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It has been widely used in signal processing, image processing, speech recognition and synthesis, pattern recognition, machine
vision, machinery fault diagnosis and monitoring, and other scientific and technological fields and has achieved great results. ,e
application potential in nonlinear system identification is increasing. According to the theory of “overload recovery” and
“functional reserve”, the mathematical model of “load-fitness state” is established to understand the adaptation characteristics and
individual characteristics of athletes to sports training. ,e model is used to simulate the values and time required to reach the
maximum fitness state for four types of precompetition reduction plans and to provide a reference for the development of
precompetition training plans. ,e data required for parameter estimation were the actual training data of six outstanding
basketball athletes (mean age 18.2± 0.75, mean training years 4.6± 0.49). And the coaches’ training plan was not intervened
during the test. In order to further reduce the biaxial synchronization error of the sports platform and improve the stability of the
system, the wavelet transformation capable of time-varying signal analysis and the recursive structure with dynamic capability
were combined with the fuzzy neural network, and the learning ability of the neural network was used to learn and adjust the
scaling and translation factors in the wavelet function, the mean and standard deviation in the fuzzy structure, and the connection
weights between the layers, according to the biaxial synchronization. ,e simulation results show that the designed global sliding
mode controller can improve the convergence speed of tracking error and ensure the single-axis tracking accuracy of the H-type
motion platform compared with the traditional sliding mode controller, and the tracking accuracy and synchronization accuracy
of the system can be further improved after adding the cross-coupled synchronization controller, but the improvement of
synchronization control accuracy is not very satisfactory due to the fixed selection of the parameters of the cross-coupled
controller. Further improvement is needed.

1. Introduction

,e athlete must undergo a comprehensive and systematic
physical fitness diagnostic assessment, including assessment
of body composition, assessment of body part function, basic
body function examination, and injury history examination
[1]. It is also important tomake themost effective assessment
based on the individual athlete, which is fundamental to an
effective training program [2]. It is also necessary to perform
a systematic physical fitness assessment and diagnosis
during the off-season and during the season so that we can
always know the athletes’ fitness status and provide basic

reference information for future training [3]. As an im-
portant part of sports, the importance of professional and
systematic sports training is obvious. Postinjury preventive
fitness training is an integral part of overall fitness training
and somehow determines the effect of basic and special
fitness training [4]. In the framework of postinjury injury
preventive fitness training system, contains its twomain focus,
one is the rehabilitation of physical training based on injury
preventive fitness training; another is the active monitoring of
its sports load. ,ese two aspects are used to reduce the
risk of injury and thus improve the athletes’ performance
[5]. In modern athletic training science, with the scientific
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training method, the ability of multiple sciences to intervene
together is particularly important. For example, in the
United States, as the first technical force and from the point
of view of sports, sports have always focused on the physical
practice training injury prevention physical training and
scientific research combined to form a complete system and
a system of theory and practice [6].

In USA Basketball, sports training does not exist sin-
gularly but as a whole in cooperation with multiple parties.
,e training program and the implementation of the
training program are based on scientific research and clinical
tests and are arranged according to the specific athletic
conditions and physical characteristics of the athletes, in-
cluding their athletic characteristics. ,eir physical training
is divided into basic testing, basic assessment, setting
training goals, setting training plans, and integrated
implementation. Especially in the free exercises of auxiliary
equipment, the coach pays great attention to the basis of
these exercises. Even minor mistakes can be corrected in
time [7].,ey believe that only in this way can they gradually
increase the training load, improve the effectiveness of
training, and prevent injuries. Fuzzy neural networks, in
addition to the computing and learning capabilities of
general neural networks, can also combine the unique ability
of fuzzy systems to approximate human knowledge ex-
pression and understanding, but when dealing with complex
nonlinear system problems, processing by fuzzy neural
networks alone is still insufficient [8]. ,e term wavelet was
first introduced by Morlet and Grossman in the early 1980s.
In terms of presentation, a wavelet is an oscillation whose
amplitude increases from zero and ends at zero. In recent
years, wavelet analysis has received a great deal of attention
among engineers and mathematicians [9]. In contrast to
Fourier analysis, wavelet analysis has two different mathe-
matical theoretical bases, one is the wavelet integral trans-
form, a convolution operation on some elementary wavelet
function, and the other is the wavelet level, which uses a
single wavelet function and represents it by adding a binary
expansion and a translation of the integral [10].

