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  I N T R O D U C T I O N 

 In cardiac muscle, the type-2 ryanodine receptor (RyR2) 

channel plays a central role in excitation – contraction 

coupling. The cardiac action potential triggers a small 

Ca 2+  infl ux through the L-type Ca 2+  channel and this Ca 2+  

infl ux activates nearby RyR2 channels, initiating Ca 2+  

release from the SR. This process is known as Ca 2+ -induced 

Ca 2+  release (CICR). How CICR is controlled in cells re-

mains an open question. 

 The open probability (Po) of single RyR2 channels is 

sensitive to changes in the intra-SR Ca 2+  level ( Lukyanenko 

et al., 1996 ;  Gyorke and Gyorke, 1998 ). A drop in local 

intra-SR Ca 2+  has been proposed to help  “ turn off ”  

RyR2-mediated SR Ca 2+  release, stabilizing CICR in car-

diac muscle ( Lukyanenko et al., 2001 ;  Terentyev et al., 

2002 ;  Gyorke et al., 2004 ). The mechanism of this RyR2 

intra-SR (luminal) Ca 2+  regulation, however, is not well 

understood. It may involve a Ca 2+  binding site(s) on the 

luminal surface of the RyR2 channel itself and/or Ca 2+  

interactions with RyR2-associated intra-SR regulatory 

proteins like calsequestrin (CSQ). Calsequestrin is a low 

affi nity, high capacity intra-SR Ca 2+ -binding protein 

( Fliegel et al., 1987 ;  Scott et al., 1988 ;  Choi and Clegg, 

1990 ;  Fujii et al., 1990 ;  Arai et al., 1991 ;  Treves et al., 

1992 ). Cardiac muscle contains only one CSQ isoform 

(CSQ2;  Lahat et al., 2001 ) whereas skeletal muscle con-

tains two (CSQ1 and CSQ2;  Paolini et al., 2007 , and ref-

erences therein). The two CSQ isoforms are quite similar 

but the C terminus of CSQ2 possesses variable lengths 

of acidic residues and two consensus phosphorylation 

sites ( Yano and Zarain-Herzberg, 1994 ). Several Ca 2+  ions 

(20 – 80) bind to CSQ with a K D  around 2 mM ( di Barletta 

et al., 2006 ). Calcium binding induces a signifi cant con-

formational change in the CSQ protein ( Slupsky et al., 

1987 ;  Mitchell et al., 1988 ) prerequisite of the CSQ oligo-

merization process ( Park et al., 2003 ). The RyR and CSQ 

are closely associated and this association is thought to 

involve other integral SR proteins, triadin and junctin 

( Gyorke et al., 2004 ). It is now commonly believed that 

CSQ2 acts not only as a local intra-SR Ca 2+  buffer but as 

a Ca 2+ -dependent regulator of RyR2 channel function 

( Bers, 2004 ;  Terentyev et al., 2007 ). 

 The objective of this paper is to explore mechanisms 

of luminal Ca 2+  regulation of single RyR2 channels. An 

effective luminal RyR2 Ca 2+  regulation mechanism must 

fi rst be able to distinguish between luminal Ca 2+  and 
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et al. (2006) . Purifi cation was done by phenyl-sepharose purifi ca-
tion either in column or in batch. Proteins were quantifi ed ac-
cording to standard procedures ( Lowry et al., 1951 ). Native CSQ2 
protein was also isolated from adult rat hearts using established 
procedures ( Kobayashi et al., 2000 ). 

 In Vitro Binding Assay Using a T7-Affi nity Column 
 Vesicles of the heavy SR fraction, prepared from rabbit hearts pre-
viously described ( Saito et al., 1984 ), were solubilized in a buffer 
containing 3% CHAPS, 1 M NaCl, 20 mM Tris-HCl, pH 7.5, 1 mM 
DTT, and protease inhibitors. Solubilized membranes were cen-
trifuged at 105,000  g  in a Beckman Airfuge for 1 h. The super-
natant was precleared with T7-affi nity beads for 2 h at 4 ° C to 
eliminate nonspecifi c binding and then incubated with the T7-
CSQ2 affi nity beads in 0.3% CHAPS, 20 mM Tris-HCl pH 7.5, 0.15 M 
NaCl, 1 mM DTT for 20 h at 4 ° C in the presence of either 1 mM 
EGTA or 1 mM CaCl 2 . Bound proteins were eluted by boiling in 
the SDS sample buffer and subjected to SDS-PAGE ( Laemmli, 
1970 ) in 10% polyacrylamide gels. After electrophoretic separa-
tion, proteins were either stained with Coomassie staining or 
transferred onto nitrocellulose membranes. Western blots with 
the Sh33 anti-Triadin antibody ( Guo et al., 1996 ) were performed 
using polyclonal antibodies (gift from K.P. Campbell, The Univer-
sity of Iowa, Iowa City, IA). Densitometric analysis was performed 
with Image for Windows software (version Beta 4.0.2; Scion). 

 Turbidity Measurements 
 Experiments were performed in a double-beam Model Lambda-2 
spectrophotometer (Perkin-Elmer), with a 1-cm path length quartz 
cell at room temperature. Turbidity measurements of CSQ2-WT, 
CSQ2-R33Q, and CSQ2-L167H (100  μ g/ml protein) were per-
formed by adding 1 – 2- μ l aliquots of concentrated CaCl 2  solution 
(0.1 – 1 M) in 20 mM MOPS, pH 7.2, 100 mM CsCl. At each addi-
tion, protein samples were stirred and equilibrated for 2 min be-
fore measuring absorbance at 350 nm. Data were corrected for 
sample dilution and expressed as absorbance at 350 nm. 

