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Abstract: Decades of scientific research have been conducted on developing and evaluating methods
for automated emotion recognition. With exponentially growing technology, there is a wide range of
emerging applications that require emotional state recognition of the user. This paper investigates a
robust approach for multimodal emotion recognition during a conversation. Three separate models
for audio, video and text modalities are structured and fine-tuned on the MELD. In this paper, a
transformer-based crossmodality fusion with the EmbraceNet architecture is employed to estimate
the emotion. The proposed multimodal network architecture can achieve up to 65% accuracy, which
significantly surpasses any of the unimodal models. We provide multiple evaluation techniques
applied to our work to show that our model is robust and can even outperform the state-of-the-art
models on the MELD.

Keywords: multimodal emotion recognition; multimodal fusion; crossmodal transformer; attention
mechanism

1. Introduction

In recent years, there has been a growing number of studies that have attempted to
recognize human emotion from either speech [1–3], text [4,5], or facial expressions [6,7]. In
reality, emotional communication is a temporal and multimodal process; typical human
conversations consist of a variety of cues and expressions that are rarely static. Thus, multiple
studies have highlighted the importance of multisensory integration when processing human
emotions [8–11].

Emotion recognition has extensive application prospects, including but not limited
to Human–Robot Interaction (HRI), Socially Assistive Robotics (SAR), Human–Computer
Interaction (HCI), and medicine. Discussion regarding the effectiveness of multimodal HRI
has dominated the research in recent years. For example, in the paper by
Stiefelhagen et al. [12], the researchers discussed a novel multimodal HRI system, which
included speech recognition, multimodal dialogue processing, visual detection, tracking,
and identification of users, which combined both head pose estimation and pointing ges-
ture recognition. The study with human participants concluded that the incorporation
of all of these modalities increased participants’ engagement and made the HRI scenario
more natural. For Socially Assistive Robots (SARs) to effectively communicate with hu-
man beings, robotic systems should have the ability to interpret human affective cues
and to react appropriately by exhibiting their own emotional response. In the work by
Hong et al. [13], the researchers presented a multimodal emotional HRI architecture to
assist in natural, engaging, bidirectional emotional communication between humans and a
robot. Both body language and vocal intonation were measured to recognize the user’s
affective state. The results of the experiment with human participants proved that bidi-
rectional emotion recognition instigated more positive valence and less negative arousal
during the interaction. Kim et al. [14] developed an audio-based emotion recognition
system that can estimate the expression levels for valence, arousal, and dominance. The
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extracted features from the speech data were used to train the automatic emotion classifier.
This classifier offers emotional communications in a natural manner during human–robot
interaction experiences for children with Autism Spectrum Disorder (ASD). More recently,
the study of [15] also applied deep learning methods to recognize emotion from the music.
Several deep learning networks were employed to train the extracted spectral features from
the music and predict the levels of arousal and valence.

Emotion recognition has also been heavily studied in the context of Human–Computer
Interaction (HCI). Creating human–computer interaction that would be as natural and
efficient as human–human interaction requires not only recognizing the emotion of the
user, but also expressing emotions. An example of such research is the work of Maat and
Pantic [16], where the authors proposed a system that is capable of learning and analyzing
the user’s context-dependent behavior and adapting the interaction to support the user.
Another example of an HCI system with emotion recognition is the Intelligent Tutoring
System developed by Kapoor et al. [17], which incorporated multisensory data to assist in
detecting frustration to predict when the user needs help. Emotion-oriented HCIs aim to
not only automatically recognize emotional states, but also mimic or synthesize emotions
in speech or facial expressions. As an example, previous studies focused on generating
voices that would have relevant emotional sentiment [18,19]. Learning emotions from the
speech provides a way of generating convincing emotional speech [20].

Medical specialists can also benefit from using emotion recognition systems as a
diagnostic tool for a wide range of medical symptoms. For example, in the study by
France et al. [21], the researchers compared the acoustic trends in the speech of healthy, de-
pressed, and suicidal individuals. Another medical example is clinical studies of schizophre-
nia and flat affect, which is an indicative symptom of the disease and is characterized as
diminished emotional expression [22,23].