,erefore, the recursive wavelet fuzzy neural network
compensator designed by combining wavelet fuzzy neural
network with recursive structure can have better dynamic
characteristics and system response when unknown pa-
rameters, external disturbances, and parameters change [11].
In this paper, the model refers to the wavelet recurrent fuzzy
neural network model, and the variation of the adaptation
quantity in the model is improved nonlinearly by increasing
the limit quantity parameter of adaptation. ,e data re-
quired for parameter estimation were the actual training
data of six outstanding basketball athletes (average age
18.2± 0.75, average training years 4.6± 0.49), and the
coaches’ training program was not intervened during the
test.

In order to further reduce the biaxial synchronization
error of the sports platform and improve the stability of the
system, the wavelet transformation capable of time-varying
signal analysis and the recursive structure with dynamic
capability were combined with the fuzzy neural network,
and the learning ability of the neural network was used to

learn and adjust the scaling and translation factors in the
wavelet function, the mean and standard deviation in the
fuzzy structure, and the connection weights between the
layers, according to the biaxial synchronization. ,e re-
cursive wavelet fuzzy neural network compensator is
designed to replace the cross-coupled synchronization
controller according to the two-axis synchronization error.

2. Physical Training Intensity Real-Time
Regulation Model

2.1. Real-Time Monitoring of Physical Strength. Physical
fitness is one of the important factors in the composition of
athletes’ competitive ability, and the level of physical fitness
can affect the play of techniques and tactics in the game and
is an important guarantee of the athletes’ technical and
tactical execution ability [12]. How to improve the athletes’
special physical ability is undoubtedly important to the
improvement of athletes’ competitive level. Among them,
how to make the training plan for the adjustment period
before the game so that the athletes can eliminate the fatigue
and recover their physical ability to participate in the game is
an important part of the physical training. ,e purpose of
this paper is to investigate the process of using mathematical
modeling to analyze the effects of training on athletic per-
formance and to understand the individualized adaptive
characteristics of athletes. In the process of modeling the
system for predicting the athlete’s response to training, it is
necessary to simplify this training adaptation system. ,e
simplification process includes the selection of the input and
output variables of the system, the creation of the model
structure, the collection of data for the identification of the
model parameters, and the application of the identified
model for prediction, as shown in Figure 1. In order to find
the best model, mathematical and statistical methods are
needed to compare the fitting ability of different models.

Banister et al.’s model assumes that exercise capacity is a
balance between fatigue and adaptation, and their study
shows that themodel fits the exercise adaptation process well
for subjects in laboratory conditions and for discus,
weightlifting, distance running, and swimming athletes [13].
,e ability to fit the model adequately demonstrates the
validity of the theoretical assumptions supporting themodel,
which are important for enriching sports training theory,
such as increasing the training load so that the increase in
fatigue exceeds the increase in adaptation, resulting in a
temporary decrease in athletic performance, and continuing
to decrease the load so that the rate of decline in fatigue
exceeds the rate of decline in adaptation, resulting in a
temporary increase in athletic performance. Modeling of the
training response of good swimmers has confirmed the
above processes.

