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ABSTRACT

In higher animal cells, the principal limitation of
gene-targeting technology is the extremely low effi-
ciency of targeted integration, which occurs three to
four orders of magnitude less frequently than
random integration. Assuming that random integra-
tion mechanistically involves non-homologous end-
joining (NHEJ), inactivation of this pathway should
reduce random integration and may enhance gene
targeting. To test this possibility, we examined the
frequencies of random and targeted integration in
NHEJ-deficient chicken DT40 and human Nalm-6
cell lines. As expected, loss of NHEJ resulted in
drastically reduced random integration in DT40
cells. Unexpectedly, however, this was not the
case for Nalm-6 cells, indicating that NHEJ is not
the sole mechanism of random integration. Never-
theless, we present evidence that NHEJ inactivation
can lead to enhanced gene targeting through a
reduction of random integration and/or an increase
in targeted integration by homologous recombina-
tion. Most intriguingly, our results show that, in the
absence of functional NHEJ, random integration of
targeting vectors occurs more frequently than non-
targeting vectors (harboring no or little homology to
the host genome), implying that suppression of
NHEJ-independent random integration events is
needed to greatly enhance gene targeting in
animal cells.

INTRODUCTION

Gene targeting by homologous recombination (HR) pro-
vides a powerful means for studying gene function by
a reverse genetic approach. This technology also offers

a potential tool for gene therapeutic applications (1).
In higher animal cells, however, it is still quite difficult
to generate knockout clones by gene targeting, except
for mouse embryonic stem cells (2) and chicken B-lympho-
cyte DT40 cells (3), even though recent reports using
human cell lines such as Nalm-6 and HCT116 indicate
the feasibility of human gene targeting (4-9). One reason
for the difficulty of gene targeting is that the frequency of
targeted integration of targeting vectors through HR is as
low as 107°, and the other reason is that the vectors inte-
grate into random sites of the host genome (random inte-
gration) through non-HR at three to four orders of
magnitude higher rates (1). It is therefore reasonable to
expect that suppressing random integration events may
enhance gene targeting by increasing the ratio of targeted
to random integration.

Although the precise mechanism of random integration
is yet to be elucidated, it has long been postulated that
most, if not all, random integration events result from
non-homologous end-joining (NHEJ) (10). NHEJ and
HR are two major pathways for repairing DNA double-
strand breaks (DSBs), which can be caused by a variety of
endogenous and exogenous agents (11). In higher animal
cells, NHEJ is believed to play a predominant role in DSB
repair (12), though how cells choose NHEJ or HR remains
obscure. The NHEJ reaction is initiated by the binding of
Ku protein (the heterodimer of Ku70 and Ku80) to the
ends of a DSB. Subsequently, Ku recruits a complex of
DNA-dependent protein kinase catalytic subunit (DNA-
PKcs) and Artemis and undergoes end-processing to make
ligatable ends, which are finally joined by a complex of
XRCC4, XLF (also called Cernunnos) and DNA ligase IV
(12—-14). This ligase IV complex is absolutely required for
the classical (Ku-initiated) NHEJ pathway (4,15,16).
Earlier studies reported that Chinese hamster cell lines
lacking Xrcc4 (xrs-1) or Ku80 (xrs-6) showed decreased
random integration frequencies (17,18). Additionally, a
mouse cell mutant lacking DNA ligase IV exhibited
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significantly (~20-fold) lower random integration frequen-
cies than did wild-type cells (WT) (19). These results sup-
port the idea of NHEJ involvement in random integration
events.

