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Abstract
Purpose  Imaging time-series data routinely collected in clinical trials are predominantly explored for covariates as covari-
ates for survival analysis to support decision-making in oncology drug development. The key objective of this study was to 
assess if insights regarding two relapse resistance modes, de-novo (treatment selects out a pre-existing resistant clone) or 
acquired (resistant clone develops during treatment), could be inferred from such data.
Methods  Individual lesion size time-series data were collected from ten Phase III study arms where patients were treated 
with either first-generation EGFR inhibitors (erlotinib or gefitinib) or chemotherapy (paclitaxel/carboplatin combination or 
docetaxel). The data for each arm of each study were analysed via a competing models framework to determine which of the 
two mathematical models of resistance, de-novo or acquired, best-described the data.
Results  Within the first-line setting (treatment naive patients), we found that the de-novo model best-described the gefitinib 
data, whereas, for paclitaxel/carboplatin, the acquired model was preferred. In patients pre-treated with paclitaxel/carbopl-
atin, the acquired model was again preferred for docetaxel (chemotherapy), but for patients receiving gefitinib or erlotinib, 
both the acquired and de-novo models described the tumour size dynamics equally well. Furthermore, in all studies where 
a single model was preferred, we found a degree of correlation in the dynamics of lesions within a patient, suggesting that 
there is a degree of homogeneity in pharmacological response.
Conclusions  This analysis highlights that tumour size dynamics differ between different treatments and across lines of 
treatment. The analysis further suggests that these differences could be a manifestation of differing resistance mechanisms.

Keywords  Heterogeneity · Imaging · Non-small cell lung cancer · Pharmacology

Introduction

Assessment of a new treatment in oncology involves record-
ing changes in tumour burden, measured via imaging, and is 
expressed as tumour size metrics, within a patient and over 

time. These data are then reduced to assess clinical response 
based upon the Response Evaluation Criteria In Solid 
Tumours (RECIST) [1, 2]. The criterion categorises multi-
ple tumour lesions within a patient into either target or non-
target lesions, based on how easy they are to measure. Only 
drug effect on the target lesions is recorded quantitatively 
over time, through the sum-of-longest-diameters (SLD) met-
ric, while effects on non-target lesions are recorded quali-
tatively. The information on drug effect on target and non-
target lesions together with whether a new lesion occurs is 
used to place patients into one of four response categories: 
complete response (CR), partial response (PR), stable dis-
ease (SD), or progressive disease (PD). It is this PD category 
which is of interest when considering resistance, as is how 
the depth of response, CR/PR/SD, relates to time to PD. A 
patient may radiologically progress via an increase in SLD, 
or a non-target lesion growth, or due to appearance of a 
new lesion. Therefore, there are several progression groups 
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which may potentially exist, if we consider all progression 
combination possibilities. Any one of these possibilities can 
be considered a sign of resistance to treatment. However, 
only one of the imaging variables, SLD, provides us with 
quantitative time-series data and, for this reason, we focused 
our attention on this particular variable. Models of tumour 
size dynamics exist in the literature [3] with some reflecting 
reduced effectiveness over time; however, no study to our 
knowledge examines the potential sources of resistance.

The purpose of this research was to explore the dynam-
ics of relapsing individual lesions using an approach that 
combines mathematical biology, applied statistics, and clini-
cal data. The mathematical biology component was used to 
derive two common models of resistance as described by 
Hata et al. [4]: (i) de-novo—pre-existing resistant clone is 
selected out during treatment; (ii) acquired—proportion of 
tumour cells adapt, during treatment, to become resistant 
[3] after an initial response (Fig. 1). In the case of EGFR 
inhibitors, a common mechanism of resistance in NSCLC 
is the acquisition of the T790 M “gatekeeper” mutation on 
the egfr gene; however, it is not clear whether this exists 
prior to treatment. The models developed are simple enough, 
such that they can be easily parameterised using routinely 
collected data. The resultant models were placed within a 
statistical population analysis framework to determine how 
well they describe the data. Therefore, we approached the 
data with predefined hypotheses based on our biological 

understanding rather than allowing the data to guide our 
choice of a structural model. In addition to the modelling 
component described above, we also considered visualising 
the dynamics of tumour size changes to highlight differences 
in dynamics for different treatments, without the aid of fit-
ting a model to data.