In general, user affect is detected using a unique combination of body language
and vocal intonation, and multimodal classification is performed using computational
models, e.g., a Bayesian network [24,25]. When applied in the robotics domain, human
emotion recognition in the HRI system can especially make the interaction more natural,
understandable, and intuitive [26]. In the study by Barros et al. [27], a cross-channel
Convolutional Neural Network (CNN) structure was proposed to investigate how emotions
are expressed by a robotic system and changed the perception of human users. The network
was able to predict human emotions using features based on facial expressions and body
motions. The emotion recognition system was tested in a real HRI scenario with the iCub
robot. The robot was able to detect three different emotional states and gave feedback
by changing its mouth and eyebrow LEDs. In another study by Javed et al. [28], the
robotic system was trained to recognize emotion states from both typically developing
children and children with ASD. With the goal of measuring the overall engagement of
the child during the HRI session, emotion recognition was used as one of the measured
features. Therefore, it is believed that advancing emotion recognition from human beings
can significantly improve the role of empathy in HRI scenarios as well.

In this study, a robust transformer-based multimodal fusion network for emotion
recognition is presented. The embedding vectors from each individual modality were ex-
tracted from domain-specific models and fused via our proposed crossmodality transformer.
In addition to considering the joint representation across different modalities, we introduce
a robust multimodal fusion network to combine all the representation vectors from each
modality. The results reached state-of-the-art performance on the evaluated dataset.

2. Related Studies
2.1. Multimodal Fusion for Emotion Recognition

The primary fusion strategies from previous studies for multimodal emotion recog-
nition can be classified into feature-level (early) fusion, decision-level (late) fusion, and
model-level fusion [29]. Conventionally, feature-level fusion concatenates the features
from different modalities to obtain a joint representation, and the concatenated features are
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fed into a single classifier for emotion recognition. Schuller et al. [30] presented baseline
models, which concatenated the audio and visual features into a single feature vector
and used support vector regression to predict the continuous affective values. A recent
study [31] also investigated using a Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) to train different modalities of features and to combine different feature
vectors via concatenation. However, feature-level fusion may suffer from the problem of
data sparseness [29], so the performance of combining different modalities via a simple
concatenation is limited.

Unlike feature-level fusion, decision-level fusion employs and trains separate classi-
fiers for each modality and combines the outputs from each classifier to obtain the final
prediction. Liu et al. [32] applied different kernel-based classifiers for different modalities
and boosted the fusion results at the decision level. However, decision-level fusion does
not consider the mutual relations between different modalities, which results in losing
correlated information among different modalities.

Researchers have also taken advantage of deep learning models for model-level fu-
sion, which also consider the interrelations between different modalities. Chen et al. [33]
achieved model-level fusion by concatenating the high-level features from different modal-
ities. More recently, Choi et al. [34] proposed a novel multimodal fusion architecture based
on a neural network for classification tasks. The model architecture ensured both the effec-
tiveness of the crossmodal relationship and the robustness of fusing different modalities.

2.2. Transformer Method

Multimodal Emotion Recognition (MMER) with fusion by the transformer has drawn
much attention recently. The transformer is a network architecture that purely depends on
the attention mechanism without any recurrent structure [35]. The latest studies focused
on using attention mechanisms to fuse different modalities of features for MMER [36–39].
Ho et al. [36] proposed a multimodal approach based on a multilevel multi-head fusion
attention mechanism and RNN to combine audio and text modalities for emotion estima-
tion. The paper also stated that the method of attention mechanism fusion for multiple
modalities improved the emotion recognition performance compared to the unimodal
approach. Another study by Huang et al. also compared decision-level and feature-level
fusions by using the attention mechanism [37]. This study utilized the transformer to fuse
audio and visual modalities at the multi-head attention level. The experiments showed
that the proposed method had better performance via feature-level fusion.