 Sarcoplasmic Reticulum Preparation 
 Sarcoplasmic reticulum microsomes were prepared from rat 
heart, according to published methods ( Chamberlain et al., 1984 ). 
In brief, ventricles were cut into 5 – 10-mm cubes before 30 – 32-g 
portions were homogenized in 5 volumes (vol/wt) of sucrose, 0.5 
mM dithiothreitol, 3 mM NaN3, and 10 mM imidazole-HCl, pH 
6.9. The homogenate was centrifuged 15 min at 5,000 rpm (3,800  g ). 
The supernatant was fi ltered and centrifuged again at 13,500 rpm 
for 15 min (27,900  g ). After fi ltration through cheesecloth, the 
supernatant was centrifuged for 2 h at 32,000 rpm (119,200  g ). 
The pellet was resuspended and samples quick frozen in liquid 
nitrogen. Stored aliquots were quickly defrosted, kept on ice, and 
used within 5 h. 

 Single-Channel Recording 
 Planar lipid bilayers were formed from a 5:3:2 mixture of bovine 
brain phosphatidylethanolamine, phosphatidylserine, and phos-
phatidylcholine (50 mg/ml in decane) across a 100- μ m hole in a 
12-micron-thick Tefl on partition. This hole separated two aque-
ous compartments. One compartment (trans) was fi lled with 
HEPES-Ca 2+  (10 mM Ca 2+ , pH 7.4) and virtually grounded through 
a patch-clamp amplifi er. The trans compartment always contains 
the luminal side of the RyR2 channel ( Tu et al., 1994 ). The other 
compartment (cis) was fi lled with HEPES-TRIS solution (114 mM 
TRIS, pH 7.4). Subsequently, 500 – 1000 mM Cs-methanesulfo-
nate, 2 mM CaCl 2 , and then 5 – 15  μ g of the cardiac SR microsome 
preparation were added to the cytosolic compartment while stir-
ring. Once channel activity was observed, the solutions in both 
compartments were exchanged at a rate of 4 ml/min (for 5 min) to 
establish the desired test conditions. Unless otherwise specifi ed, 

Mg 2+  (because luminal Mg 2+  is likely always present at 

millimolar levels). Second, it should operate between 

0.2 and 1 mM, the putative range over which local intra-

SR Ca 2+  likely varies in cells. Third, it should substan-

tially reduce RyR2 open probability (Po) as luminal Ca 2+  

decreases if its role is to help terminate CICR. The 

CSQ2-dependent luminal RyR2 Ca 2+  regulation mecha-

nism delineated here appears to meet these criteria. 

 Molecular insight into the CSQ2-dependent regula-

tory mechanism was attained not only using native and 

recombinant CSQ2 but also using two CSQ2 mutants 

linked to recessive forms of catecholaminergic polymor-

phic ventricular tachycardia (CPVT). CPVT is a familial 

arrhythmogenic disorder characterized by adrenergi-

cally mediated polymorphic ventricular tachyarrhythmias, 

leading to syncope and sudden cardiac death in individ-

uals with otherwise structurally normal hearts. The tachyar-

rhythmia is typically triggered by physical exercise or 

emotional stress ( Leenhardt et al., 1995 ). A recessive 

form of CPVT is associated with homozygous mutations 

in the gene encoding CSQ2 ( Kontula et al., 2005 ). Two of 

these CPVT-linked CSQ2 point mutations are R33Q 

( Terentyev et al., 2006 ) and L167H ( di Barletta et al., 

2006 ).  Terentyev et al. (2006)  showed that the R33Q 

mutant abnormally regulated single RyR2 channels and 

demonstrated that R33Q overexpression (on top of the 

endogenous CSQ2 already present) promoted abnor-

mal spontaneous diastolic Ca 2+  release events (waves and 

sparks) in cardiomyocytes. Using the same approach, 

 di Barletta et al. (2006)  found that overexpression of 

the L167H mutant did not substantially alter Ca 2+  re-

lease compared with control myocytes (i.e., it was as if 

no CSQ2 overexpression had occurred). The action of 

L167H on single RyR2 channels was not tested. 

 Here, we show that the R33Q mutant reduced RyR2 

Po at submillimolar luminal Ca 2+  concentrations but less 

effectively than wild-type (WT) CSQ2. Whereas, the ac-

tion of the L167H mutant was as if no CSQ2 were pre-

sent. Our results also indicate that Ca 2+ -dependent 

signaling between CSQ2 and triadin is important to 

RyR2 luminal Ca 2+  regulation. 

 M AT E R I A L S  A N D  M E T H O D S 

 Chemicals and Drugs 
 BAPTA (1,2-bis(2-aminophenoxy)ethane- N , N , N  ’ , N  ’ -tetraacetic 
acid), 5,5 � -Dibromo-BAPTA (1,2-bis(2-amino-5-bromophenoxy)ethane-
 N , N , N  ’ , N  ’ - tetraacetic acid), Ca(OH) 2 , CsCl, and HEPES were ob-
tained from Fluka. CaCl 2  standard for calibration was from World 
Precision Instruments Inc. Phospholipids were obtained from 
Avanti Polar Lipids and decane from Sigma-Aldrich. All other 
drugs and chemicals were either from Fluka or Sigma-Aldrich and 
were reagent grade. 

 Production and Purifi cation of Recombinant Calsequestrin 
 CSQ2 constructs were generated as previously described ( di 
Barletta et al., 2006 ;  Terentyev et al., 2006 ). Expression and induc-
tion of recombinant CSQ2 proteins were according to  Terentyev 
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Ca 2+  level was elevated from 10 to 1000  μ M. The Po de-

creased at higher Ca 2+  levels. These luminal Ca 2+ -depen-

dent Po changes in control channels were reversible. 

 As described in methods, exposure of the luminal 

side of the channel to a  > 10-min 10 mM Ca 2+  prewash 

dissociates (strips) CSQ2 from the channel. The control 

channel data shown  Fig. 1 B  (fi lled circles) were never 

subjected to this prewash. The control channel data, 

however, includes Po data collected at 10 mM luminal 

Ca 2+  that is consistent with CSQ2 still being associated 

with the channel. This is possible because these control 

the holding potential was always constant at 0 mV and all record-
ings were made at room temperature (20 – 22 ° C). 

