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Photon-counting detector (PCD) can identify absorption features in the multiple ranges of photon energies, which has a great
potential in material discrimination. In this paper, we focused on in vivo dual-energy CT imaging to characterize different
biomedical compositions. The precision of material decomposition in post-reconstruction space depends on the quality of
reconstructed CT images; we used the locally linear embedding (LLE) based online geometric calibration method and GPU-based
reconstruction toolbox to reconstruct high-quality CT images. Then, we performed the real experiment and studied materials
decomposition with basis material model to discriminate soft tissue and cortical bone of small animal. Finally, the experimental
results demonstrated that the proposed method could reconstruct small animal CT images with more slim structures and details,
and improve the precision of materials decomposition in dual-energy CT imaging.

1. Introduction

X-ray computed tomography (CT) system has been widely
applied in clinical and preclinical applications [1, 2]. However,
the conventional CT system does not have the capability
to resolve the energy of every single photon interacting
with the sensor layer. With the development of x-ray detec-
tion technique, the photon-counting detector (PCD) could
use selectable energy thresholds (i.e., selective energy win-
dow/range) to identify an absorption feature in the available
x-ray energy ranges [3, 4].Thus, it is more efficient to employ
PCD in dual-energy CT imaging, which has a great potential
in biomedical material discrimination [5–9].

Current dual-energy CT technique has been used to
decompose materials in medicine. Alvarez and Macovski
developed the attenuation coefficient function based on dual-
energy measurements to separate the photoelectric effect
and Compton scattering in pre-reconstruction space [10].

Heismann et al. used density and atomic number as functions
of attenuation values to separate the photoelectric effect
and Compton scattering in post-reconstruction space [11].
Kalender et al. proposed dual-energymaterial decomposition
method based on physical property of basis material in pre-
reconstruction space [12]. Liu X. et al. introduced basis mate-
rial decompositionmethod in post-reconstruction space [13].

The precision of material decomposition in post-
reconstruction space highly depends on the quality of
reconstructed CT images. Therefore, the reconstruction
method and geometric calibration are the key elements. In
this paper, we use iterativemethod to reconstruct dual-energy
CT image, which can get high quality CT images with less
projections or noisy projections [14–18]. In order to accelerate
the iterative reconstruction, we used the GPU-based ASTRA
(All Scale Tomographic Reconstruction Antwerp) toolbox
[19–21] that could be used in Matlab and Python. Moreover,
the ASTRA toolbox could calculate the projection and
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Figure 1: The micro-CT system based on x-ray PCD.

reconstruction with any system geometries by building the
coordinates of x-ray source and detector with vectors.

The accurate geometric parameters are the key factors
for the CT image reconstruction. The geometric calibration
methods could be divided into phantom based calibration
methods and online calibration methods. The phantom-
based calibration methods calculate the geometric param-
eters using the projection of the calibration phantom and
CT imaging geometry, while the online calibration methods
could calibrate imaging geometry without any scanning
objects. Thus, we use the Locally Linear Embedding (LLE)
[22] based geometric calibration method [23–25] in this
study. The LLE-based geometric calibration method is an
online geometric calibrationmethodwhich is suitable for any
CT systems. First, we calculate the re-projected projection
with reconstructed images by sampling the geometric param-
eters in the sampling range. Then, we find the two nearest
re-projected projections and calculate the weight coefficients
with LLE. Finally, we update the geometric parameters and
reconstruct the CT images.

In this paper, we focused on in vivo dual-energy CT
imaging for biomedical material discrimination. To improve
the precision of materials decomposition by the basis mate-
rial decomposition method in post-reconstruction space,
we employed the LLE-based geometric calibration method
and GPU-based reconstruction toolbox to reconstruct high-
quality CT images. In the second section, we introduce the
characteristics of researchmaterials andmethods. In the third
section, we present our experimental results on geometric
calibration and material discrimination. In the last section,
we discuss the related issues and conclude the paper.