,ese findings provide a new explanation for the phe-
nomenon of precompetition load reduction leading to an
increase in athletic performance. In order to find the best
model, mathematical and statistical methods are needed to
compare the fitting ability of different models. For example,
assuming that the amount of fatigue changes with the ac-
cumulation of training volume, a nonlinear model is built on
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this basis, and the newly established model statistically
confirms a better fit to the data than the original model,
which would explain well the phenomenon that athletes
have difficulty adapting when training with loads that are
beyond the norm. Conversely, when the load was reduced, it
was easy to produce an improvement in athletic perfor-
mance recovery. Modeling experiments conducted on
nonathletes individually under laboratory conditions have
the advantage of improving the confidence and discrimi-
nation of model parameter estimates, as shown in Table 1,
but the method of estimating parameters under laboratory
conditions is not applicable to modeling training adapta-
tions of athletes under real field conditions. Based on the
relevant model and parameters, it is possible to apply a
computer to simulate the response of the physical state to a
loading stimulus.

Although we already understand the relationship be-
tween the increase and decrease of sports training volume
and athletic performance, the existing mathematical models
do not have the ability to accurately predict the training
process of a given athlete to monitor it precisely. ,e ap-
plication of a systems theory approach to the study of re-
sponses to athletic training is becoming a hot topic of
research. ,is research was initiated by Banister and col-
leagues, and their initial model has now taken several ex-
tended forms.

2.2. Online Target Tracking and Deep Learning Strategies.
Methods of quantifying training load can be applied well
under standard laboratory conditions, and these methods
are simple quantification of a single training tool [14]. ,e
situation becomes much more complex when quantifying
load in field testing athletes because of the diversity of
training means and content. ,e established quantification
methods are performed by assigning different weights to
different training means and intensities. In endurance
sports, weights for different exercise intensities are deter-
mined using the percentage of heart rate reserve method, so
that the quantification function to quantify the load is called
training impulse, or TRIMP. ,e shortcomings of the
training load quantification method must lead to limitations
in the application of the model.
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Figure 1: Real-time monitoring model of physical strength.

Table 1: Model parameters.

Individual
athletes Credibility Distinguishability Number of

cases
1 0.23 0.14 2
2 0.64 0.15 4
3 0.96 0.16 2
4 0.33 0.04 4
5 0.69 0.12 5
6 0.21 0.06 7
7 0.62 0.08 6
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A multi-input modeling approach may be able to better
simulate the process of exercise adaptation, and multiple
inputs can summarize the content of various training forms
in the training program, but this approach modeling is
highly specific to the exercise program and requires more
stringent accuracy in data collection because there are more
variables and parameters in this model and more systematic
errors. ,e experimental and observed data enable the
structure of the model to be determined as well as the es-
timation of the model parameters. When the inputs and
outputs are known, it is necessary to identify the model, that
is, what kind of model can explain well the data obtained
from observations.

Due to the complexity of the physiological process of
training adaptation, the model can only be an abstraction of
the main features of this complex systemic process, and it is
impossible to consider all the influencing factors. Modeling
the process of training adaptation can only consider the
dynamic process of change of athletic ability during the
change of training load because, for the athlete, sports
training is the most important factor affecting athletic
ability, as shown in Table 2. An important step in the analysis
of mathematical models is to test how well the model fits the
observed data, that is, how well the model describes the
changes in the data.

As shown in Figure 2, the recursive wavelet fuzzy neural
network is structurally divided into five layers, with three
implicit layers, namely the affiliation function layer, the rule
layer, and the recursive wavelet function layer [15].,e neural
network controller combines fuzzy logic, wavelet processing,
and recursive structure to improve its processing capability
and accuracy and solve the shortcomings of static mapping.