 In many experiments, luminal Ca 2+  or Mg 2+  was varied from 
0.01 to 10 mM. The luminal solution also contained 100 mM Cs +  
to assure ample charge carrier was ever present. Consequently, 
the net unit current (always in the lumen-to-cytosol direction) 
was carried by a mixture of ions (Cs +  and either Ca 2+  or Mg 2+ ). 
The fraction of the net current carried by the divalent varied with 
the ionic conditions present. A published RyR permeation model 
was used to estimated the unidirectional Ca 2+  current from net 
current ( Gillespie et al., 2005 ;  Xu et al., 2006 ). In our experimen-
tal conditions, this Ca 2+  current was  < 0.01,  � 0.2, or  � 1 pA when 
0.01, 1, or 10 mM luminal Ca 2+  was present, respectively. 

 Single-channel currents were digitized at 10 kHz and fi ltered at 
1 – 2 kHz using an A/D converter and amplifi er (Axon CMS 
Molecular Devices). Acquired data were analyzed using pClamp 
(Axon CMS Molecular Devices). Open probability determina-
tions were made from recordings lasting 120 – 240 s. 

 Single-Channel CSQ2 Stripping and CSQ2 Replacement 
 Single RyR2 channel were reconstituted in planar lipid bilayer 
from native SR vesicles as described above. After their incorpor-
ation into the bilayer, the luminal side of some channels were 
subjected to a  > 10 min 10 mM Ca 2+  solution prewash to promote 
dissociation of CSQ2 (if present) from the channel. This process 
is analogous to that applied by  Gyorke et al. (2004)  and  Beard 
et al. (2005) . We refer to channels subjected to this procedure as 
CSQ2 stripped channels. In some cases, CSQ2 (WT or mutant) 
protein was added to the luminal side at 5  μ g/ml of previously 
CSQ2 stripped RyR2 channels. The added CSQ2 can then associ-
ate with the channels and we call these CSQ2-replaced channels. 

 Note that the cytosolic side of the RyR2 channel was not sub-
jected to the high salt wash and thus this treatment could not 
have  “ salted off ”  cytosolic RyR2 – protein partners like FKBP. Since 
the high salt wash was done at the single-channel level (not at the 
SR vesicle level), it was not possible to biochemically confi rm 
CSQ2 association/dissociation before/after the salt wash. 

 R E S U LT S 

 The channels tested were pharmacologically identifi ed 

as RyR channels consistent with our previous studies 

( Mejia-Alvarez et al., 1999 ;  Kettlun et al., 2003 ). They 

were inhibited by 2 mM cytosolic Mg 2+  or 10 mM cyto-

solic Ca 2+ . They were activated by either 1  μ M cytosolic 

Ca 2+ , 5 mM ATP, or 10 mM caffeine. Their gating/con-

ductance was characteristically modifi ed by 10  μ M ry-

anodine and their permeation characteristics consistent 

with being RyR2 channels ( Fill and Copello, 2002 ). 

  Fig. 1 A  (left) shows sample single RyR2 channel re-

cordings of a control channel at various luminal Ca 2+  

levels. Control channels are those that were never ex-

posed to high luminal Ca 2+  level and thus could have 

endogenous CSQ associated with them.   Fig. 1 A  (right) 

shows the luminal Mg 2+  sensitivity of a CSQ2-associated 

channel.  Fig. 1 B  shows summary open probability (Po) 

data collected from experiments on several different 

channels. The activity of CSQ2-associated channels 

showed no luminal Mg 2+  sensitivity ( Fig. 1 B , open cir-

cles). Control channels responded to luminal Ca 2+  as il-

lustrated by the fi lled circles ( Fig. 1 B ). The Po of control 

channels increased from  � 0.02 to 0.2 when the luminal 

 Figure 1.   Luminal Ca 2+  and Mg 2+  sensitivity of RyR2 channels. 
Channels were incorporated into bilayers by fusing heavy native 
SR microsomes. Cytosolic free Ca 2+  concentration was constant 
(1  μ M). The luminal Ca 2+  or Mg 2+  concentration was titrated from 
10  μ M to 10 mM. Holding potential was 0 mV. The luminal solu-
tion contained 100 mM Cs +  and net unit current was always in the 
lumen-to-cytosolic direction. (A) Example single channel record-
ings with zero current level marked. Recordings at left are from 
a control channel that was never exposed to the CSQ2 stripping 
process with no added CSQ2 in the luminal bathing solution. 
Recordings at right are from a channel that was fi rst CSQ2 stripped 
before 0.5  μ g/ml CSQ2-WT was added to the luminal solution. 
(B) Summary Po results (mean  ±  SEM) where the fi lled circles 
represent the Ca 2+  sensitivity of 11 different control channels 
and the open circles represent the Mg 2+  sensitivity of 10 different 
channels. The X-marked circles represent data collected from 
six different CSQ2-associated control channels in the presence of 
3 mM cytosolic diBromoBAPTA.   
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corresponding individual determinations (open sym-

bols) for each situation are plotted. The normality 

of the distributions about their means was tested using 

the Anderson-Darling and Shapiro-Wilk normality tests. 

These tests indicate a distribution is statistically differ-

ent than normal if the statistic P is less than 0.05. These 

tests indicated that the control channel data popula-

tion was the only one that was statistically different 

than normal ( Fig. 3 , bottom). This supports the con-

tention that the control channel population contains 

two classes of channels (i.e., those with and without 

CSQ2 attached). 

channel recordings at 10 mM were relatively short ( � 2 

min). In our hands, CSQ2 dissociation required at least 

a 4-min exposure to a 10 mM Ca 2+  solution. Dissociation 

of CSQ2 from a control channel was considered to be 

coincident with sustained Po reduction. Attempts to 

better defi ne this phenomenon were unsuccessful (due 

to variability and a relatively low n). 