2. Method and Material

2.1. Sample Preparation. Theexperimental protocol is carried
out with approval from the Chinese ArmyMedical University
Animal Care and Use Committee. The adult Sprague Dawley
rats (350∼400g) were purchased from Animal Experiment
Center of Medical University of Chongqing. The rat was fed

in cleanliness level independent ventilation cage (IVC0200,
Hongteng Technology, Shenzhen, China) in a constant tem-
perature laboratory (23∘C). The rats were anesthetized with
urethane (1.2g/kg. 20%. ip). Five to ten minutes later, we
inverted the rat into an inverted plastic bottle, as shown in
Figure 1.The rat head lied on the bottom of the bottle, and the
rat’s butt was facing up.The bottle was placed on the scanning
rotation table. All the design ensured that the heart of the
rat was located at the precise level for successful imaging.
All experiments were strictly carried out in accordance with
the Experimental Animal Management Regulations of China
National Science and Technology Council.

2.2. Dual-Energy CT Imaging System. We constructed a
micro-CT system, which employed a broad spectral x-ray
source and a PCD, as shown in Figure 1. The x-ray tube
(L10101, Hamamatsu Photonics, Japan) has a focal spot of
5𝜇m, and the voltage ranges from 20kVp to 100kVp. The
detector manufactured by X-Counter Corporate defines the
finest spatial resolution and fastest imaging speed, and each
individual detector cell has two energy thresholds to select
and record incoming photons. The PCD contains 2048×64
pixels with 100𝜇m pixel size, and the detection range of x-ray
energy is from 15keV to 250keV. In the experimental study, we
scanned an adult Sprague Dawley rat specimen. The energy
thresholds of PCD were set to 15keV and 60keV; the tube
voltage and current are 100kVp and 70𝜇A, respectively. The
angular scanning range is 360∘ with 0.72∘ increment, pro-
ducing 500 projections in low- and high-energy spectrum,
respectively.The source to detector (SDD) is 480mm, and the
source to objection distance (SOD) is 160mm.

2.3. Geometry Calibration and Reconstruction Method

2.3.1. Reconstruction Method. The foundation mathematical
model for iterative reconstruction can be expressed as the
following system of linear equations:

Au = b, (1)
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where u = (𝑢1, 𝑢2, . . . , 𝑢𝐽)𝑇 is an image as a 𝐽 dimensional
vector, b = (𝑏1, 𝑏2, . . . , 𝑏𝑀)𝑇 is projection data, and A = (𝑎𝑗𝑚)
is a system matrix determined by the geometric parameters.
In this mathematical model, the projection matrix and the
projection data are known, and the CT reconstruction could
be considered to calculate all the pixel values of CT image by
solving the linear equations.

CT reconstruction is a time consuming procedure, espe-
cially for iterative reconstruction method. In order to accel-
erate CT reconstruction speed, we used the ASTRA-toolbox
which a GPU-based CT reconstruction toolbox.The iterative
reconstruction method could reconstruct high-quality CT
images with less noise than analytic reconstruction method.
Therefore, we are using the iterative reconstruction method.
The ASTRA-toolbox only provides CGLS (Conjugate Gradi-
ent Least Squares) and SIRT (Simultaneous Iterative Recon-
struction Technique) for 3D iterative reconstruction, and
CGLS could reconstruct better images within less iteration.
Finally, we perform CGLS reconstruction; the description of
CGLS is in the following.

First, initialize the variables for the CGLS, which are

𝑢0 fl 0;
𝑑0 = 𝑏;
𝑟0 = 𝐴𝑇𝑏;
𝑝0 = 𝑟0;
𝑡0 = 𝐴𝑝0,

(2)

where 𝑢0 is the initialized reconstructed image, 𝑏 is the
projection data, 𝐴 is the projection matrix, 𝑑0, 𝑟0, 𝑝0, 𝑡0are
the initialized intermediate variables.Then, for k=1,2,. . . until
stopping criterion is satisfied:

𝜕𝑘 =
󵄩󵄩󵄩󵄩𝑟𝑘−1󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑡𝑘−1󵄩󵄩󵄩󵄩2

𝑢𝑘 = 𝑢𝑘−1 + 𝜕𝑘𝑝𝑘−1
𝑑𝑘 = 𝑑𝑘−1 − 𝜕𝑘𝑡𝑘−1
𝑟𝑘 = 𝐴𝑇𝑑𝑘
𝛽𝑘 =

󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑟𝑘−1󵄩󵄩󵄩󵄩2
𝑝𝑘 = 𝑟𝑘 + 𝛽𝑘𝑝𝑘−1
𝑡𝑘 = 𝐴𝑝𝑘,

(3)

where 𝜕𝑘, 𝛽𝑘 are the iteration parameters, 𝑢𝑘 and 𝑢𝑘−1
are the reconstructed image in the current iteration and last
iteration, 𝑑𝑘, 𝑟𝑘, 𝑝𝑘, 𝑡𝑘 are the intermediate variables.