Despite the expectation that NHEJ deficiency may lead
to enhanced gene targeting, there has been no supporting
evidence in higher animal cells. For instance, Chinese
hamster cells defective in Ku80 were shown to retain
gene-targeting frequencies comparable to those in WT
cells (20). In addition, mouse embryonic stem cells defi-
cient in Ku70, Xrcc4 or Dna-pkcs, did not exhibit increased
gene-targeting efficiencies (21,22). In sharp contrast, how-
ever, recent work has demonstrated that NHEJ deficiency
leads to highly efficient gene targeting in lower eukaryotes,
such as Saccharomyces cerevisiae or Neurospora crassa
(23-30). These observations prompted us to re-examine
the impact of NHEJ deficiency on gene targeting using
animal cells. In this study, we examine the frequencies of
random and targeted integration in NHEJ-deficient
chicken DT40 and human Nalm-6 cell lines. We show
that most random integration events occur via NHEJ,
which, however, is not the sole mechanism of random
integration. We also present evidence that NHEJ inactiva-
tion does lead to enhanced gene targeting through a reduc-
tion of random integration and/or a direct stimulation of
targeted integration. Most importantly, our data reveal
that random integration events of targeting vectors
occur more frequently through a mechanism distinct
from that of non-targeting vectors.

MATERIALS AND METHODS

Cells and culture conditions

The chicken B-cell lymphoblastoma DT40 cell line and its
Lig4~/~ derivative were maintained in a 5% CO, incuba-
tor at 39°C in ES medium (Nissui Seiyaku, Tokyo, Japan)
supplemented with 10% FBS (Hyclone, Logan, UT,
USA), 1% chicken serum and 10 uM 2-mercaptoethanol,
as described (16). For colony formation, cells were grown
for 7-11 days in ES medium containing 0.15% agarose
(Seakem® LE; Cambrex Bio Science, Rockland, ME,
USA), 20% FBS and 2% chicken serum. Note that hygro-
mycin- and puromycin-resistant genes (Hyg" and Puro’,
respectively) were removed from the original Ligd™/~ cell
line (16) by transiently expressed Cre, and one of the
resulting marker-free clones was used in this study.

The human pre-B leukemia cell line Nalm-6 and its
LIG4~/~ derivative (6) were maintained in a 5% CO, incu-
bator at 37°C in ES medium supplemented with 10% calf
serum (Hyclone) and 50uM 2-mercaptoethanol, as
described (31,32). For colony formation, cells were
grown for 2-3 weeks in growth medium containing
0.15% agarose (32).

Vectors

Plasmid vectors used in this study are listed in Table 1.
pBActinHis was constructed by subcloning a 3.5-kb
BamHI fragment containing the chicken (-actin prom-
oter, hisD coding gene and polyA sequences (11)
into BamHI-digested pBluescript SKII(-) (Stratagene,

Table 1. Vectors

Linearized Used References

with: for:

Vectors

Non-targeting vectors

pSV2neo EcoRI DT40 Southern and Berg (33)
pPGKPuro2 Xmnl DT40 This study

pSV2Puro EcoRI DT40  This study

pPGKPuro Scal Nalm-6 Tucker er al. (34)
pBActinHis Xmnl Nalm-6 This study

Targeting vectors

pTop2a-Puro Sphl DT40 Adachi et al. (38)
pPolp-Puro Scal DT40 This study

pFenl-Puro4 EcoRI DT40  This study
pHPRTS8.9-Puro Notl Nalm-6 This study

pS3BP1-Hyg AhdI Nalm-6 liizumi et al. (unpublished)

pRADS2-Puro Ahdl
pRADS54-Puro Swal

Nalm-6 Adachi et al. (unpublished)
Nalm-6 Kurosawa et al. (unpublished)

pPOLB-Hyg I-Scel Nalm-6 Adachi et al. (unpublished)
pHPRT-Hyg Notl Nalm-6 So et al. (36)

pRAGI1-Puro 1-Scel Nalm-6 Kurosawa et al. (unpublished)
pRAGI-Hyg I-Scel Nalm-6 Kurosawa et al. (unpublished)

PARTEMIS-Puro  I-Scel
pARTEMIS-Hyg I-Scel

Nalm-6 Kurosawa et al. (37)
Nalm-6 Kurosawa et al. (37)

