activation patterns for the 
different objects revealed that in parietal and prefrontal areas, an 
action model of the stimuli correlated more with the similarity 
of object activation patterns during the action task, and 
vice versa for the category task86. Frontoparietal areas also 
showed greater within-task correlations than between-task, but 
this did not differ for occipitotemporal areas. Physical and per-
ceived shape correlated with representations more in occipi-
totemporal regions. Consistent with this, there is evidence for 
a difference in the representational space of how objects are rep-
resented in occipitotemporal and posterior parietal regions91, 
with more flexible representations modulated by task in the 
posterior parietal cortex88.

Collectively, these findings suggest that while task context 
can affect object representations within the brain, these effects 
tend to be largest at higher stages of the visual hierarchy with 
strongest effects in the prefrontal and parietal cortex.
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“Beyond” object recognition
Here we have reviewed three current trends in the field of 
object recognition: the influence of DNNs, temporal dynam-
ics, and the relevance of different forms of context. These 
trends have focused the field to consider object representations 
more broadly rather than object recognition per se. Such rep-
resentations are likely critical for object recognition but will 
also contribute to many other behaviors92. To conclude, we 
briefly consider some current challenges in the pursuit of 
understanding object representations in the human brain and 
outline some emerging trends that are likely to help push the 
field forward.

The first issue we consider is what should “count” as an object 
representation. A consequence of the relevance of visual 
and task context reviewed in the section above is that it sug-
gests object representations are broader than the particular 
conjunction of visual properties that visually define the object. 
The frequent investigation of the neural representation of iso-
lated objects without context may have over-emphasized the 
role of shape in the underlying representations of real-world 
objects. Indeed, shape has been found to be a strong predictor 
of the similarity of the neural representations for different 
objects41. Similarly, the focus on functional object-selective 
brain regions, which are localized by contrasts between, for exam-
ple, isolated objects and scrambled objects73, emphasizes the 
role of brain regions which are sensitive to shape above 
other object properties. However, there is evidence that other 
high-level regions such as scene-selective cortex85 and pari-
etal and prefrontal regions86,88,90,91 are also engaged in object 
processing. Similar to the importance of visual and task con-
text in object representations, further consideration of object- 
specific properties such as the role of color93,94 and material 
properties95 is likely to provide a new perspective on the nature 
of object representations. Object representations in the human 
brain are also tied to other features such as conceptual 
knowledge54 about their function and relationship to other 
objects, which are yet to be emulated by DNNs in a way that 
produces the same flexibility as the human brain.

A second important issue in investigating the nature of 
object representations is stimulus selection and presentation. 
In the last decade, there has been concentrated effort to use 
larger stimulus sets (n = ~100) of objects in neuroimaging 
event-related designs in an effort to reveal the inherent organi-
zation of object categories in brain representations without 
imposing stimulus groupings in the experimental design17. This 
is in contrast to blocked stimulus presentation, which is not 

desirable for investigating representational structure because of 
inherent biases in the experimental design arising from group-
ing stimuli together into blocks. However, a limitation of 
representational similarity analysis96 is that it is relative to 
the stimulus set used in the experiment and even with 
~100 stimuli there are likely to be inherent biases in the stimu-
lus selection. For example, a stimulus set in which shape is a 
critical difference between stimuli is likely to emphasize a 
significant role for shape in the organization of the represen-
tational space. One recent approach that has potential to move 
the field forward is the use of very large stimulus sets. Recent 
databases of 5,00097 and 26,00098 visual object images have 
potential to reveal new insight that has not been possible using 
experimenter-selected restricted stimulus sets of ~100 images. 
Additionally, the method used for image selection in the crea-
tion of these large stimulus sets is still important in avoiding 
biases. For example, the THINGS database98 was created 
by systematically sampling concrete picturable and nameable 
nouns from American English in order to avoid any explicit or 
implicit biases in stimulus selection.

Finally, there has been considerable debate over what  
degree object representations are reducible to the low- 
and mid-level visual features that co-vary with category 
membership38,68,69,99–103. However, this question may be ill-posed. 
By definition, visual object representations must be characterized 
by visual features to some degree; even though different object 
images can be matched for some visual features (e.g. spatial 
frequency), they will always differ on others (e.g. global form).

In summary, progress in understanding object recognition 
over the last three years has been characterized by the influ-
ence of DNNs, inspection of the time course of neural responses 
in addition to their spatial organization, and a broader 
conceptualization of what constitutes an object representation 
that includes the influence of context. A cohesive understanding 
of the neural basis of object recognition will also require 
integrating our knowledge of visual object processing with related 
processes such as object memory104, which are typically stud-
ied independently. Although DNNs have now reached human 
levels of performance28,29 for object categorization under con-
trolled conditions, humans perform this task daily under much 
more varied conditions and constraints. The continued evolu-
tion of the field in terms of sophisticated analytic tools, larger 
stimulus sets, and the consideration of the context in which 
object recognition occurs will provide further insight into the 
human brain’s remarkable flexibility.
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