2.3.2. The LLE-Based Geometric Calibration Method. The
LLE-based geometric calibration method has been detailed
described in the previous papers [23–25]; here we present

the implementation of the LLE-based geometric calibration
method as the following steps:

Step 1. Initialize a parameter vector P and perform the image
reconstruction; sample the parameter vector densely in the
parametric ranges for each projection as

P̃𝑚 = (𝑝𝑚1, 𝑝𝑚2, ⋅ ⋅ ⋅ , 𝑝𝑚𝑛) . (4)

Step 2. Calculate the re-projected projections b̃𝑚 with the
sampled parameter vector and the reconstructed images.

Step 3. Find the two nearest neighbors of the original projec-
tion vector b in the re-projected projections b̃𝑚 according to
the projection errors

𝑑𝑚 = 󵄩󵄩󵄩󵄩󵄩b − b̃𝑚
󵄩󵄩󵄩󵄩󵄩22 . (5)

Then, the original projection vector b is linearly represented
with the nearest neighbors b̃𝑘 as

b = 𝐾∑
𝑘=1

𝑤𝑘b̃𝑘, (6)

where 𝑤𝑘 is the linear representation weights.

Step 4. Calculate the weight coefficients by solving the fol-
lowing linear equations:

∑
𝑘

𝑐𝑚𝑘𝑤𝑘 = 1, (7)

where 𝑐𝑚𝑘 is the local covariance matrix.

Step 5. Update the parameter vector with the weight coef-
ficients and the sampled vector P̃𝑘 of the two nearest re-
projections b̃𝑘 as

P = 𝐾∑
k=1
𝑤𝑘P̃𝑘. (8)

Step 6. Reconstruct the CT images and evaluate the quality of
the CT images. If image qualitymeets some criterions, output
the CT images and updated parameters. Otherwise, return to
Step 2 for next calibration iteration.

For PCD based micro-CT system, the scanning object is
fixed on the stable rotation stage, which means the geometric
parameters will not change during the scanning. Therefore,
we only need to calibrate the rotation stage center offset in
horizontal direction, rotation stage center offset in vertical
direction and detector in-plane rotation by the LLE-based
online geometric calibration method and the projection of
the scanning object.

2.4. Material Discrimination Method. PCD with selectable
thresholds could adjust each pixel to record different energy
photons. A given selectable threshold 𝑇 corresponding to
incident photon energy can be 𝐸(𝑇), and the energy distri-
bution function of an x-ray source is expressed as 𝑆(𝐸); we
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have the photon number received by the PCDwith an energy
range (𝐸(𝑇1), 𝐸(𝑇2))

𝐼 (𝐸) = ∫𝐸(𝑇2)
𝐸(𝑇1)

𝑆 (𝐸) 𝑑𝐸, (9)

where the two selectable thresholds 𝑇1 and 𝑇2 corresponding
to photon energiesmeet𝐸(𝑇1) < 𝐸(𝑇2). After the x-ray source
interacted with an object, the projection Pr𝑜(𝐸) is the integral
of the linear attenuation coefficient distribution along an x-
ray path, which can be measured by intensities 𝐼 and 𝐼0

Pr𝑜 (𝐸) = − ln 𝐼 (𝐸)
𝐼0 (𝐸)

= ln∫𝐸(𝑇2)
𝐸(𝑇1)

𝑆 (𝐸) 𝑑𝐸

− ln∫𝐸(𝑇2)
𝐸(𝑇1)

𝑆 (𝐸) exp(∫
𝐿
𝜇 (𝐸, 𝑙) 𝑑𝑙) 𝑑𝐸.