 It is known that large Ca 2+  currents in the lumen-to-

cytosol direction can change local cytosolic Ca 2+  levels 

suffi ciently to alter the Po of single RyR2 channels ( Xu 

and Meissner, 1998 ). This is called feed-through Ca 2+  

modulation. To assess if feed-through Ca 2+  modulation 

infl uences our observations, luminal Ca 2+  sensitivity 

of control channels was also measured in the presence 

of 3 mM cytosolic diBromoBAPTA ( Fig. 1 B , X-marked 

fi lled circles). With this fast Ca 2+  buffer present, the lu-

minal Ca 2+  sensitivity of CSQ2-associated channels be-

came more sigmoidal with an EC 50  of 687  ±  37  μ M. This 

implies that Ca 2+  passing through the channel when 

high luminal Ca 2+  levels (5 and 10 mM) are present 

feeds back and inhibits the channel, generating the ob-

served  “ bell-shaped ”  luminal Ca 2+  sensitivity. This is con-

sistent with the large fraction of the net current being 

carried by Ca 2+  when 5 and 10 mM Ca 2+  are present (see 

Materials and methods). 

 Example single channel recordings illustrating the 

luminal Ca sensitivity of a CSQ2 stripped channel are 

shown in  Fig. 2 A  (left).  Summary Po results from sev-

eral CSQ stripped channels are shown in  Fig. 2 B  (open 

diamonds). The Po of stripped channels did not change 

over the tested luminal Ca 2+  range. The lost luminal 

Ca 2+  sensitivity following the stripping procedure sug-

gests the luminal Ca 2+  sensitivity of control channels 

(see  Fig. 1 B ) was CSQ2 dependent. This was tested 

by adding recombinant purifi ed CSQ2 (0.5  μ g/ml) to 

the luminal side of previously CSQ2-stripped channels. 

Sample recordings from CSQ2-replaced channels are 

shown in  Fig. 2 A  (right). The average luminal Ca 2+  sen-

sitivity of several CSQ2-replaced channels is shown in 

 Fig. 2 B  (fi lled circles). The dotted line in  Fig. 2 B  rep-

resents the control channel data presented in  Fig. 1 B . 

The CSQ2-replaced and control channels have analo-

gous luminal Ca 2+  sensitivities. However, there is a clear 

difference in the peak Po reached at 1000  μ M luminal 

Ca 2+ . The reason for this may be that not all of the con-

trol channels had CSQ2 associated with them and this 

possibility is examined further below. 

 The results shown in  Fig. 3  were collected in the pres-

ence of 1  μ M cytosolic Ca 2+  and 1 mM luminal Ca 2+  in 

three different experimental situations.  The fi rst situa-

tion is labeled control where channels had never been 

exposed to the CSQ2 stripping procedure. The second 

is stripped where channels were exposed to the strip-

ping procedure. The third is replaced where CSQ2 

(0.5  μ g/ml) was added back to previously stripped 

channels. In  Fig. 3  (top), the mean (fi lled symbols) and 

 Figure 2.   Luminal Ca 2+  of CSQ2-stripped and CSQ2-added RyR2 
channels. The CSQ2-added channels here refer to channels that 
were fi rst CSQ2 stripped before 0.5  μ g/ml CSQ2-WT was added 
to the luminal solution. Cytosolic free Ca 2+  concentration was con-
stant (1  μ M). The luminal Ca 2+  or Mg 2+  concentration was titrated 
from 10  μ M to 10 mM. Holding potential was 0 mV. The luminal 
solution contained 100 mM Cs +  and net unit current was always 
in the lumen-to-cytosolic direction. (A) Example single channel 
recordings from a CSQ2-stripped channel (left) and a CSQ2-
added channel (right). Zero current levels are marked. Bar, 2 pA.
(B) Summary Po results. Luminal Ca 2+  sensitivity of the CSQ2-added 
data (black circles) was collected from 14 different channels. 
Luminal Ca 2+  sensitivity of the CSQ2-stripped data (open diamonds) 
was collected from six different channels. Dotted line represents 
control Po result presented in  Fig. 1 B .   
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This is more than 10-fold higher than the measured 

EC 50  of cytosolic RyR2 Ca 2+  activation and thus assures 

there is no (or very little) feed-through Ca 2+  activation 

here. The Po of these CSQ2-free channels was  � 0.4 

when luminal Ca 2+  was 10  μ M. It rose to  � 0.8 when lu-

minal Ca 2+  was increased to 10 mM ( Fig. 4 B , open dia-

monds). The EC 50  of this CSQ2-independent luminal 

Ca 2+  activation was 379  ±  247  μ M. Interestingly, very 

similar results were obtained if Mg 2+ , instead of Ca 2+ , 

was applied to the luminal side of the channel ( Fig. 4 B , 

open squares). The EC 50  of this luminal Mg 2+  activation 

was 972  ±  208  μ M. No signifi cant differences in Po at 

any luminal divalent concentrations were found. This 

indicates that the CSQ2-independent mechanism does 

not discriminate well between luminal Ca 2+  and Mg 2+ . 

 Several mutants of CSQ2 are linked to the tachyar-

rhythmic disorder CPVT. How two of these CSQ2 mu-

tants (R33Q and L167H) regulate single RyR2 channels 

is shown in  Fig. 5 .  Single RyR2 channels were incorpo-

rated into the bilayer and then stripped of any endog-

enous CSQ2 present. With 1  μ M cytosolic Ca 2+  always 

present, the luminal Ca 2+  concentration was titrated 

in the presence of either the R33Q or L167H mutant 

(0.5  μ g/ml). Sample single channel recordings are shown 

 To this point, RyR2 luminal Ca 2+  sensitivity has been 

defi ned in the presence of a constant 1  μ M cytosolic 

bath Ca 2+  concentration.  Fig. 4  A shows how CSQ2 af-

fects RyR2 cytosolic Ca 2+  sensitivity at a constant luminal 

Ca 2+  concentration (1 mM).  The cytosolic Ca 2+  sensitiv-

ity of CSQ2-stripped ( Fig. 4 A , open diamonds) and 

CSQ2-replaced channels ( Fig. 4 A , fi lled circles) is com-

pared. The EC 50  of cytosolic Ca 2+  activation was 2.01  ±  

0.34  μ M (maximum Po  � 0.6) when no CSQ2 was asso-

ciated with the channel. It was 1.04  ±  0.17  μ M (maxi-

mum Po  � 0.8) when CSQ2 was present. An unpaired 

 T  test was used to determine if mean Po ’ s of the CSQ2-

replaced and stripped channels at each of the different 

cytosolic Ca 2+  levels were statistical different. The Po was 

signifi cantly different at all cytosolic Ca 2+  levels  > 0.5  μ M. 