2.2.1. First Layer (Input Layer). Both neuron nodes in this
layer are input nodes, which are equivalent to the input
variables. ,ey are the two-axis position synchronization
error e and the two-axis velocity synchronization error of the
H-type motion platform, respectively. ,e linear transfor-
mation relationship between the input and output of neu-
rons in this layer can be expressed as follows:

xi � N
l
i(N),

y(x)i � fi N
l
i(N) ,

fi N
l
i(N)  � neti(N), i � 1, 2, . . . ,

(1)

where xi is the input signal of the input layer, and the input
variables are the position synchronization errors,
respectively.

x
l
i �

ey1 − ey2

e(t)
. (2)

Speed synchronization error is as follows:

x
l
1 �

ey1 − ey2

e(1)
,

x
l
2 �

ey1 − ey2

e(2)
,

(3)

where e1 and e2 are the position tracking errors of the Y1-axis
linear motor and Y2-axis linear motor, respectively; yi(N) is
the output signal of the input layer; N is the number of
sampling times.

2.2.2. Second Layer (Subordinate Function Layer). ,e
output of each neuron in the input layer corresponds to 3
neurons in the affiliation function layer. ,e nonlinear
transformation in the affiliation function layer uses a
Gaussian function, and this transformation method incor-
porates a fuzzy logic inference approach to improve the
inductive performance of the network. ,e linear trans-
formation relationship between the input and output of
neurons in this layer can be expressed as follows:

net(N) �
x
2

− mj 
2

������

x
2

−

x
2

 ,

y
2
(N) � f(net(N)) � f

x
2

− mj 
2

������
x
2

− x
2

⎛⎝ ⎞⎠,

f(x) � exp x
2

 ,

(4)

where yN is the output of the input layer; jm is the mean of the
Gaussian function of the affiliation function layer; j is the
standard deviation of the Gaussian function of the affiliation
function layer; N is the output of the neurons of the affil-
iation function layer.

2.2.3. 5ird Layer (Rule Layer). Each neuron in the rule
layer is the antecedent part of a fuzzy logic rule, and the
neurons in this layer do the product operation on the input
signal of that layer. ,e linear transformation relationship
between the input and output of neurons in this layer can be
expressed as follows:

net3(N) �
 w

3
x
3

x(N)
,

y
3
(N) � f

 w
3
x
3

x(N)
 � exp net3i , i � 1, 2, 3 . . . 9,

(5)

where y(N) is the output of the affiliation function layer; wik

is the connection weight value between the affiliation
function layer and the rule layer; y3 is the output of the rule
layer.

Table 2: Factors affecting exercise capacity.

Influencing
factors Number of cases Impact cases Impact

score
Physical fitness 5 20.11 15.32
Weather 5 19.48 15.24
Opponent 5 20.16 14.33
Age 3 13.95 10.65
Diet 4 18.73 14.26
Coaches 59 61.88 60.36
Teammates 6 19.78 16.09
Training 15 27.22 22.25
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2.2.4. Fourth Layer (Recursive Wavelet Layer). ,is layer
contains the wavelet function operations, recursive opera-
tions, and the posterior part of the fuzzy logic rules. ,e
output of the wavelet function is k, denoted as follows:

ϕik � (xij) �
1 − xi − aij 

2
/b2  

���
bik

 exp
xi − aij 

2bij

⎛⎝ ⎞⎠, (6)

where yik is the i-th wavelet function in the k-th neuron of
this layer; ui is the output of the k-th wavelet function; wik is
the connection weight of the wavelet function; aik and bik are
the translation and scaling factors of the wavelet function,
respectively. From Figure 3, we can see the relationship
between different translation and scaling factors on the input
and output of the wavelet function.

2.3. H-Type Motion Platform to Control Motion Intensity.
,e physical state is continuously maintained at a low level,
and the change in load cannot cause a change in physical
state, which may be a sign of overtraining [16]. ,e long-
term accumulation of fatigue leads to the destruction of all
the dynamic balance described above, so the stimulation of a
short period of load change cannot cause a change in the
physical state [17]. Overtraining should also be judged in
conjunction with the athlete’s mental state and psychological
state. In this case, a longer rest period may be required to
reestablish the dynamic balance of the physical state in
response to the load stimulus.