La Jolla, CA, USA). pSV2Puro was constructed by ligat-
ing a 0.9-kb HindIII/BglII fragment containing the Puro”
gene from pPGKPuro and a 3.4-kb HindIll/BamHI frag-
ment containing the SV40 promoter and polyA sequences
from pSV2neo (33). pPPGKPuro2 was constructed by sub-
cloning a 1.6-kb Sall/Scal fragment containing the PGK
promoter, Puro” and polyA sequences from pPGKPuro
(34) into Sall/Smal-digested pUCI9 (Takara Bio, Otsu,
Japan). Targeting vector pFenl-Puro4 was constructed
by shortening the 5’ and 3’ arms of the original vector
pFENIPuro (35). To construct a targeting vector for
DNA polymerase B (Polf), a 6.3-kb genomic fragment
containing exons 1—4 was obtained by screening a chicken
genomic library (Stratagene). Targeting vector pPolf-
Puro was constructed by replacing a 2.3-kb region con-
taining exon 4 with a floxed Puro” gene. Targeting vectors
for the human hypoxanthine phosphoribosyltransferase
gene (HPRT), pHPRT8.9-Puro and pHPRT-Hyg, were
constructed by inserting Puro” or Hyg', respectively, into
the Xhol site of the 8.9-kb HPRT fragment (31,36).
Targeting vectors for the human 53BPI, RAD52, RAD54,
POLB RAGI and ARTEMIS genes were constructed by a
simplified vector construction system (6,37 and Kurosawa
et al., unpublished data). All the plasmid vectors were
purified with Qiagen Plasmid Maxi Kits (Qiagen K.K.,
Tokyo, Japan) and linearized with an appropriate restric-
tion enzyme prior to transfection (Table 1).

Transfection and integration assays

DNA transfection was performed in DT40 cells as pre-
viously described (16). Briefly, 4 x 10° cells were electropo-
rated with linearized plasmid (3 pg for random integration
assays and 4 pg for gene-targeting experiments) per 40-ul
chamber of Electro Gene Transfer Equipment (GTE-1;
Shimadzu, Kyoto, Japan). After 15min, cells were trans-
ferred into growth medium and cultured for 8 h. The cells



were then collected, counted and replated into agarose
medium containing 0.5 ug/ml puromycin (Wako Pure
Chemical, Osaka, Japan) or 1.6mg/ml G418 (Gibco
BRL, Gaithersburg, MD, USA). Meanwhile, small ali-
quots of the transfected cells were replated into drug-free
agarose medium to determine the plating efficiency. The
resulting colonies after cultivation for 7-11 days were
counted, and the integration frequency was calculated by
dividing the number of drug-resistant colonies with that of
surviving cells. In Nalm-6 cells, random integration assays
were carried out in essentially the same manner as in DT40
cells with slight modifications. Briefly, cells were trans-
fected with 4 pg of linearized vector and cultured for 22-h
in growth medium. The cells were then replated into agar-
ose medium containing either 0.5 pg/ml puromycin, 0.4 mg/
ml hygromycin B (Wako Pure Chemical), or 1.2mg/ml
L-histidinol (Sigma-Aldrich, St Louis, MO, USA), and
cultured for 2-3 weeks. For gene-targeting experiments,
each targeting vector was transfected into WT or mutant
cells, which were subsequently selected for drug-resistant
colonies, and correct gene-targeting events were confirmed
by Southern blot analysis.

Gene targeting at the human HPR T locus

Gene targeting in human Nalm-6 cells was carried out
using an HPRT targeting system, as described previously
(31,36). Briefly, cells were transfected with 4 pug of linear-
ized targeting vector pHPRT8.9-Puro, cultured for 22 h in
growth medium and replated into agarose medium with
0.5 pg/ml puromycin. After a 2-week incubation at 37°C,
puromycin-resistant colonies were counted to calculate the
total integration frequency. Subsequently, single colonies
were isolated, expanded and replated into growth medium
containing 20 pM 6-thioguanine (6TG; Sigma-Aldrich), a
hypoxanthine analog that kills HPRT-proficient cells.
Genomic DNA was isolated from 6TG-resistant clones
and subjected to PCR analysis using primers HPRT-F
(5-TGAGGGCAAAGGATGTGTTACGTG-3') and
HPRT-R (5-TTGATGTAATCCAGCAGGTCAGCA-
3). The gene-targeting efficiency was calculated by divid-
ing the number of targeted clones with that of drug-resis-
tant clones analyzed. The targeted integration frequency
was calculated by multiplying the total integration

A 3r B 6
; T el
o o *
cT 2F e
S x S x
‘e'u'g. T >
= = o 3F
25 25
£3 1+t £3
o O 15
0 o < 0
%%, S

Nucleic Acids Research, 2008, Vol. 36, No. 19 6335

frequency by the targeting efficiency. The random integra-
tion frequency was calculated by subtracting the targeted
integration frequency from the total integration
frequency.