The previous study investigated the use of the crossmodal transformer to reinforce a
target modality by introducing the features from another modality, which also learns the
attention across these two modalities’ features [40]. One recent study [39] proposed a mul-
timodal learning framework based on the crossmodal transformer target for conversational
emotion recognition, combining word-level features and segment-level acoustic features as
the inputs. The results demonstrated the effectiveness of the proposed transformer fusion
method. Another recent study [38] combined three different modalities, text, audio, and
vision, with features extracted from the pre-trained self-supervised learning model. This
study designed a transformer-based multimodal fusion mechanism that also considered
the intermodality connections and achieved state-of-the-art results for the task of MMER.

Even though the effectiveness of combining two different modalities by using the
attention mechanism has been widely studied, the challenge emerges when the need arises
to combine three or more modalities due to the structure of multi-head attention. For this
reason, most previous studies on MMER based on the attention mechanism proposed and
tested the network architecture for only two modalities [36,37,39]. The study [38] deployed
models for combining three modalities with transformer-based fusion, but a simple feature
concatenation was added at the end to combine different modalities’ features. However, in
practice, concatenating different high-dimensional features may result in data sparseness
and degrade the performance [29].
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3. Dataset

The Multimodal Emotion Lines Dataset (MELD) [41] is an extended version of the
EmotionLines dataset [42]. The MELD includes a total of 13,708 samples segmented
out from the TV series Friends, with the samples grouped as 9989 for training, 1109 for
validation, and 2610 for testing. Each segmented sample has the following data attributes,
which were used in this study: video clip, utterance, text from the utterance, and emotion
labels. There are seven emotion labels available for the dataset: Anger, Disgust, Sadness,
Joy, Neutral, Surprise, and Fear. These are typically considered to be the basic emotions,
and other emotions are seen either as combinations of these basic emotions as studied by
Bower [43]. Label distributions in the training, validation and test datasets can be seen in
Figure 1. There is an inherent imbalance in the MELD: Neutral samples dominate in each of
the datasets. Utterance audio clips vary in time length, but are averaged to around 5 s-long
recordings. On average, there are around seven words per one utterance. The average
duration of an utterance is 3.95 s, and the average number of utterances per dialogue is 9.6.
The number of emotions per dialogue is 3.3 on average.

Figure 1. Number of samples per one emotion label for the training, validation, and test dataset.

4. Methods

In this study, three different deep learning models are introduced for feature extraction
from three different modalities. The crossmodality fusion transformer approach and
EmbraceNet for fusion are discussed for multimodal classification.

4.1. Feature Extraction

Three different deep neural networks were used for feature extraction: Generative Pre-
trained Transformer (GPT), WaveRNN, and FaceNet+RNN. Transfer learning is a training
scheme that provides help for training small dataset [44]. Transfer learning proposes first
pre-training the model on a large-scale dataset, then for another smaller target dataset,
the pre-trained model can be fine-tuned and achieve the desired performance efficiently.
Therefore, the transfer learning paradigm was adopted in this study. In the stage of feature
extraction, we first fine-tuned the domain-specific models for the emotion classification
task with a single modality. Then, we extracted the features before the fully connected
layer from the fine-tuned models, which were prepared for the fusion and training in the
multimodal fusion stage. Figure 2 shows a dialogue sample from the conversation of two
actors, and different modalities of features from the dialogue are fed into the corresponding
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models. The WaveRNN accepts the audio features from the sentence’s audio clip, and the
sequential face images from the video clip are fed into the FaceNet+RNN model. For the
text modality, the input consists of the dialogue of the history, current sentence, and reply.

4.1.1. Model for Text Modality

We used the GPT [45] as our language model for extracting the features from the
text modality. GPT is a multilayer transformer-based model, which was pre-trained on
the BookCorpus dataset [46] and fine-tuned on the MELD dialogue dataset. As shown in
Figure 2, the transfer learning scheme proposed by Wolf et al. [47] was adapted. Interested
readers can refer to their repository (https://github.com/huggingface/transfer-learning-
conv-ai, accessed on 18 July 2021) for more details. To estimate the emotional states of
the current sentence, we combined the history of the dialogues, the current sentence, and
the reply sentence to generate sentence embeddings. Then, the position embeddings and
segment embeddings were summed up to build a single input sequence for the transformer
model to obtain the output sequence tokens.