,e dynamic diagnosis of the athletes’ physical state
requires continuous testing, which increases the training
content of usual training and may interfere with sports
training [18]. ,erefore, it is significant to study the indi-
cators for rapid testing of physical fitness state and evalu-
ation of load volume on the field [19]. Athletes’ responses to
training load stimuli have individual characteristics, and a
uniform training load may be too high for some athletes and
low for others. ,erefore, the evaluation of athletes’ training

load and physical fitness status should be part of daily
training, which is convenient for coaches to understand and
grasp the changes in athletes’ competitive status in time and
summarize the effect of each training session and athletes’
individual characteristics of load adaptation, as shown in
Figure 4. It is possible to predict the output with known
inputs or to control the change in the input for a given
output.

Even if the evaluation of load and fitness status cannot be
normalized and daily, the theory of dynamic diagnosis of
fitness status combined with load volume changes has some
significance, and its significance lies in the fact that a variety
of possibilities should be considered when an athlete’s fitness
status changes [20]. For example, when an athlete’s fitness
status decreases, it may be caused by a long-term low level of
load stimulation, and the load can be increased, or more
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likely, the load level exceeds the load that the current
functional capacity can bear, and the load should be reduced
to recover from fatigue [21]. When the above situation
occurs, coaches and athletes will consider a variety of reasons
for the change of physical fitness status, combine the change
of physical fitness with the change of load, and make a
prudent judgment.

3. Results and Analysis

3.1. Simulation and Results. ,e learning rate of the re-
current wavelet fuzzy neural network compensator is set as
follows: ω1 � 0.6, ω2 � 0.5, ω3 � 0.4, ω4 � 0.3, a� 0.1, b� 1.5,
ω5 � 0.8, m� 0.06, σ � 1.2. Figure 5 shows the desired po-
sition output curves and actual position output curves of Y1
and Y2 axes under the combined action of the global sliding
mode controller and the two-axis recursive wavelet fuzzy
neural network synchronous compensator, respectively,
without load. From the graphs, it can be seen that the actual
position output curves of Y1 and Y2 axes are basically
consistent with the given desired position output curves.

However, all of the above neural networks are feed-
forward neural networks, and the input and output of the
training samples are only in static mapping because feed-
forward neural networks cannot use the information inside
the neural network, and the approximation ability of the
function is also affected by the training samples. Since most
practical applications are dynamic systems, the recursive
structure can make use of the internal state of the network to
make the information passed this time contains the previous
error information, realize the characteristics of dynamic
mapping and data storage, and the system can have better
dynamic capabilities. ,erefore, the recursive wavelet fuzzy
neural network compensator designed by combining wavelet
fuzzy neural network with recursive structure has better

dynamic characteristics in the case of unknown parameters,
external interference, and parameter.

,e position tracking errors of Y1 and Y2 axis are
analyzed by using the global sliding mode control method
combined with the recursive wavelet fuzzy neural network
synchronization compensator. Based on the results of the
above modeling, as shown in Figure 6, it is possible to
track the 1.73 changes in the athletes’ physical status and
the changes in the load and combine the two for dynamic
diagnosis. Dynamic diagnosis is not contradictory to the
current static diagnosis and can be regarded as an ex-
tension of static diagnosis. Static diagnosis can make the
horizontal comparison of athletes’ physical status, while
dynamic diagnosis can make the vertical comparison of
athletes’ own physical status changes. Dynamic diagnosis
combining load and physical status can better judge the
load factors of athletes’ physical status changes, provide a
reference for coaches to scientifically formulate the load
amount of training plan, and regulate athletes’ status and
load.

,ey attach great importance to the search for indicators
established according to the project to establish training
characteristics, diagnosis and physical quality combination
assessment, physical injury of the athlete, a combination of
factors customized training program. In addition, a strict
training sequence is needed, for example, premature ageing
exercises, other organize core exercises, and then auxiliary
exercise strength. For essential strength exercise equipment,
the demand of foreign experts has a very high degree of
standardization.