RESULTS

NHEJ-deficient cells have reduced random
integration frequencies

To compare the ability of DT40 WT and NHEJ-deficient
cells to integrate transfected DNA into the host genome,
we performed quantitative transfection experiments using
several plasmid vectors that have no or little homology
to the genome (Table 1). (To distinguish from targeting
vectors, these vectors are hereafter referred to as non-
targeting vectors.) As shown in Figure 1A, the integration
frequency of pSV2neo in Lig4 ™/~ cells dropped to as low
as 7.5% of that in WT cells. Very similar results were
obtained using two other non-targeting vectors; the
random integration frequencies of pSV2Puro and
pPGKPuro?2 in Lig4/~cells were reduced to 3 and 11%,
respectively, relative to WT cells (Figure 1B and C). We
note that very similar results were obtained using Ku70 ™/~
cells (11) (data not shown). In order to ensure that chro-
mosomal integration of transfected DNA is completely
random, we performed Southern blot analysis using indi-
vidual integrants (at least 20 clones for each cell line)
derived from pSV2Puro-transfected WT and Lig4 '~
cells. We found that in all cell lines, the size and pattern
of hybridizing bands were obviously distinct from one
another (data not shown). To eliminate the possibility
that the difference in random integration frequency
between WT and Lig4 '~ cells was due to a reduced
uptake of transfected vectors, we performed transient
assays by transfecting a luciferase expression vector,
pPGKluc, and confirmed that the Lig4™'~ mutant exhib-
ited luciferase activity to the level comparable to that of
WT cells (data not shown). Collectively, these data indi-
cate that in DT40 cells, NHEJ is responsible for nearly
all of random integration events of non-targeting vectors.
It is important to emphasize, however, that other mechan-
ism(s) must exist that permit random integration, as the
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Figure 1. Lig4~/~ DT40 cells have reduced random integration frequencies. Shown are the mean -+ SD of three to five independent experiments with

pSV2neo (A), pSV2Puro (B) and pPGKPuro2 (C).
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frequency of random integration does not drop to zero in
the absence of functional NHEJ.

We next employed the human pre-B cell line Nalm-6 to
examine the impact of NHEJ deficiency on random inte-
gration. As shown in Figure 2, the random integration
frequencies of pBActinHis and pPGKPuro in LIG4/~
cells were decreased to ~50% of that in WT cells, con-
trasting with the significant drop observed in DT40 cells.
The vector uptake after transfection was unaffected in
NHEJ-deficient human cells, as judged by transient
assays with a luciferase expression vector, pCMVluc
(data not shown). These data indicate that the NHEJ
pathway is responsible for only approximately half of
random integration events for non-targeting vectors in
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Figure 2. LIG4~'~ Nalm-6 cells have reduced random integration fre-
quencies. Shown are the mean=+SD of six independent experiments
with ppActinHis (A) and pPGKpuro (B).

the human Nalm-6 cell line, confirming the notion that
some random integration events occur through an
NHEJ-independent mechanism(s), whose contribution to
random integration may differ between cell lines or
species.