The approach described was applied to ten arms of nine 
clinical studies involving the first-generation EGFR inhibi-
tors (gefitinib and erlotinib) as well as chemotherapies 
(paclitaxel/carboplatin combination and docetaxel), across 
both first- (treatment naive) and second-line settings in non-
small cell lung cancer (NSCLC). The modelling approach 
which we undertook allowed us to answer the following 
questions: (1) are the resistance hypotheses different for 
EGFR inhibitors versus chemotherapy? (2) does the type of 
resistance dictate the growth rate of the emerging resistant 
clone? (3) how large is the resistant fraction under the de-
novo hypothesis and how does it vary across tumours versus 
across patients? The answers to these questions will add to 
our knowledge about what information can be gained from 
routine imaging data regarding resistance patterns.

Methods

Patients and data

Target lesion measurements of patients from 10 arms of 9 
clinical studies were collected. References of the studies 
used can be found in the first column of Table 1. All data 
except for the studies using gefitinib were available in Pro-
jectDataSphere [5, 6]. Gefitinib data were obtained from 
AstraZeneca. Only patients who had a response to treatment, 
i.e., those who were classified as CR, PR, or SD at the first 
visit, were taken forward for further analysis. This allowed 
us to look at response followed by resistance (hence, patient 
relapse), the objective of this study. On average, patients 
had 4–5 CT scans measured every 6–8 weeks and were fol-
lowed on treatments. Gefitinib was dosed orally 250 mg 
daily, whereas the chemotherapy was dosed every 3 weeks; 
for further details of the studies, we refer the reader to the 
original studies (note that there was no information within 
the data sets on whether the tumour size measurements were 
below the limit of quantification).

Resistance models

The time-series models used to analyse individual lesion 
dynamics are graphically depicted in Fig. 1. The radiologi-
cally measured longest diameter is used as a surrogate for 
tumour size and so tumour cell population. For the de-novo 
resistance model, four parameters needed to be estimated: 
(i) initial size of the drug sensitive part of a lesion, Y1(0); 

Fig. 1   Pictorial representation of the mathematical models of resist-
ance considered here: de-novo and acquired. In the de-novo model, 
drug treatment is assumed to select out a specific resistant clone. 
Once treatment is applied, the drug sensitive population dies at a rate, 
d, whereas the drug resistant cells continue to proliferate at a rate, g. 
In the acquired model, drug treatment leads to an adaptation of the 
initial tumour cell population. Once treatment is applied, a certain 
proportion of cells die at a rate, d, others adapt at a rate, c, to become 
drug resistant and subsequently proliferate at a rate, g
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(ii) initial size of the drug resistant part, Y2(0); (iii)–(iv) 
the corresponding rates of decay, d, and of growth, g. For 
the acquired resistance model, again, four parameters 
needed to be estimated: (i) the initial longest diameter, 
Y(0); the adaptation (mutation) rate, c; (iii) the decay rate, 
d; (iv) the growth rate, g. Therefore, the two mathemati-
cal models of shared common parameters and structure, 
with one difference; however: one model allowed for the 
selection of a pre-existing resistant clone during treatment; 
the other allowed for conversion to resistant disease dur-
ing treatment (without further granularity in the data, we 
were not able to model a combination of both scenarios). 
Full derivation of model equations for both de-novo and 
acquired resistance models can be found in the supple-
mental methods, analytical solutions are provided in the 
following:

The two models are essentially sum of exponentials but 
with different parameterisations.

The resultant models were fit to the longest diameter 
data by placing them within a non-linear mixed-effect 
framework. All parameters were assumed to follow a log-
normal distribution. Residual errors were assumed to be 
additive. Diagnostic plots (standardised residuals versus 
individual fitted; individual fitted versus observed; and 
standardised residuals over time) and parameter values for 
the final models are reported in the supplemental results.

De-novo:Y(t) = Y1(0)e
−dt + Y2(0)e

gt

Acquired:Y(t) = Y1(0)

(

1 −
c

d + c + g

)

e−(d+c)t +
cY1(0)

d + c + g
egt.