(10)

Therefore, we can set different selectable threshold 𝑇
to measure projection data with different energy ranges.
In this paper, we take two distinct x-ray energy spectra
measurements by the micro-CT system based on PCD; the
high energy and low energy projections can be expressed as

Pr𝑜 (𝐸𝐿) = − ln 𝐼 (𝐸𝐿)𝐼0 (𝐸𝐿)
Pr𝑜 (𝐸𝐻) = − ln 𝐼 (𝐸𝐻)𝐼0 (𝐸𝐻) ,

(11)

where high energy spectrum corresponding to projection
is Pr𝑜(𝐸𝐻), and low energy spectrum corresponding to
projection is Pr𝑜(𝐸𝐿). Then we can reconstruct two CT
images using projection datasets with two energy ranges.

In order to discriminate soft tissue and bone material
of vivo small animal from two distinct x-ray energy spectra
measurements, here we used the basis material decompo-
sition method in post-construction space. The integrated
attenuation coefficient can be expressed as the product of two
material components:

𝜇 (𝐸) = 𝑎1𝜇1 (𝐸) + 𝑎2𝜇2 (𝐸) , (12)

where 𝑎1 and 𝑎2 are decomposition coefficients of two mate-
rials, 𝜇1(𝐸) and 𝜇2(𝐸) are the linear attenuation coefficients of
two materials.

To effectively decompose the two biomedical composi-
tions, basis materials should be selected close to the atomic
number of bone and soft tissue.Themain component of bone
is calcium carbonate, and the muscular tissues are mainly
composed of water and protein; therefore we selected water
component and calcium component as two basis materials
to analyze soft tissue and bone material of small animal, and
the linear attenuation coefficients in the high energy and low
energy range can be expressed as

𝜇 (𝐸𝐿) = 𝑎1𝜇1 (𝐸𝐿) + 𝑎2𝜇2 (𝐸𝐿)
𝜇 (𝐸𝐻) = 𝑎1𝜇1 (𝐸𝐻) + 𝑎2𝜇2 (𝐸𝐻) , (13)

Table 1: Original geometric parameters and calibrated geometric
parameters.

Parameters Original Calibrated
Horizontal rotation center offset 0 mm 0.75 mm
Vertical rotation center offset 0 mm 0.51mm
Detector in-plane rotation 0∘ 0.12∘

and equation (13) can be written in matrix form as

(𝜇1 (𝐸𝐿) 𝜇2 (𝐸𝐿)
𝜇1 (𝐸𝐻) 𝜇2 (𝐸𝐻))(

𝑎1
𝑎2) = (

𝜇 (𝐸𝐿)
𝜇 (𝐸𝐻)) , (14)

where𝑈 = ( 𝜇1(𝐸𝐿) 𝜇2(𝐸𝐿)𝜇1(𝐸𝐻) 𝜇2(𝐸𝐻)
) is thematerial compositionmatrix,

which represents the linear attenuation coefficients of two
basis materials in high and low energy ranges. Since the
attenuations of water and calcium are irrelevant, 𝐴 is a
reversible matrix. Then, we can calculate the decomposition
coefficients of two materials in matrix form as follows:

(𝑎1𝑎2) =
1

𝜇1 (𝐸𝐿) 𝜇2 (𝐸𝐻) − 𝜇1 (𝐸𝐻) 𝜇2 (𝐸𝐿)

⋅ ( 𝜇2 (𝐸𝐻) −𝜇2 (𝐸𝐿)
−𝜇1 (𝐸𝐻) 𝜇1 (𝐸𝐿) )(

𝜇 (𝐸𝐿)
𝜇 (𝐸𝐻)) .

(15)

Finally, we can obtain the linear attenuation character-
istics of two materials and distinguish soft tissue and bone
materials.

3. Results

3.1. Geometric Calibration and Reconstruction. In this sec-
tion, we will calibrate the geometric parameters using LLE-
based geometric calibration method, and the calibration
parameters are rotation stage center offset in horizontal
direction, rotation stage center offset in vertical direction,
and detector in-plane rotation.With the powerful calculation
ability of Graphic card, the geometric calibration procedure
could be extremely accelerated. In order to demonstrate the
acceleration ability, we processed the correction procedure
with the algorithms based on GPU including projection
generation and image reconstruction. The total cost time of
geometric calibration protocol based on CPU is 360 minutes
while the computation cost based on GPU is only 1.27
minutes; the acceleration rate is 283 times.