Enhanced gene targeting in NHEJ-deficient DT40 cells

Because random integration was substantially suppressed
by Lig4 deficiency in DT40 cells, we expected that the Lig4
deficiency could enhance gene targeting. To test this, we
first performed gene targeting at the Fenl locus
(Figure 3A). Specifically, pFenl-Puro4 vector was trans-
fected into WT and Lig4 '~ cells and puromycin-resistant
colonies were counted to calculate the total integration
frequency. Additionally, these colonies were subjected to
Southern blot analysis (Figure 3B) and classified into
random and targeted integrants to calculate the frequen-
cies of random and targeted integration. As shown in
Figure 4A, the frequency of random integration in
Lig4~'~ cells was decreased to ~27% of that in WT
cells, while the frequency of targeted integration was mar-
ginally affected by Lig4 deficiency. As a consequence, the
gene-targeting efficiency was elevated ~2.6-fold in the
mutant (Figure 4B). We next performed gene targeting
at the PolB locus by using pPolB-Puro vector (Figure 3C
and D). The random integration frequency in Lig4 '~ cells
was decreased to ~25% (Figure 4C), resulting in an ~1.7-
fold increased gene-targeting efficiency (Figure 4D). We
further employed pTop2a-Puro vector (38) to target the
Top2a locus, and found that the random integration fre-
quency in Lig4 ™'~ cells was decreased to ~36% of that in
WT cells (Figure 4E), resulting in an ~1.8-fold increased
gene-targeting efficiency (Figure 4F). Taken together,
these results indicate that Lig4 deficiency leads to
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Figure 3. Schematic representation of gene targeting at the chicken Fenl and PolB loci. (A) The Fenl locus, the targeting vector, and the targeted
locus are shown. Closed boxes indicate exons, and triangles designate /oxP sequences. (B) Southern blot analysis of the Fenl locus. BamHI-digested
genomic DNA from representative random and targeted clones was hybridized with the probe shown in (A). (C) The PolB locus, the targeting vector,
and the disrupted loci are shown. (D) Southern blot analysis of the Polf locus. Smal-digested genomic DNA from representative random and

targeted clones was hybridized with the probe shown in (C).



enhanced gene targeting in DT40 cells, by virtue of a
reduction of random integration.

LIG4 deficiency in Nalm-6 cells leads to enhanced
gene targeting without reduced random integration of -
targeting vectors

To determine the frequency of random and targeted inte-
gration in Nalm-6 cells, we designed an assay system uti-
lizing the X-chromosome-linked HPRT gene (illustrated
in Figure 5A; Nalm-6 is of male origin and has a single
HPRT locus), which enabled us to select for targeted inte-
grants without the initial requirement of genomic analysis.
Specifically, puromycin-resistant colonies were transferred
into 6TG-containing medium, and those colonies that sur-
vived the 6TG selection were subjected to PCR analysis
using a set of primers that flank exon 3 of the HPRT gene.
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Figure 4. Reduced random integration of targeting vectors and
enhanced gene-targeting efficiencies in Lig4~'~ DT40 cells. (A, C, E)
Random and targeted integration frequencies of targeting vectors for
the chicken Fenl (A), Polp (C) and Top2a (E) genes. Shown are the
mean = SD of three to four independent experiments. (B, D and F)
Fold-increase in gene-targeting efficiency in Lig4 '~ DT40 cells at the
chicken Fenl (B), Polg (D) and Top2«a (F) loci.
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In this analysis, random integrants, like untransfected
cells, display a 0.5-kb band, whereas targeted integrants
display a 2.2-kb band due to Puro” insertion (Figure 5B).
Thus, 6TG-resistant colonies that gave no 0.5-kb band in
the PCR analysis were counted as targeted integrants (cor-
rect gene targeting was finally verified by Southern blot),
and the rest were counted as random integrants.
Surprisingly, the random integration frequency of the
targeting vector pHPRTS8.9-Puro was not reduced but
rather slightly increased in human LIG4~ cells
(Figure 5C). Intriguingly, however, the targeted integra-
tion frequency was elevated >2-fold in the mutant, thus
resulting in an increase in gene-targeting efficiency
(Figure 5D). To further examine the impact of LIG4 defi-
ciency in human Nalm-6 cells, we employed 53BP1 target-
ing vector to perform gene targeting. As shown in Table 3,
WT cells gave rise to no targeted clones, whereas two
targeted clones were obtained from LIG4~/~ cells with
the efficiency of 3.3%. Further, we performed gene-target-
ing experiments at four additional autosomal loci,
RADS52, RAD54, POLB and ARTEMIS. As summarized
in Table 3, relative to WT cells, LIG4/~cells showed
increased gene-targeting efficiencies in all cases examined,
which was statistically significant (P < 0.05; data from the
four loci). From these results, we conclude that LI/G4 defi-
ciency leads to enhanced gene targeting in Nalm-6 cells. It
should be emphasized, however, that this enhancement is
likely caused by direct stimulation of targeted integration,
as our data reveal that loss of DNA ligase IV does
not reduce random integration of targeting vectors.