,e global sliding mode control method combined with
the recursive wavelet fuzzy neural network synchronization
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compensator is used to reduce the dual-axis position syn-
chronization error under the no-load condition. ,erefore,
using the recursive wavelet fuzzy neural network synchro-
nization compensator designed in this chapter can effec-
tively reduce the synchronization error between the two axes
and ensure the tracking performance of the H-type motion
platform. At 2 s, the rated load LF� 63N is applied to the
H-type motion stage. ,e current diagnostic content of the
athlete’s status mainly includes the diagnosis of sports
performance, the diagnosis of competitive ability, and the
diagnosis of training load.

Under no-load condition, the position tracking errors of
Y1 and Y2 axes are analyzed by combining the global sliding
mode control method with the recursive wavelet fuzzy
neural network synchronization compensator. As can be
seen from Figure 7, after adding the rated load, the maximum
value of the Y1-axis position tracking error decreases from
3.59μm to 1.75μm compared with the cross-coupled con-
troller, and the maximum value of the regulation process is
2.69μm; the maximum value of the Y2-axis position tracking
error decreases from 1.65μm to 2.34μm compared with the
cross-coupled controller, and the maximum value of the
regulation process is 2.34μm. ,e model refers to the wavelet
recurrent fuzzy neural network model, and the variation of the
adaptation amount in the model is improved nonlinearly to
increase the limit amount of adaptation parameters.

,e systems research approach attempts to describe
dynamic system processes by reducing them to mathe-
matical models that capture the main influences of the

system, abstractly described as a function with a single input
and a single output. Whenmodeling the response to exercise
training, the organism is considered as a whole system, with
the training load as the input to the system and the change in
exercise capacity as the output of the system. On the one
hand, it is important to define the variable of motor ability
based on the results of existing studies, to determine the
method of testing, and to collect data according to the
definition, and the subject must be required to perform
frequent tests throughout the training process and also to
simulate the competition environment at full capacity.
Acquiring motor ability test data is a big difficulty in the
application of the model. Improper testing methods and
insufficient data can affect the application of the model. ,e
input to the model is the training load, so the training load
must be accurately quantified, and several foreign papers
have reviewed methods to quantify the training load.

3.2. Real-Time Scheduling of Exercise Intensity. Figure 8
shows the two-axis position synchronization error when
the global slidingmode control method is combined with the
recursive wavelet fuzzy neural network synchronization
compensator under the same simulation conditions. As can
be seen from the figure, the maximum value of the dual-axis
position synchronization error is reduced from 16.78 μm to
1.02 μm compared with the cross-coupled controller, and
the maximum magnitude during the regulation process is
15.63 μm. ,e use of the recursive wavelet fuzzy neural
network synchronization compensator designed in this
chapter can effectively improve the anti-interference per-
formance of the platform compared with the cross-coupled
control compensator between the two axes. ,e change of
athletes’ physical state should be seen as a dynamic change
process. It is often a review of the athlete at a certain point of
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time, and the diagnosis of the athlete’s physical fitness state
should also be a dynamic diagnosis, a continuous obser-
vation process, and only continuous observation can reflect
the process of the athlete’s physical fitness change, and the
diagnosis process needs to be combined with the dynamic
change of the sport’s load because for the athletes with large
load training, the change of the load is the main factor
affecting the change of the physical fitness state.

Aiming at the tracking problem caused by external
disturbances and uncertainties such as nonlinear friction,
the single-axis permanent magnet linear synchronous motor
is susceptible to the influence of external disturbances and
nonlinear friction during the use of the H-type motion stage,
the single-axis global sliding mode controller is designed by
introducing specific control parameters to weaken the in-
fluence of instability in the converging mode phase of the
sliding mode control process and effectively suppress the
jitter phenomenon of the control system, and then, Lia-
punov’s theorem is used to analyze the convergence and
stability of the designed,e convergence and stability of the
designed global sliding mode control method are then an-
alyzed by using Liapunov’s theorem.