Note that the lumen-to-cytosolic Ca 2+  fl ux was essentially 

constant in these experiments because luminal Ca 2+  was 

always 1 mM. Thus, this CSQ2-dependent change in cy-

tosolic RyR2 Ca 2+  sensitivity was not the result of feed-

through Ca 2+  modulation. 

 The dashed line in  Fig. 4  A summarizes the cytosolic 

Ca 2+  sensitivity of CSQ2-stripped channels in the pres-

ence of 10 mM luminal Ca 2+ , instead of 1 mM ( Fig. 4 A , 

open diamonds). These data show that luminal Ca 2+  (in 

absence of CSQ2) changes the maximal Po level, not 

the cytosolic Ca 2+  affi nity, of the channel. This is a form 

of CSQ2-independent luminal RyR2 Ca 2+  regulation. 

 Fig. 4 B  further explores this CSQ2-independent regu-

lation. The luminal divalent cation titrations shown 

( Fig. 4 B ) were done with 100  μ M cytosolic Ca 2+  present. 

 Figure 3.   Normality testing. Data collected in the presence of 
1  μ M cytosolic Ca 2+  and 1 mM lumenal Ca 2+  in three different 
experimental situations. Control represents channels that were 
not subjected to the CSQ2 stripping process. Stripped represents 
channels that underwent the stripping process. Replaced repre-
sents stripped channels after CSQ2 (0.5  μ g/ml) was added to the 
luminal bath. Open symbols are individual determinations. Filled 
symbols are means ( ± SEM). Outcome of the Anderson-Darling 
and Shapiro-Wilk normality tests are shown at the bottom.   

 Figure 4.   CSQ2 shifted the cytosolic Ca 2+  sensitivity of single 
RyR2 channels. Holding potential was 0 mV and the luminal solu-
tion contained 100 mM Cs + . (A) Summary Po results from CSQ2-
stripped (open circles;  n  = 8) and CSQ2-replaced (fi lled circles; 
 n  = 6) channels. The CSQ2-replaced channels were associated 
with CSQ2-WT (0.5  μ g/ml in luminal chamber). Luminal free 
Ca 2+  concentration was 1 mM and cytosolic Ca 2+  was titrated from 
0.1 to 100  μ M. The curve fi t to the fi lled circles has an EC 50  of 1.04  ±  
0.17  μ M and a 3.4 Hill coeffi cient. The curve fi t to the CSQ2-
stripped data has an EC 50  of 2.01  ±  0.34  μ M and a 2.6 Hill coeffi -
cient. An unpaired  t  test was used to determine if the Po between 
CSQ2-replaced and stripped channels at each Ca 2+  concentration 
was statistically different (**, P  <  0.01; *, P  <  0.05). Dotted curve 
represents the cytosolic Ca 2+  sensitivity of CSQ2-stripped chan-
nels when 10 mM luminal Ca 2+  was present. (B) Luminal Ca 2+  and 
Mg 2+  sensitivity of CSQ2-stripped channels. These stripped chan-
nels were maximally activated by high cytosolic Ca 2+  (100  μ M) and 
then luminal Ca 2+  (open diamond;  n  = 13) or Mg 2+  (open square; 
 n  = 16) was varied. The curve fi t to the Ca 2+  data has an EC 50  of 
379  ±  247  μ M and a 0.70 Hill coeffi cient. The curve fi t to the Mg 2+  
data has an EC 50  of 972  ±  208  μ M and a 0.77 Hill coeffi cient.   
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not statistically different ( t  test P  >  0.1) between the 

CSQ2-R33Q and CSQ2-WT datasets. In the presence of 

the L167H mutant ( Fig. 5 B , fi lled inverted triangles), 

the Po did not change as the luminal Ca 2+  concentra-

tion varied. Indeed, the Po ’ s at 10  μ M, 1 mM, and 10 mM 

luminal Ca 2+  were not statistically different ( t  test P  >  

0.1) when these data were compared with the stripped 

(CSQ2-free) channel data. 

 The differences in CSQ2-dependent RyR2 function 

( Fig. 5 B ) could conceivably arise due to mutant vs. WT-

dependent differences in CSQ2 oligomerization and/

or the CSQ2 – RyR2 interaction. Light scattering was used 

to measure the Ca 2+  dependence of CSQ2 oligomeriza-

tion in conditions (100 mM CsCl) similar to those used 

for bilayer experiments ( Fig. 6 A ).  Increased light scat-

tering here refl ects more CSQ2 oligomerization. The 

CSQ2-WT and CSQ2-R33Q proteins oligomerized at 

Ca 2+  levels  > 3 mM and this oligomerization had similar 

Ca 2+  dependency. Virtually no oligomerization of the 

CSQ2-L167H protein was observed over the Ca 2+  con-

centration range tested. 