Table 2. Summary of gene targeting at the human HPRT locus

Experiment Cell line No. of No. of No. of
PCR-positive 6TG-resistant puromycin-

Gene-targeting
efficiency (%)

clones (a) clones (b) resistant clones (a/c x 100)
analyzed (c)

Exp. 1 WT 9 9 144 6.3
LIG47~ 23 25 144 16

Exp. 2 WT 18 18 176 10
LIG4 '~ 27 30 192 14

Exp. 3 WT 21 21 192 11
LIG4™™ 33 40 192 17

Exp. 4 WT 10 10 192 5.2
LIG4™~ 33 33 192 17

Table 3. Summary of gene targeting experiments in Nalm-6 cells at
autosomal loci

Gene-targeting efficiency

Locus Selection marker WT (%) LIG4™~ (%)
53BPI Hyg 0/120 (<0.8) 2/60 (3.3)
RAD52 Puro 1/185 (0.5) 3/193 (1.6)
RAD54 Puro 4/103 (3.9) 4/87 (4.6)
POLB Hyg 3/72 (4.2) 5/108 (4.6)
ARTEMIS Puro 1/142 (0.7) 2/140 (1.4)
ARTEMIS Hyg 1/240 (0.4) 2/238 (0.8)
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Table 4. Summary of total integration frequency of various
vectors in Nalm-6 cells

Vectors Fold-increase in total integration

frequency (LIG4~/~ versus WT)

Non-targeting vectors

pPActinHis 0.43

pPGKPuro 0.50
Targeting vectors

pHPRTS.9-Puro 1.27

pHPRT-Hyg 1.11

pRAGI-Puro 1.10

pRAGI-Hyg 1.13

Indeed, slight increases in random integration frequency
in human LIG4~/~ cells were similarly observed with other
targeting vectors (Table 4).

DISCUSSION

Despite little supporting evidence, NHEJ has long been
postulated to be responsible for random integration of
transfected DNA (10), leading to the idea that NHEJ defi-
ciency should reduce random integration and may enhance
gene targeting. Our present study has revealed that this is
indeed the case in chicken DT40 cells. Intriguingly, how-
ever, our data show that in human Nalm-6 cells, NHEJ
deficiency can enhance targeted integration but does not
reduce random integration of targeting vectors. Recent evi-
dence suggests the existence of a competition, upon DSBs,
between the NHEJ and HR pathways (39,40). Given this,
eliminating the NHEJ pathway would shunt DSBs toward
HR. Indeed, in Chinese hamster cells Dna-pkcs or Xrcc4
deficiency enhanced spontaneous as well as DSB-induced
HR (41,42). In the present study, a direct stimulation of
targeted integration by NHEJ deficiency was observed in
Nalm-6 cells (Figure 5) but was not evident in DT40 cells
(Figure 4). Possibly, this discrepancy may reflect an intrin-
sic difference in DSB repair mechanism between human
and other animal cells. Further work is required to clarify
the competitive relationship between NHEJ and HR in
gene-targeting events.

In Lig4~'~ DT40 cells, random integration frequencies
of non-targeting vectors were reduced to 3-11% of WT
levels (Figure 1). In addition, LIG4~/~ Nalm-6 cells
showed an ~50% reduction in random integration fre-
quency (Figure 2). We previously reported that a Lig4-
deficient mouse cell mutant showed a markedly reduced
level of random integration (19). Others reported earlier
that Xrcc4 or KuS0 deficient Chinese hamster cell lines
showed reduced random integration frequencies (17,18).
Taken together, these observations strongly support the
view that random integration events occur through the
NHEJ pathway (10). We would like to emphasize, how-
ever, that a small number of random integrants always
arise in Lig4 '~ DT40 cells (Figure 1), and a considerably
large fraction of random integrants do appear in LIG4 ™/~
Nalm-6 cells (Figure 2). Thus, random integration events
cannot be completely suppressed by ablating the classical