The original geometric parameters are shown in Table 1,
and the reconstructed images before geometric calibration
are shown in Figure 2; it is clearly seen that there are some
artifacts in the reconstructed images. The reconstructed
images after geometric calibration are shown in Figure 3,
the proper parameters’ sampling range and sampling rate
are summarized in Table 2, and the calibrated parameters
are also shown in Table 1. From Figure 3, the artifacts of the
reconstructed images after geometric calibration have been
removed.
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Slice 2 Slice 22

Slice 42 Slice 62Slice 42 Slice 62

Figure 2: The reconstructed images before geometric calibration, display window: [0 0.5].

Table 2: Geometric parameter error ranges and sampling rates.

Parameters Sampling range Sampling rate
Horizontal rotation center offset [-1mm 1mm] 0.01 mm
Vertical rotation center offset [-1mm 1mm] 0.01mm
Detector in-plane rotation [-0.5∘ 0.5∘] 0.01∘

Table 3: The Total Variation of slice 22 at different calibration
iterations.

Iteration 0 1 2
Total Variation 0.0031 0.0020 0.0018

According to the study [26], we used the Total Variation
of the reconstructed images at different calibration iterations
to quantify calibration results.The smaller the Total Variation
is, the less geometric the artifacts are. The Total Variation
of slice 22 at different calibration iterations is shown in
Table 3.

3.2. Biomedical Material Discrimination. For material
decomposition experiment, we analyzed the chest of the rat
with the dual-energy CT imaging system and obtained two
sets of projection data in low- and high-energy spectrum,
respectively. According to the specific x-ray source in our
experiment, we used a free-of-charge software program
(SpekCalc) [27] to calculate x-ray spectra from tungsten
anode tubes, and the simulated spectrum is shown in
Figure 4. The energy range is from 15keV to 100keV, and we
marked the two energy ranges in Figure 4. Then we used
GPU based ASTRA reconstruction toolbox to reconstruct
the rat specimen CT images; one slice images with two
energy ranges are shown in Figure 5.

Then two material decomposition coefficient linear inte-
grals can be calculated using Eq. (15). Finally, we could
decompose the calcium and water materials images, which
are shown in Figure 6. From Figure 6, we can discriminate
two material compositions with own distinct features. The
water component image highlights the soft tissue of the
mouse, and calcium component image demonstrates the
cortical bone of the mouse.
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Slice 2 Slice 22

Slice 42 Slice 62

Figure 3: The reconstructed images after geometric calibration, display window: [0 0.5].
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Figure 4: Source photon emission spectra.
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(a) (b)

Figure 5: Reconstructed CT images at one slice. (a) Image at energy of 15-60keV, (b) Image at energy of 60-100keV. Display window: [0 0.5].

(a) (b)

Figure 6: Reconstructed images after material decomposition. (a) The reconstructed calcium component image, display window [0 0.2]; (b)
The reconstructed water component image, display window [0 2].

4. Conclusion and Discussion

There are some issues worthy of further discussion. In
geometry calibration, a closely-related issue is the parametric
sampling rate for re-projection. The greater the sampling
rate is, the more accurate the calibration results will be, but
the higher computational cost will be bigger. Therefore, we
need to choose a proper sampling rate to balance between
calibration results and computational cost. Although the
smaller sampling rate could calibrate the geometric param-
eters more precisely, the sampling rate could not be set to
infinite small, which depends on the memory size of graphic
card. According to our experimental analysis, the number of
selected sampling points is 20.

For material discrimination, we used the basis material
method in post-reconstruction space to decompose two
different materials from two distinct x-ray energy spectra
measurements. The advantages in PCD technology allow for

CT systems to identify absorption features in the multiple
ranges of photon energies; therefore we will measure more
energy spectrum data to discriminate multi-material in a
follow-up research. With the development of novel contrast
agents, we can also take contrast agent imaging to improve
contrast resolution of CT image and characterize different
soft tissues.

In conclusion, this study focuses on in vivo dual-energy
CT imaging for biomedical material discrimination.We used
the LLE-based geometric calibrationmethod andGPU-based
reconstruction toolbox to obtain high-quality reconstructed
CT images and chose the basis material decomposition
method in post-construction space to decompose soft tissue
and bone compositions of rat specimen. Finally, the experi-
mental results demonstrated the advantages of the PCD for
material discrimination, which could establish guidelines for
in vivo dual-energy CT imaging.
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