 The CSQ2 – RyR2 functional interaction most likely in-

volves the Triadin protein ( Gyorke et al., 2004 ;  Terentyev 

et al., 2007 ). In cardiac muscle, there is one isoform of 

in  Fig. 5 A . Single RyR2 channels associated with the 

R33Q mutant were sensitive to luminal Ca 2+ . Channels 

associated with the L167H mutant were not.  Fig. 5 B  

shows summary results collected from many different 

channels. The dashed line represents the luminal Ca 2+  

sensitivity of channels associated with WT CSQ2 (from 

 Fig. 2 B ). Channels associated with the R33Q mutant 

(fi lled triangles) had signifi cantly higher Po ( t  test P  <  

0.05) at luminal  ≤ 250  μ M compared with those chan-

nels associated with WT CSQ2. However, their Po was 

similar to channels associated with WT CSQ2 at 1 mM 

luminal Ca 2+ . The Po at 5 and 10 mM luminal Ca 2+  were 

 Figure 5.   Luminal Ca 2+  regulation of RyR2 channels by the CSQ2-
R33Q and CSQ2-L167H mutants. Mutant CSQ2 (0.5  μ g/ml) was 
added to the luminal side of previously CSQ2-stripped channels. 
Cytosolic free Ca 2+  concentration was 1  μ M and luminal Ca 2+  was 
titrated from 10  μ M to 10 mM. Holding potential was 0 mV and 
the luminal solution contained 100 mM Cs + . (A) Example chan-
nel recordings with CSQ2-R33Q (left) or CSQ2-L167H (right) 
present are shown (zero current level marked). (B) Summary 
Po results. The CSQ2-R33Q data (triangle) was collected on eight 
different channels. The CSQ2-L167H data (inverted triangles) 
was collected on eight different channels as well. Dotted line rep-
resents CSQ2-WT result presented in  Fig. 2 B .   

 Figure 6.   Ca 2+ -dependent CSQ2 oligomerization and CSQ2 – tria-
din interaction. (A) The Ca 2+  sensitivity of light (350 nm) scat-
tering of CSQ2-WT (fi lled circles), CSQ2-R33Q (triangles), and 
CSQ2-L167H (inverted triangles) proteins in presence of 100 mM 
CsCl. Samples were stirred for 2 min before measurement. The 
curve fi t to the CSQ2-WT data has an EC 50  of 18.1  ±  5.23 mM and 
a 2.1 Hill coeffi cient. The curve fi t to the CSQ2-R33Q data has 
an EC 50  of 16.4  ±  1.18 mM and a 3.0 Hill coeffi cient. Both curves 
were fi t with V MAX  arbitrarily fi xed at 0.6. (B) At left, top panel 
(i) depicts the Coomassie blue – stained SDS-PAGE of purifi ed, 
recombinant CSQ2-WT (arrow, MW of  � 52,000). Bottom panel 
(i) depicts the Western blot with anti-triadin antibodies, revealing 
two bands having MW of  � 45,000 (glycosylated form) and 40,000 
(unglycosylated form), respectively. At right (ii), the Ca 2+  sensitiv-
ity of the interaction of glycosylated and unglycosylated triadin 
with CSQ2-WT, CSQ2-R33Q, and CSQ2-L167H was measured with 
either very low Ca 2+  (1 mM EGTA) or 1 mM free Ca 2+  present, and 
data are shown as means  ±  SEM ( n  = 5). Filled bars represent 
glycosylated triadin, open bars represent unglycosylated triadin. 
Asterisk indicates P  <  0.05 using an unpaired Student ’ s  t  test.   
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is a CSQ2-dependent mechanism that helps to stabilize 

RyR2-mediated CICR in cardiac muscle. 

 Here, we explore this view using no cytosolic activa-

tors (such as sulmazole, caffeine, or ATP) and report ab-

solute Po (not normalized or relative Po) values. 

 Luminal RyR2 Ca 2+  Regulation without CSQ2 Present 
 We showed that CSQ2-free RyR2 channels, activated by 

1  μ M cytosolic Ca 2+ , were not sensitive to luminal Ca 2+  

( Fig. 2 B , open diamonds). This may be what some pre-

vious single channel studies observed and may explain 

why many previous investigators were compelled to ap-

ply cytosolic channel activators. Many of the selected ac-

tivators are known to make the channel hypersensitive 

to cytosolic Ca 2+  ( Fill and Copello, 2002 ), enhancing 

the prospect of feed-through Ca 2+  modulation. To avoid 

this complication, our CSQ2-free RyR2 channels were ac-

tivated by 100  μ M cytosolic Ca 2+  only to assure the cyto-

solic Ca 2+  activation site was saturated. 

 In these conditions, CSQ2-free RyR2 channels were 

sensitive to luminal Ca 2+  concentrations. The Po of CSQ2-

free channels doubled ( � 0.4 to  � 0.8) when luminal 

Ca 2+  was raised from 10  μ M to 10 mM. The same thing 

happened if luminal Mg 2+ , instead of luminal Ca 2+ , was 

applied. Thus, a CSQ2-independent form of luminal 

RyR2 Ca 2+  regulation exists and it does not distinguish 

between luminal Ca 2+  and Mg 2+ . To our knowledge, the 

ion selectivity of luminal Ca 2+  control mechanisms has 

rarely (if ever) been tested before. 

 The lack of Ca 2+  specifi city makes the physiological rel-

evance of this CSQ2-independent regulation arguable. 

This regulatory pathway could conceivably become im-

portant in certain pathological conditions. For example, 

cardiac SR overload could conceivably raise the total in-

tra-SR divalent concentration suffi ciently to be sensed by 

this mechanism. If so, then our results suggest this mech-

anism would modulate cytosolic Ca 2+  activation effi cacy 

(not its affi nity). Effi cacy here refers to the maximum Po 

attainable by cytosolic Ca 2+  stimulation (affi nity to the 

cytosolic Ca 2+  EC 50 ). Intra-SR divalent overload would 

then increase the maximal Po attainable by a cytosolic 

Ca 2+  stimulus, explaining the excess RyR2-mediated Ca 2+  

release associated with this pathological condition. Alter-

natively, this mechanism may just assure that RyR2 chan-

nels respond robustly to cytosolic Ca 2+  stimuli. 

 Luminal RyR2 Ca 2+  Regulation with CSQ2 Present 
 We showed that CSQ2-associated RyR2 channels, acti-

vated by 1  μ M cytosolic Ca 2+ , were sensitive to luminal Ca 2+ . 

They were not sensitive to changes in luminal Mg 2+ . 