Figure 2. The crossmodality attention fusion transformer.

The optimization of the model was performed by multi-task learning. The fine-tuning
was performed by introducing a combination of different loss functions: (1) next-sentence
prediction loss, (2) language modeling loss, and (3) emotion classification loss. For the
next-sentence prediction loss, L(s), a special token [CLS] is added at the end of the input
sequence. The optimization goal was to train a classifier to discriminate the gold reply
(ground-truth sentence) from the randomly sampled distractor (the sentence other than the
ground-truth). The corresponding last hidden state for token [CLS] is passed to the linear
classifier, and the cross-entropy loss is used to optimize the classifier. For the language
modeling loss, L(l), the final hidden states of the outputs are extracted to predict the next
reply tokens, and the cross-entropy loss is used to optimize the language model. For
the emotion classification loss, L(e), a multilayer classifier is introduced for classifying
seven emotion labels from the MELD. During training, the last hidden state from the final
hidden layer is fed into the classifier to predict the emotions, and the cross-entropy loss is
computed to optimize the emotion model. Finally, the total loss function for optimization
is the sum of these losses:

L(total) = L(s) + L(l) + L(e). (1)

https://github.com/huggingface/transfer-learning-conv-ai
https://github.com/huggingface/transfer-learning-conv-ai
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4.1.2. Model for Audio Modality

The WaveRNN [48] model was used as an audio model to extract features from
original audio clips. The original waveform of the audio and generated spectrogram of
the signal are both inputs in the model. The pre-trained model used in this study was
trained on LJSpeech dataset [49]. During the preprocessing, waveforms were sampled
at a 16,000 Hz sample rate, and spectrograms were generated. Moreover, zero-padding
for the batch inputs was applied on-the-fly during training. The input channels of the
waveform and spectrogram have to be 1, so we averaged the values from both channels
of the audio inputs. All the preprocessing was implemented via the torchaudio library
(https://pytorch.org/audio/stable/index.html, accessed on 18 July 2021). As shown in
Figure 2, the acoustic features from the time interval of one person’s speech were extracted
as the inputs for the model.

The input shapes for the WaveRNN can be defined as follows:

[batch_size, n_channel = 1, f eature_size = (n_time− kernel_size + 1)× hop_length]

for the input waveform, and:

[batch_size, n_channel = 1, n_ f req, n_time]

for the input spectrogram, where hop_length = 200, kernel_size = 5, and n_time =
240 in this study. As can be seen in Figure 3, the feature vector with the shape of
[(n_time− kernel_size + 1)× hop_length = 47,200,512] before the fully connected layer of
the WaveRNN model is extracted, where 512 is the default feature size of the WaveRNN
output. The classifier consists of two consecutive linear layers at the end, giving us the
predictions of the emotional states.

Figure 3. The classifier added to WaveRNN.

4.1.3. Model for Face Modality

Deep CNN has been widely studied for facial emotion recognition from videos by
extracting the sequence of face embeddings [50–52]. Studies showed that by combin-
ing the deep CNN and temporal models, one could effectively recognize facial emo-
tion from the videos [50,52]. FaceNet is a deep CNN model that has been utilized to
identify facial features from the image inputs [53]. FaceNet has an open-source library
(https://github.com/timesler/facenet-pytorch, accessed on 18 July 2021) implemented
with Pytorch designed for face verification, recognition, and feature extraction. The Multi-
task CNN (MTCNN) [54] recognizes a face in the video frames and returns the sequence of
the cropped images with the detected face from the video input. Afterward, we used the
Inception ResNet (V1) model, which was pre-trained on the VGGFace2 [55] and CASIA-
Webface [56] datasets, to extract the sequence of face embeddings from the sequence of
images. The dimension of the returned embeddings, by default, equals 512. As illustrated
in Figure 2, we can obtain a sequence of face embeddings during the time interval of one
person’s speech.