Model assessment

A model competition-based approach, as used in survival 
prediction competitions [7], was implemented to assess 
which model best-described the time-series of individual 
lesion longest diameters in the following way. 1000 boot-
strap samples [8] of the exact sample size of the origi-
nal study arms were generated from the original data 
by sampling at patient level. Both models were fitted to 
each sample with knowledge of which lesion belonged 
to which patient. Bayesian Information Criterion (BIC), 
which provides information on the degree to which the 
model describes the data, was recorded for each model. 
Using these values across all samples, we calculated Bayes 
Factors to assess how likely one model was, over another, 
at describing the data [7] for that particular study arm. 
Bayes Factors are calculated in the following way which 
is based on the method used by Guinney et al. [7] Two 
models M1 and M2 are fit to a bootstrap sample Bi (with 
i varying from 1 to 1000). Therefore, for each sample, i, 
we generate a Bayesian Information Criteria value for both 
models, BIC-M1i and BIC-M2i, for, respectively, models 
M1 and M2. To generate a Bayes’ factor, we calculate 
the number of samples for which BIC-M1i > BIC-M2i and 
divide this quantity by the number of samples for which 
BIC-M1i < BIC-M2i. This then provides us with a score of 
how often model M1 provides a better fit over model M2 
across the bootstrap samples. Thus, if the value of Bayes’ 
factor is 1, then both models are equally as good as each 
other in describing the data. If the value is different to 1, 

Table 1   Characteristics of the clinical trials used within this analysis

Unselected/selected defines whether genomic criteria were used for patient selection
PFS progression-free survival, 95% CI 95 percent confidence interval, BSL baseline, ILD individual longest diameter, IQR inter-quartile range

References Line of therapy Treatment Patient N (lesions N) PFS median (95% CI) No. prog. 
events 
(deaths)

BSL ILD (mm)
Median (IQR)

IPASS Phase III [12] First Gefitinib (unselected) 338 (781) 6.9 (6.7–8.1) 261 (8) 25 (17–38)
First Paclitaxel/carboplatin 427 (1066) 6.6 (6.1–6.9) 371 (14) 25 (18–38)

ABRAXANE Phase III 
[13]

First Paclitaxel/carboplatin 414 (1664) 7 (6.4–7.3) 299 (6) 22 (15–35)

IFUM Phase IV [14] First Gefitinib (selected) 92 (294) 10.3 (8.6–13.8) 43 (1) 26 (18–40)
ZEST Phase III [15] First Erlotinib (unselected) 213 (534) 7.3 (5.5–7.5) 164 (14) 26 (16–35)
SUNITINIB Phase III 

[16]
Second Erlotinib (unselected) 193 (551) 6.4 (5.6–7.4) 141 (11) 23 (16–37)

IDEAL1 Phase II [17] Second/third Gefitinib (unselected) 117 (240) 4.2 (3.7–5.1) 62 (0) 28 (18–44)
INTEREST Phase III 

[18]
Second Docetaxel 278 (800) 4.8 (4.3–5.3) 216 (13) 23 (15–40)

ZODIAC Phase III [19] Second Docetaxel 337 (900) 5.4 (4.9–5.6) 293 (20) 23 (16–37)
VITAL Phase III [20] Second Docetaxel 282 (898) 5.7 (5.4–6.8) 247 (15) 22 (15–35)
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then one model is preferred over the other; the larger the 
deviation from 1, the stronger the evidence for one model 
over another. From the resultant resistance model, we 
assessed the effect of treating lesions independently from 
each other versus accounting for which lesion belonged to 
which patient, nesting between- and within-patient random 
effects, using the same mixed-effects approach.