Thus, the CSQ2-dependent luminal RyR2 Ca 2+  regula-

tion mechanism distinguishes between these ions. It does 

not require the presence of another cytosolic activator 

(ATP or sulmazole). It does not require the presence of 

additional free CSQ2 in the luminal bath as illustrated 

by  Fig. 1 B  (fi lled circles) where regulation occurs with 

Triadin ( Marty, 2004 ) that runs on SDS gels as an  � 40-

kD doublet comprised of glycosylated and unglycosyl-

ated molecules. The glycosylation site of triadin is at 

asparagine residue 75 ( Kobayashi et al., 2000 ). The rela-

tive proportions of glycosylated and unglycosylated tria-

din in cardiac muscle cells varies among mammalian 

species. In human and rabbit, both are present but there 

is proportionally more unglycosylated triadin. The func-

tional signifi cance of this is not yet clear. 

 CSQ2 binding to these two forms of cardiac triadin 

was measured.  Fig. 6  Bi shows an example triadin-CSQ2-

WT immune pull-down. The top panel shows the Coomassie 

blue – stained SDS-PAGE of CSQ2-WT. The bottom panel 

shows the classical triadin doublet revealed by Western 

blot with anti-triadin antibodies. Data like these were 

used to evaluate the Ca 2+  sensitivity of glycosylated 

(fi lled bars) and unglycosylated (open bars) cardiac tri-

adin binding to either the WT, R33Q, or L167H CSQ2 

proteins. In  Fig. 6  Bii, CSQ2 – triadin binding was mea-

sured in the virtual absence of Ca 2+  (EGTA) and in the 

presence of 1 mM Ca 2+ . In vitro binding was normalized 

to that in the EGTA WT condition. There was no signifi -

cant Ca 2+  sensitivity of glycosylated triadin binding to 

any of the CSQ2 proteins tested. There was also no sig-

nifi cant Ca 2+  sensitivity of unglycosylated triadin bind-

ing to the CSQ2-L167H protein. However, binding of 

unglycosylated triadin to the CSQ2-WT protein was sig-

nifi cantly reduced (P  <  0.05) in the presence of 1 mM 

Ca 2+ . The binding of unglycosylated triadin to the CSQ2-

R33Q protein was nearly signifi cant (P  >  0.06) in the 

presence of 1 mM Ca 2+ . 

 D I S C U S S I O N 

 Several studies of luminal Ca 2+  regulation of single RyR1 

and RyR2 channels have been done, yielding variable 

and sometimes confusing results ( Sitsapesan and Williams, 

1995 ;  Lukyanenko et al., 1996 ;  Tripathy and Meissner, 

1996 ;  Gyorke and Gyorke, 1998 ;  Xu and Meissner, 1998 ; 

 Ching et al., 2000 ;  Beard et al., 2002 ;  Laver et al., 2004 ; 

 Beard et al., 2005 ). For example,  Sitsapesan and Williams 

(1995)  concluded that regulation of RyR2 channels by 

luminal Ca 2+  depends on how channels are activated 

(they used sulmazole) and that channels solely activated 

by micromolar cytosolic Ca 2+  were not sensitive to luminal 

Ca 2+  changes.  Xu and Meissner (1998)  demonstrated 

luminal Ca 2+  feeding through caffeine-activated chan-

nels can modulate RyR2 activity, implying that a lumi-

nally localized regulatory process may not exist. More 

recently,  Gyorke et al. (2004)  argues that luminal Ca 2+  

feed-through is not signifi cant but that the CSQ2 – triadin 

complex somehow acts as a luminal Ca 2+  regulatory sen-

sor. This is consistent with recent studies exploring the 

molecular defects underlying CPVT, which suggest that 

a CSQ2 regulatory mechanism exists ( Terentyev et al., 

2006 ). Indeed, the commonly accepted view is that there 
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is probably due to the methodological differences. 

In any event, there seems to be little (or no) correlation 

between CSQ2 Ca 2+  binding properties and the CSQ2-

dependent regulation measured here. 

  Terentyev et al. (2007)  recently showed that a decoy 

peptide corresponding to the CSQ2 binding domain 

of triadin interferes with CSQ2 ’ s capacity to regulate 

single RyR2 channels. Thus, we elected to explore the 

possible role of triadin in CSQ2-dependent RyR2 reg-

ulation. We compared the Ca 2+  sensitivity of the triadin 

interaction with WT, R33Q, and L167H. These CSQ2s 

all bind to triadin but only the binding of WT and R33Q 

with unglycosylated triadin was Ca 2+  sensitive. Thus, the 

Ca 2+  sensitivity of the triadin – CSQ2 interaction, not 

triadin – CSQ2 binding per se, could explain the lumi-

nal RyR2 Ca 2+  regulation observed here. If so, then 

L167H may have bound to the triadin – RyR2 complex 

but did not regulate because the triadin – CSQ2 (L167H) 

interaction is not Ca 2+  sensitive. Whereas with R33Q 

bound, regulation would be abnormal because the 

Ca 2+  sensitivity of the triadin – CSQ2 (R33Q) interaction 

is abnormal. 

  Fig. 7  illustrates our overall working interpretation.  

In this cartoon, Ca 2+  binding to the CSQ2 monomer and 

Ca 2+ -dependent CSQ2 oligomerization do not regulate 

the RyR2 channel. A CSQ2 monomer bound to the tria-

din – RyR2 complex is the key regulating entity. The Ca 2+  

sensitivity of CSQ2 – triadin interaction is the key lume-

nal Ca 2+  sensing step and it discriminates between Ca 2+  

and Mg 2+ . Lumenal Ca 2+  alters the cytosolic Ca 2+  sensitiv-

ity of the channel through the RyR2 – triadin – CSQ2 inter-

action. There is also a RyR2-resident, CSQ2-independent, 

lumenal Ca 2+  regulatory pathway that does not discrimi-

nate between Ca 2+  and Mg 2+ . 

no unbound CSQ2 in the lumenal bath. This means 

CSQ2-dependent regulation does not involve CSQ2 as-

sociation/dissociation and that made it impractical to 

defi ne the CSQ2 dose dependency. We considered ex-

amining the dose dependency of CSQ2 reassociation 

over a set interval but the physiological importance of 

this parameter is not entirely clear. Instead, we simply 

elected to defi ne function at a set bath CSQ2 concentra-

tion, a concentration like that used successfully by other 

groups ( Gyorke et al., 2004 ; Beard et al., 2005  ). 