Furthermore, we incorporated an RNN-based model to learn the temporal relations in
the sequence of images. The Gated Recurrent Unit (GRU) [57] is similar to the LSTM [58]

https://pytorch.org/audio/stable/index.html
https://github.com/timesler/facenet-pytorch
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network with a forget gate, but is more efficient in training. The formulations of the GRU
network can be stated as follows:

• Update gate zt: defines how much of the previous memory to keep.

zt = σ(Wzxt + Uzht−1); (2)

• Reset gate rt: determines how to combine the new input with the previous memory.

rt = σ(Wrxt + Urht−1); (3)

• Cell value h̃t:
h̃t = tanh(Whxt + Uh(ht−1 � rt)); (4)

• Hidden value ht:
ht = (1− zt)� h̃t + zt � ht−1; (5)

where � denotes the Hadamard product.
The extracted sequence of face images has variable lengths; therefore, some samples

were downsampled to the fixed length. Due to the limitation of the GPU’s memory and
the consideration of training efficiency, the fixed length for the extracted images sequence
in this study was set to 50 images. Oppositely, zero-padding was applied during data
preprocessing to the sequences with a shorter length. Finally, during training, the last
hidden state value, ht, of the GRU outputs was extracted, and a classifier was introduced
to learn the emotion classification task.

4.2. Robust Crossmodality Fusion Transformer with EmbraceNet

In this section, we demonstrate the network architecture for multimodal fusion and
classification, which is depicted in Figure 4. Our model consisted of two main parts,
crossmodality transformer fusion and overall robust fusion.

Figure 4. The crossmodal fusion transformer [40] with EmbraceNet [34].

4.2.1. Crossmodality Transformer Fusion

The idea of the crossmodal transformer was initially proposed by Tsai et al. [40]. The
crossmodal transformer can enrich the information for one modality from another modality.
In this study, we adapted the network architecture to fuse different input modalities for
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emotion recognition. Following the formulation of [40], for example, we denote the passing
of Modality A information to another Modality B by using “A → B”. The multi-head
attention was proposed in the work [35], where the attention function was mapping the
query, keys, and values to the output.

Figure 5 shows the architecture of the crossmodal transformer. We denote the input
features for Modalities A and B as XA ∈ RTA×dA , XB ∈ RTA×dB , where T and d are
the sequence length and feature size. As shown in Figure 5, we can define the query
as QA = XAWQA , keys as KB = XBWKB , and values as VB = XBWVB , where WQA ∈
RdA×dk , WKB ∈ RdB×dk , WVB ∈ RdB×dV are the weights. Then, the fused attention output
vector Y from Modality A to B can be represented as follows:

Yattention = Attention(XA, XB)

= so f tmax(
XAKᵀ

B√
dk

)VB

= so f tmax(
XAWQAWᵀ

KB
Xᵀ

B√
dk

)XBWVB .

(6)

Figure 5. The architecture of the crossmodal transformer.

Following the setting from the previous study [35], we also added a residual connec-
tion from the query to the attention output and layer normalization.

x = LayerNorm(Yattention + QA). (7)

Then, a feed-forward layer was applied, which consisted of two fully connected layers
with a ReLU activation function:

fx = Linear(x) = xAᵀ
x + bx. (8)

xa = ReLU( fx). (9)

fxa = Linear(xa) = xa A′xa
ᵀ + bxa, (10)

where Ax ∈ Rdx×2dx , A′xa ∈ R2dx×dx , and bx ∈ R2dx , bx ∈ Rdx .
Finally, another residual connection with normalization was used to obtain the final

embedding representation vector from Modality A to B.

outA→B = LayerNorm( f xa + x). (11)
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Taking the example of the crossmodal fusion for the text modality, the final attention
representation of the feature was the Hadamard product of two crossmodality features, as
suggested in previous study [38], which is given as follows:

AttentionT = outF→T � outA→T . (12)

where A denotes audio, F denotes face, T denotes text, and � denotes the Hadamard
product.

During training, the crossmodal transformer module transforms the source modality
into the key/value pair to interact with the query, the target modality. The previous
study showed that the crossmodal transformer can learn correlated information across
modalities [40].