,e cross-coupled synchronization controller is
designed by combining the single-axis tracking error and the
two-axis synchronization error for the two-axis linear motor
asynchronous problem. Figure 9 shows the comparison table
of simulation results under the conditions of using different
controllers (no loading, 60N loading, and 120N loading).
According to the control effect, the following conclusions
can be drawn: the recursive wavelet fuzzy neural network
synchronization compensator designed in this chapter im-
proves the synchronization performance of the dual-axis in
Y direction compared with the cross-coupling control
compensator, and the compensation signal of the dual-axis
can be adjusted instantly under the change of the beam load
to improve the tracking accuracy of the system single-axis
and suppress the effect of the sudden load addition. ,e
system has a better immunity performance. Although the
physiological and psychological quality of Chinese basket-
ball players has been developing in recent years, there is still
a big gap with Western countries, such as the analysis of
current sports problems and possible causes, and in order to
improve the competitiveness of professional athletes in

promoting physical and mental health, the fund will become
the team. Currently, for basketball players, all training is
focused on basic physical training and physical training in
the training room, while neglecting the importance of
postinjury injury prevention training.

,e simulation results show that the designed global
sliding mode controller can improve the convergence speed
of tracking error and ensure the single-axis tracking accu-
racy of the H-type motion platform compared with the
traditional sliding mode controller, and the tracking accu-
racy and a synchronization accuracy of the system can be
further improved after adding the cross-coupled synchro-
nization controller, but the improvement of synchronization
control accuracy is not very satisfactory due to the fixed
selection of the parameters of the cross-coupled controller.
Further improvement is needed.

In order to further improve the synchronization
performance of the H-type motion platform, a recursive
wavelet fuzzy neural network compensator with online
learning capability is designed to replace the cross-cou-
pled synchronization controller between the two axes of
the platform, and the parameters in the recursive wavelet
fuzzy neural network are adjusted in real time by using the
gradient descent method so that the synchronization error
of the H-type motion platform can be dynamically
compensated according to the change of load. ,e sim-
ulation results show that, compared with the cross-cou-
pled synchronization controller, the recursive wavelet
fuzzy neural network compensator can compensate the
system input signal in real time, thus effectively reducing
the impact of sudden load on the platform single-axis
tracking performance and two-axis synchronization error,
and reducing the impact of uncertain disturbance terms
on the system control process, and improving the syn-
chronization performance and robustness of the direct-
drive H-type motion platform.
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Figure 9: Comparison of controller output motion intensity.
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4. Conclusion

In this paper, the model refers to the wavelet recurrent fuzzy
neural network model, and the variation of the adaptation
quantity in the model is improved nonlinearly by increasing
the limit quantity parameter of adaptation. ,e data re-
quired for parameter estimation were the actual training
data of six outstanding basketball athletes (average age
18.2± 0.75, average training years 4.6± 0.49), and the
coaches’ training program was not intervened during the
test. In order to further reduce the biaxial synchronization
error of the sports platform and improve the stability of the
system, the wavelet transformation capable of time-varying
signal analysis and the recursive structure with dynamic
capability were combined with the fuzzy neural network,
and the learning ability of the neural network was used to
learn and adjust the scaling and translation factors in the
wavelet function, the mean and standard deviation in the
fuzzy structure, and the connection weights between the
layers, according to the biaxial synchronization. ,e sim-
ulation results show that the designed global sliding mode
controller can improve the convergence speed of tracking
error and ensure the single-axis tracking accuracy of the
H-type motion platform compared with the traditional
sliding mode controller, and the tracking accuracy and a
synchronization accuracy of the system can be further
improved after adding the cross-coupled synchronization
controller, but the improvement of synchronization control
accuracy is not very satisfactory due to the fixed selection of
the parameters of the cross-coupled controller. Further
improvement is needed.
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