 Our results also suggest that the CSQ2-dependent 

mechanism alters the cytosolic Ca 2+  sensitivity of the chan-

nel. At a constant luminal Ca 2+  (1 mM), CSQ2-free and 

CSQ2-assocaited channels had different cytosolic Ca 2+  

activation affi nity and effi cacy ( Fig. 4 A , diamonds vs. 

circles). Comparing this and the data presented in  Fig. 

2 B  (circles; where 1  μ M cytosolic Ca 2+  is always present) 

suggests that luminal Ca 2+  alters Po by changing the cy-

tosolic Ca 2+  sensitivity of CSQ2-associated channels. If so, 

then our data indicates that a local luminal Ca 2+  reduc-

tion (1 mM to 100  μ M), in the presence of a constant 

cytosolic Ca 2+  stimulus (1  μ M), would turn off the channel. 

This is consistent with the work of  Gyorke and Gyorke 

(1998),  who suggested that a change in luminal Ca 2+  

(20  μ M to 5 mM) seemed to make ATP-activated RyR2 

channels more sensitive to cytosolic Ca 2+  activation. 

 The CSQ2-dependent luminal Ca 2+  regulatory mech-

anism also depended on CSQ2 structure – function. Two 

different CSQ2 mutants (R33Q and L167H) were tested 

here. The L167H CSQ2 mutant did not support CSQ2-

dependent regulation. The R33Q mutant did but ab-

normally. The Po of WT and R33Q-associated channels 

at 1 mM was similar. However, channels associated with 

R33Q were not  “ turned off ”  as effectively when luminal 

Ca 2+  was reduced  < 1 mM (compared with channels as-

sociated with WT CSQ2). This is quite consistent with 

the observations reported in  Terentyev et al. (2006) . 

 How are changes to luminal Ca 2+  sensed by the CSQ2 –

 RyR2 complex? This could involve Ca 2+ -dependent CSQ2 

polymerization, Ca 2+  binding to the CSQ2 monomer, 

and/or some sort of Ca 2+ -dependent CSQ2 – RyR2 inter-

action. Calcium-dependent CSQ2 polymerization does 

not seem to play a part because the observed regulation 

does involve CSQ2 association/dissociation (see discus-

sion above). There also seems to be little (or no) corre-

lation between CSQ2 Ca 2+  binding properties and the 

observed CSQ2-dependent RyR2 luminal Ca 2+  regula-

tion. This latter point is based on the known Ca 2+  bind-

ing properties of the CSQ2s tested here (WT, R33Q, 

and L167H).  di Barletta et al. (2006)  reported that the 

Ca 2+  affi nities and B MAX s of these CSQ2s were not statis-

tically different ( t  test P  >  0.45).  Kim et al. (2007)  re-

ported that the Ca 2+  binding capacity of the L167H 

monomer is  � 50% less (compared with WT) and that 

R33Q had reduced Ca 2+  binding capacity at high Ca 2+  

levels. This apparent discrepancy between these studies 

 Figure 7.   Summary cartoon of RyR2 luminal Ca 2+  regulation. 
Triadin is labeled TR. Calcium binding sites that activate channel 
are indicated with a plus. The cytosolic Ca 2+  inhibitory site is marked 
with a minus. Proteins are not drawn to scale.   
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 The Cellular Context 
 The intra-SR free Ca 2+  concentration in a resting car-

diac myocyte is likely close to 1 mM ( Bers, 2004 ). In re-

sponse to a single cardiac action potential, the intra-SR 

free Ca 2+  concentration may fall to  � 50% of its normal 

resting value ( Shannon et al., 2000 ). High frequency 

stimulation or larger SR Ca 2+  releases may drive intra-SR 

Ca 2+  levels to even lower levels. Our results suggest that 

such changes in luminal Ca 2+  inhibit the channel by 

reducing its cytosolic Ca 2+  sensitivity and thus help ter-

minate the SR Ca 2+  release process. As intra-SR Ca 2+  lev-

els are replenished, the cytosolic Ca 2+  sensitivity of the 

channel would return to its resting condition. 

  di Barletta et al. (2006)  showed that overexpression 

of CSQ2-WT, not CSQ2-L167H, increased the amp-

litude of intracellular Ca 2+  sparks/transients. In that 

study, the new CSQ2 was expressed on top of the nor-

mal complement of CSQ2-WT. Our observation that 

L167H has no RyR2 regulatory action is then quite con-

sistent with  di Barletta et al. (2006) . Our R33Q results 

are also consistent because they show R33Q was sub-

stantially less effective in turning off R33Q-assocaited 

channels. Thus, cells containing R33Q should have 

RyR2 channels with a greater propensity to open during 

diastole, promoting increased SR Ca 2+  leak and frequency 

of spontaneous SR Ca 2+  release events (as observed by 

 Terentyev et al., 2006 ). 

 Our results show that two CPVT-linked CSQ2 mutants 

have very different actions on single RyR2 luminal Ca 2+  

regulation. Since several RyR2 channel mutations also 

generate CPVT phenotypes (with WT CSQ2 present), 

it is becoming clear that CVPT can result from any of a 

number of defects that modify or abolish normal RyR2 

luminal Ca 2+  regulation. Although no triadin-linked 

forms of CPVT have been identifi ed yet, it would not be 

surprising if one was in the near future. Lastly, our stud-

ies of CSQ2-dependent RyR2 regulation were done un-

der stationary experimental conditions in bilayers. This 

must be considered when extrapolating our data to 

the cellular situation. In cells, CSQ2-dependent RyR2 

regulation operates in a dynamic complex regulatory 

environment that is simply not present in our studies. 

Defi ning the kinetics of CSQ2 modulation of RyR2 

function in a more physiological context will likely be 

an important, albeit challenging, focus of future studies 

that could change our view of how CSQ2 regulates the 

RyR2 channel. 
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