4.2.2. EmbraceNet for Robust Multimodal Fusion

For the multimodal emotion recognition task, we not only considered crossmodal
fusion by using the transformer but also wanted to ensure the robustness of combining
the multimodal outputs. We employed the EmbraceNet [34] in our network architecture,
which focuses on dealing with crossmodal information carefully and avoids performance
degradation due to the partial absence of data.

As can be seen in Figure 6, the EmbraceNet consists of two main components, the
docking layers, and an embracement layer.

Figure 6. The EmbraceNet for multimodal fusion.

4.2.3. Docking Layers

Three different deep learning models were used to obtain the feature vectors from
the three different modalities. Each modality has different characteristics and different
sizes of extracted feature vectors, so the docking layers act as a preprocessing module
before being fed into the embracement layer by converting different modalities’ features to
the same size. The docking layers consist of a fully connected layer followed by a ReLU
activation function. Each feature vector from different modalities is converted to the same
embracement size, which in this study was equal to 256. Finally, the docking layers output
m feature vectors, dk ∈ {d(1), d(2), ..., d(m)}, where m = 3 denotes the number of modalities
in this study, and dk = [d(k)1 , d(k)2 , ..., d(k)c ]ᵀ, where c is the dimensionality of the vector.
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4.2.4. Embracement Layer

The embracement layer is formalized as follows. Let ri = [r(1)i , r(2)i , ...r(m)
i ], where

i ∈ {1, 2, ..., c} and m ∈ {1, 2, 3}, be a vector that can be drawn from a multinomial
distribution, i.e.,

ri ∼ Multinomial(1, p), (13)

where p = [p1, p2, ..., pm]ᵀ are the probability values and ∑k pk = 1. It should be noted that
only one value of ri is equal to 1, and the rest of the values are 0. Then, the vector ri is
applied to dk as:

d′(k) = r(k) � d(k), (14)

where � denotes the Hadamard product (i.e., d′ i(k) = ri
(k) · di

(k)). Finally, the model
combines all the features to generate a fused embedding vector e = [e1, e2, ..., ec]ᵀ, and:

ei = ∑
k

d′(k)i , (15)

where e is the final output vector for the final multimodal fusion emotion classification
task. In this study, k ∈ {F, T, A}, and the final representation of the output vector is:

ei = ∑
k∈{F,T,A}

d′(k)i . (16)

As stated in [34], the docking layers that consider the correlations between different
modalities during training cause only part of the feature embedding vector for each
modality to be further processed in the embracement layer. The selected features’ indices
are randomly changed so that each docking layer will learn to generate similar embedding
vectors, and the embracement layer can generate the same output. The multinomial
distribution for the selection process also acts as a regularization step, preventing the
model from excessively learning from specific modalities.

5. Experiments
5.1. Computational Environment

Pytorch (Version 1.8) with CUDA Version 10.2 was utilized to develop the model and
evaluate the performance of the MELD. The training of the model was run on two Nvidia
GeForce GTX 2080 Ti graphic cards with 11 GB of memory.

5.2. Training Details

The training process consisted of two parts. As stated above, we first fine-tuned the
single modality data via three different domain-specific models. For the text modality, the
inputs were the word embeddings of the sentence, including the history of dialogue and
the reply. Secondly, the input for the video modality was a sequence of face images with a
fixed sequence length. Finally, the input for the audio modality was a combination of an
audio waveform and spectrogram data for the audio modality.

Furthermore, for the proposed multimodal fusion model, we combined all of the
extracted features from the domain-specific models before the last fully connected layers.
We used the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001 and
the cross-entropy loss for the multiclass classification problem.