NHEIJ pathway, pointing to a contribution of an NHEJ-
independent pathway(s) to the residual random integra-
tion events. Indeed, recent studies by several groups
have revealed that a backup pathway for NHEJ (termed
‘alternative end-joining’) functions in V(D)J and class
switch recombination at unexpectedly robust levels
(43-45). This alternative pathway appears to be operating
in Nalm-6 cells, as, for example, I-Scel-induced chromo-
somal DSBs are efficiently rejoined even when DNA ligase
IV is absent (31). It is therefore highly likely that this
alternative end-joining pathway is responsible for
random integration events in the human LIG4~/~
mutant, and possibly contributes to the residual random
integrants observed in the NHEJ-deficient chicken cells.
Given that animal cells have three genetically distinct
genes for DNA ligase (LIG1, LIG3 and LIG4), it is conceiv-
able that a LIGI and/or LIG3 product(s) are responsible
for NHEJ-independent random integration events. Recent
evidence indicates that DNA ligase I11a, which is one of the
LIG3 products, is involved in the alternative end-joining
pathway (46-48), suggesting that this ligase has a role in
random integration. Yet, since our preliminary experiments
showed that LIG! and LIG3 knockdown both reduced
random integration frequencies (liizumi et al., unpublished
observations), we speculate that multiple DNA ligases are
responsible for the residual random integrants observed
with our mutant cell lines described herein. Apparently,
however, a more comprehensive analysis is required to elu-
cidate the nature of, and the relative contribution of multiple
DNA ligases to, NHEJ-independent random integration.
Intriguingly, when targeting vectors were transfected
into NHEJ-deficient DT40 cells, the frequency of
random integration was only decreased to 25-36% of
that in WT cells (Figure 4), contrasting with the case
of non-targeting vectors (Figure 1). More surprisingly,
despite an ~50% decrease in random integration with
non-targeting vectors (Figure 2), LIG4~'~ Nalm-6 cells
showed no decrease rather a slight increase in random
integration with targeting vectors (Figure 5 and
Table 4). These results clearly show that in addition to
the mechanism for random integration of non-targeting
vectors, integration of targeting vectors would involve
some other mechanism(s) that do not rely on DNA
ligase IV. Why do targeting vectors integrate more effi-
ciently than do non-targeting vectors in the absence of
NHEIJ? One possibility is that targeting vectors may be
able to integrate into the genome in a microhomology-
dependent manner. In this regard, Merrihew et al. (49)
proposed a model for microhomology-dependent
random integration, where a short homologous sequence
of transfected vector primes DNA synthesis within a
single-stranded chromosomal region, and resolution by
endonuclease cleavage leaves the vector linked to the chro-
mosome. This idea may be supported by the fact that
targeting vectors, in general, contain repetitive DNA
sequences, involving short interspersed nuclear elements
(SINEs) such as Alu sequences. It was reported earlier
that such repetitive sequences could participate in genetic
recombination (50-52). A more recent study using murine
HCI11 cells showed that the integration frequency of a
SINE-flanked vector was 3.5-fold higher than that of
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Figure 5. Enhanced gene targeting at the HPRT locus in LIG4~/~ Nalm-6 cells. (A) Scheme of gene targeting at the human HPRT locus. The
targeting vector was designed to insert into exon 3. Black boxes represent exons. Arrows indicate PCR primers. (B) PCR analysis to confirm gene
targeting. Shown are the results with nine 6TG-resistant clones from LIG4~/~ cells (1—9) and untransfected cells (marked by C). (C) Random and
targeted integration frequencies of the HPRT targeting vector in WT and LIG4~'~ Nalm-6 cells. Symbols are as in Figure 4. Shown are the
mean £+ SD of four independent experiments (Table 2). (D) Fold-increase in gene-targeting efficiency in LIG4™'~ cells at the HPRT locus. Shown

are the mean & SD of four independent experiments.