Autoregressive time‑series analysis

In addition to performing a model-based analysis, we also 
assessed whether differences in dynamics between study 
arms could be visualised from the raw data. Our approach 
involved the use of a first-order autoregressive (AR) model 
[9], Yn+1 = αYn, where Yn is the size of an individual lesion 
at visit n, and hence, α represents the relative change in indi-
vidual lesion size between current and previous visits. For 
each lesion in each patient in each study arm, we gener-
ated a series of α values over time that described the rela-
tive change in individual lesion size from one visit to the 
next. To visualise how these α values changed over time, 
we employed the following approach. For the study arms 
which we wanted to compare, we visualised the frequency 
of α values over time, to ensure that data collection times 
were consistent between the study arms being compared. If 
frequency distributions overlapped, it implied data collection 
between the two study arms was independent of time. We 
then proceeded to calculate an ROC AUC value (area under 
the receiver-operating characteristic curve) at each post-
baseline visit, which calculates how well the α values over 
two consecutive visits could discriminate between those vis-
its. The series of ROC AUC values together with their 95% 
confidence intervals were plotted over visit number from the 

study arms of interest and compared visually. The resultant 
graph highlighted how tumour size changed from one visit 
to the next and how this differed between two treatments.

All analyses were performed in R v3.1.1. [10] The mixed-
effects modelling analysis was conducted using the nlme 
package [11].

Results

Characteristics of patients and studies

There are two notable observations surrounding the clinical 
study characteristics (Table 1). First, the numbers of deaths 
due to progression are low; less than 10% in each study. This 
suggests that patients who have a CR, PR, or SD response at 
their first visit are unlikely to die before their disease radio-
logically progresses. Given that imaging time-series ceased 
to be collected once a patient’s disease had progressed, these 
data show that the time-series drop-out mechanism is not 
informative of survival. Rather, it is informative of when a 
patient stops taking one treatment and moves on to the next.

Second, the distribution of the longest diameter sizes 
across all lesions within a study is consistent across all stud-
ies. This shows that there is a degree of consistency, based 
on the initial size, in the choice of lesions by radiologists 
across all these studies.

Resistance models

Results of the resistance competition between the de-novo 
and acquired models show a degree of consistency for the 
same drug within the same line of treatment (Table 2). In 

Table 2   Resistance model results

Bayes’ factors showing how likely one resistance model is over the other, and also how important it is to know which lesion belonged to which 
patient (correlated), over not knowing (independent) across all studies

References Line of therapy Treatment Resistance Hierarchy
Bayes’ factor (< 1/3: 
acquired; > 3: de-novo)

Bayes’ factor (< 1/3: 
independent; > 3: cor-
related)

Bootstrapping results
IPASS Phase III [12] First Gefitinib (unselected) 19.4 >30

First Paclitaxel/carboplatin 0.05 >30
ABRAXANE Phase III [13] First Paclitaxel/carboplatin 0.06 >30
IFUM Phase IV [14] First Gefitinib (selected) >30 >30
ZEST Phase III [15] Second Erlotinib (unselected) 1.12 NA
SUNITINIB Phase III [16] Second Erlotinib (unselected) 0.41 NA
IDEAL1 Phase II [17] Second Gefitinib (unselected) 0.80 NA
INTEREST Phase III [18] Second Docetaxel 0.28 3.9
ZODIAC Phase III [19] Second Docetaxel 0.16 4.4
VITAL Phase III [20] Second Docetaxel 0.04 28.4
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the first-line (treatment naive) setting, we found that, for 
paclitaxel/carboplatin, the acquired model was preferred, 
whereas, for gefitinib, the de-novo model was preferred. 
Simulated mean profiles, from the preferred models, with 
95% CI overlaid on top of the raw data can be seen in the 
top row of Fig. 2. A comparison of those simulated pro-
files between gefitinib and paclitaxel/carboplatin can be 
seen in the middle row of Fig. 2. The comparison confirms 
the resistance competition findings: tumour size dynamics 
differ between gefitinib and paclitaxel/carboplatin for treat-
ment naive patients. We see that gefitinib shrinks tumours 
quicker than paclitaxel/carboplatin, log(d) is − 4.47 (95% CI 
− 4.58, − 4.35) for gefitinib versus − 5.47 (95% CI − 5.56, 
− 5.38) for paclitaxel/carboplatin. In addition, the rate of 
re-growth appears to be faster under paclitaxel/carboplatin 
than gefitinib (log(g) is − 5.42 (95% CI − 5.56, − 5.28) for 
gefitinib versus − 4 (95% CI − 4.11, − 3.88)for paclitaxel/
carboplatin), which is further confirmed by analysing the 
decay and growth rate parameters (Supplemental Tables 
S4–S7). Furthermore, these results appear to be consistent 

across two independent studies for both treatments, middle 
row of Fig. 2. Thus, the results suggest that resistance under 
gefitinib treatment leads to a less aggressive resistant clone 
than resistance under paclitaxel/carboplatin in the treatment 
naive setting.