5.3. Evaluation Metrics

We evaluated the performance of multimodal emotion recognition task using the
following evaluation metrics: Accuracy, Balanced Accuracy, Precision, Recall, and F1-score.
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Using the notions of True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN), the expression of these metrics is given as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (17)

Balanced Accuracy =
Sensitivity + Speci f icity

2
, (18)

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
, (20)

F1 = 2
Precision× Recall
Precision + Recall

, (21)

where:
Sensitivity =

TP
TP + FN

, (22)

Speci f icity =
TN

TN + FP
. (23)

It should be noted that the Balanced Accuracy is commonly used for evaluating imbal-
anced datasets; thus, it was believed that it would be effective for evaluating the MELD.
Balanced Accuracy for multiclass classification is defined as the average Recall obtained from
each of the classes. The Precision shows how many positive predicted samples are truthfully
positive, and the Recall tells how many positive samples are correctly classified as positive
by the model. The F1-score takes both the Precision and Recall into account, which is the
harmonic mean of the Precision and Recall.

5.4. Performance Evaluation

We evaluated the performance of our fusion model via the following strategies: (1)
comparing the performances of the classification for the unimodal and for the multimodal
models and (2) contrasting the performances of our proposed method with existing studies.
The visualization of the performance includes using a confusion matrix and the feature
embedding visualization of the MELD using t-distributed Stochastic Neighbor Embedding
(t-SNE) [59].

6. Results and Discussion
6.1. Performance Comparison between Single Modality and Multiple Modalities

Since the MELD has already been divided into training, validation, and test sets, we
built our crossmodality fusion model, tuned the training hyperparameters based on the
training and validation set, and evaluated the model on the test set to obtain the final results.
Table 1 shows the performances of the single modality and the proposed multimodal fusion
model. The fusion evaluation was performed by evaluating the classification results of the
fused representation vectors. The fusion model outperformed all single modality models
from the weighted average metrics. Specifically, the proposed fusion model achieved
a Precision of 63.1%, a Recall of 65.0%, and an F1-score of 64.0% based on the weighted
average. The text modality model contributed the most to the final fusion results, achieving
a weighted average F1-score of 61.8%.

Table 2 presents the overall performance of the single modality and multimodal
models. Evaluating the performance of each individual modality, the modality of text
had the highest Accuracy and Balanced Accuracy from the experiments. However, the face
modality had the lowest results. All evaluation metrics showed that our multimodal fusion
model outperformed the unimodal results.
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Table 1. The performance of the classification results for the MELD (PRE: Precision, REC: Recall, F1: F1-score) (Unit = %).

Emotion

Modality

Audio Face Text Multimodal

PRE REC F1 PRE REC F1 PRE REC F1 PRE REC F1

Neutral 48.5 99.8 65.2 48.1 99.0 64.7 72.7 82.1 77.1 74.0 84.9 79.1
Joy 45.5 1.2 2.4 15.0 0.7 1.4 54.4 53.7 54.1 56.7 57.2 56.9
Sadness 0.0 0.0 0.0 0.0 0.0 0.0 40.1 33.2 36.3 49.6 29.3 36.9
Anger 60.0 0.9 1.7 0.0 0.0 0.0 53.4 39.1 45.1 51.4 44.7 47.8
Surprise 16.7 0.4 0.7 0.0 0.0 0.0 53.0 60.0 56.3 54.4 61.4 57.7
Fear 0.0 0.0 0.0 0.0 0.0 0.0 16.1 10.0 12.3 50.0 6.0 10.7
Disgust 0.0 0.0 0.0 0.0 0.0 0.0 52.4 16.2 24.7 47.1 11.8 18.8
Weighted Avg. 40.0 48.4 43.8 25.5 47.8 33.3 61.0 62.6 61.8 63.1 65.0 64.0

Table 2. The overall classification results of the single modality and multimodal methods (Unit = %).

Modality Accuracy Balanced Accuracy F1

Audio 48.4 14.6 43.8
Face 47.8 14.3 33.3
Text 62.6 42.0 61.8
Multimodal 65.0 42.2 64.0

The inherent imbalance issue from the MELD caused the low performance of the
Balanced Accuracy, which is also reflected in the confusion matrix of the multimodal results.
As can be seen in Figure 7, most of the predictions of samples tend to lie in the first column
of the confusion matrix, which is the Neutral emotional class. The reason for this issue is
that over 47% of the samples from the MELD are labeled as Neutral. Therefore, the model is
influenced by the data imbalance and learns more weights for the Neutral emotional class.