SINE-less controls (53), and this increase was attributed
to HR between the exogenous and endogenous SINEs.
Considering that Alu sequence-mediated HR has been
suggested in several studies (54-56), it is possible that
NHEJ-independent random integration of targeting vec-
tors may be related to HR between SINE sequences pres-
ent in the arms of targeting vector and the host genome.
The existence of such repetitive sequence-dependent
random integration may well explain why LIG4™'~
Nalm-6 cells, unlike NHEJ-deficient DT40 cells, failed to
show reduced random integration frequencies with target-
ing vectors (Figures 4 and 5), as the human genome has a
>10-fold greater number of interspersed repeats than the
chicken genome (3 x 10° versus 0.25 x 10° copies) (57,58).
Do, then, targeting vectors devoid of any repetitive
sequences allow for more efficient gene targeting? To
gain insights into this issue, we compared the structures
of the targeting vectors used for human cells, as

summarized in Supplementary Table 1. Thus far, however,
the relationship between the gene-targeting efficiency and
the amount of repetitive sequences appears unlikely. For
instance, the LIG4 and RADS54 targeting vectors gave
similarly high gene-targeting efficiencies, despite the
apparent difference in the amount of SINE/LINE
sequences between these vectors. This may imply, how-
ever, that the frequency of gene targeting may be more
strongly governed by other possible factors, such as chro-
mosomal localization or transcriptional status of the
target site (59,60). Thus, a more detailed analysis will clar-
ify those issues, for example, by creating and comparing
multiple targeting vectors for the same gene with similar
sizes but with different lengths of repetitive sequences.
It will also be interesting to make a series of ‘pseudo-
targeting vectors’, in which either arm of the targeting
vector is missing or both arms are reversed; these
vectors may help clarify the contribution of repetitive
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sequences to the DNA ligase IV-independent integration
events.

In species with a far smaller genome size, NHEJ defi-
ciency successfully leads to efficient gene targeting with
significantly reduced random integration (23-30). For
instance, in N. crassa, whose genome size is ~100-times
smaller than that of humans (61), NHEJ deficiency does
completely abolish random integration (25,26). This may
support the aforementioned idea that DNA ligase IV-
independent random integration of targeting vector
depends upon the presence of repetitive sequences.
Unfortunately, our results presented here indicate that
such a great increase in gene targeting cannot be achieved
by loss of DNA ligase IV in higher animal cells, even
though it remains possible that a more dramatic effect
on gene targeting may be observed in cells with higher
rates of random integration (and thus we will continue
to monitor this issue as we knock out the LI/G4 gene in
an increasing number of other human cell lines). It should
be mentioned, however, that Hendrickson and colleagues
(62) very recently showed using the HCT116 cell line that,
unlike in rodent or chicken cells, even a heterozygous dis-
ruption of the KUS80 gene resulted in an increased gene-
targeting frequency. Although only AAV-based targeting
vectors were employed in that study, this finding may
suggest that suppressing expression of upstream NHEJ
factors such as Ku or DNA-PKcs, rather than DNA
ligase IV (the most downstream factor), is a plausible
way of enhancing gene targeting, at least in human cells.
It is possible that absence or decrease of Ku or DNA-
PKcs (or even Artemis) can shunt DSBs toward other
repair pathways more efficiently than the absence of
DNA ligase IV, consistent with previous work (15,16).

In summary, we have shown that most random integra-
tion events occur via NHEJ, which, however, is clearly not
the sole mechanism of random integration in animal cells,
unlike in certain lower eukaryotes. Thus, in animal cells,
NHEJ inactivation alone does not necessarily lead
to a significant reduction of random integration.
Nevertheless, NHEJ inactivation does enhance gene tar-
geting in both DT40 and Nalm-6 cells, though this
enhancement is far less prominent than that observed in
lower eukaryotes. Finally, our data presented here have
implications for gene-targeting experiments. We have
demonstrated for the first time that random integration
of targeting vectors occurs more efficiently, in the absence
of DNA ligase IV, than that of non-targeting vectors. We
therefore suggest that, in addition to ablating the classical
NHEJ pathway, suppressing the additional mechanism for
random integration may greatly enhance the efficiency of
gene targeting in animal cells.
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