Figure 7. The confusion matrix for the multimodal results.

6.2. Comparison with Existing Studies

Table 3 compares the performance of the proposed model with the existing studies
that also implemented the multimodal architecture and tested it on the MELD. Most of the
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previous studies [36,39] only considered the audio and text modalities. However, the study
by Siriwardhana et al. [38] proposed a multimodal fusion model for combining the modality
of audio, face, and text and achieved state-of-the-art results. The results from the previous
studies demonstrated that both the Accuracy and F1-scores were improved by combining
multiple modalities compared with a single modality. The previous results also yielded
that single modality models for both audio and face modalities cannot learn any distinct
emotion features, which is also supported by the results of our experiments. Compared
to the study by [38], our proposed method achieves higher Accuracy and equivalent F1-
scores, which matches the state-of-the-art performance and propounds the robustness in
multimodal emotion classification.

Table 3. The comparison of the proposed model with existing studies (A: Audio, F: Face, T: Text)
(Unit = %).

Model Modality Acc F1

N. Ho et al. [36]

A 48.8 45.3

T 61.7 59.0

Multimodal
(A + T) 63.3 60.6

Z. Lian et al. [39]

Audio 46.9 38.2

Text 60.6 58.3

Multimodal
(A + T) 62.0 60.5

S. Siriwardhana et al. [38]
Multimodal
(A + F + T) 64.3 63.9

Robust Crossmodality Fusion (proposed)

Audio 48.4 32.1

Face 47.8 31.4

Text 62.6 61.2

Multimodal
(A + F + T) 65.0 64.0

6.3. t-SNE Visualization for the MELD

Figure 8 shows the visualization of the embedding outputs from the last fully con-
nected layer of our proposed model. The embedding vectors are projected into a 2D plan
by using t-SNE [59]. As can be seen, the sparseness of the Neutral class spans over all
the other classes, which makes training more challenging. However, this is not particu-
larly surprising given the fact that the Neutral emotion may contain characteristics from
either emotion.

It can also be seen that the cluster of the Surprise emotion is far away from the cluster
of Neutral emotion data points, meaning the model generates distinct features for this class,
which are also reflected in Table 1, showing that the Surprise emotion obtains the highest
F1-score among the other emotion classes, except for Neutral.
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Figure 8. The t-SNE visualization for the MELD.

7. Conclusions

This study demonstrated a robust multimodal emotion classification architecture,
which included crossmodal transformer fusion to combine three different modalities of the
input information. The architecture considers both the joint relations among the modalities
and robustly fuses different sources of the representation vector. Three separate prediction
models were adapted to identify emotion from audio, visual, and textual inputs. Text,
audio, and image inputs were trained by GPT, WaveRNN, and FaceNet+GRU, respectively.
The designed transformer-based fusion mechanism with EmbraceNet demonstrated the
ability to solve the task of multimodal feature fusion from multiple pre-trained models.
EmbraceNet takes the attention outputs from the crossmodal models and embraces them to
build a fused representation of the emotion embedding vectors. The experiment’s metrics
showed that our multimodal classification model outperforms every single modality model.
However, due to innate imbalance in the dataset, Balanced Accuracy is generally lower than
Accuracy. Future studies should consider introducing data augmentation techniques to
handle the imbalanced data issue.

Furthermore, experimental results on the MELD demonstrated the effectiveness of the
proposed method. The performance of our method can reach the previous state-of-the-art
strategies [38] (with a 0.7% performance improvement on Accuracy). The performance of
the F1-score is equivalent. Nevertheless, our proposed network architecture extends the
previous studies of multimodal emotion recognition with the crossmodal transformer [38,40],
and the structure of the network can also be robustly expanded for a higher number of
input modalities. For future studies, other input modalities such as different physiological
measurements should also be added to this network architecture. Besides, the emotions
stimulated by actors from a comedy can be exaggerated and different from real emotions,
which could also lead to biased results [60]. Therefore, more multimodal datasets should be
evaluated in future work.
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