Finally, we assessed the size of the resistant fraction 
under gefitinib treatment in IFUM and IPASS, bottom row 
of Fig. 2: it is approximately 0.3 in IFUM (EGFR mutant 
selected Caucasian patients) and 0.2 in IPASS (unselected 
Asian patients). Furthermore, the within-patient variability 
in the resistant fraction is similar to the between-patient vari-
ability across both studies.

In the second-line setting for docetaxel, we found the 
acquired model was generally preferred; most convincingly 
in VITAL and less convincingly in INTEREST. The mean 
model simulation from the preferred model together with the 
95% CI overlaid on top of the raw data can be seen in the 
top row of Fig. 3. On comparing the simulations, see bottom 
row of Fig. 3, we find that the dynamics are consistent and 
that the uncertainty in the re-growth phase varies between 

Fig. 2   Plots showing the resistance modelling results within the treat-
ment naive (first-line) setting. Top row: plots of raw individual long-
est diameter data over time (black dots) together with mean model 
simulations (solid lines) and 95% confidence intervals (dashed lines) 
for first-line treatments. Middle row: comparison of the dynam-

ics via model simulations between treatments in the same study and 
the same treatments across different studies for first-line treatments. 
Bottom row: boxplots showing the within- (Within Pt.) and between-
patient (Between Pt.) variability in the resistant fraction for gefitinib 
in the IFUM and IPASS studies
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studies; VITAL showing the lowest degree of uncertainty, 
followed by ZODIAC and then INTEREST.

Three study arms (from IDEAL1, ZEST, and SUNI-
TINIB) with EGFR inhibitors in the second-line set-
ting could also be examined. Although the data could be 
described well by the model, as shown in Figs. S8–S13, we 
found that one model was not more likely than the other, 
in describing the time-series dynamics. Since no winner 
could be found, further analyses of these treatments were 
not conducted.

In studies where a preferred model was found, that 
model was taken forward into the next set of analyses; these 
explored whether dynamics across lesions, within a patient, 
were correlated. We found that knowledge of “which lesion 
belongs to which patient” is important. Thus, there is a 
degree of correlation in time-series dynamics across lesions, 
within a patient.

Autoregressive analysis

In addition to the model-based analyses described to this 
point, we also assessed whether these differences in dynam-
ics could have been detected visually. The study chosen to 

assess this was IPASS, since (i) we found that the dynamics 
were different for the two treatment arms of that study, and 
(ii) the data collection was similar across the two arms (Sup-
plemental Fig. S15). The process undertaken to analysing 
the time-series using an autoregressive technique is shown 
pictorially in Fig. 4.

The raw data with mean model simulations overlaid can 
be seen in the top row of Fig. 4. The distribution of alpha 
values, defined as relative change in tumour size from one 
visit to the next, across visits can be seen in the middle row 
of Fig. 4. The overall trend in the distribution of alpha values 
from visit to visit is subtly different. This difference becomes 
more apparent in the plot at the bottom row of Fig. 4. It 
shows how well alpha values can discriminate between two 
consecutive on-treatment visits. For example, at the 3 v 2 
point, the ROC AUC values correspond to how well alpha 
values can discriminate between whether the values are from 
Visit 2 versus Visit 3. Overall, the dynamics under pacli-
taxel/carboplatin treatment change continuously until we 
reach Visit 6. In contrast, for gefitinib, the largest changes 
in dynamics occur early on; there is then a period of no-
change, followed by a subtle change, as we move from Visit 
5 to Visit 6. These results show that the dynamics in tumour 

Fig. 3   Plots showing the resistance modelling results within the sec-
ond-line setting. Top row: plots showing the raw individual longest 
diameter data over time (black dots) together with mean model simu-
lations (solid lines) and 95% confidence intervals (dashed lines) for 

first-line treatments. Bottom row: comparison of the dynamics via 
model simulations between the three docetaxel studies in the second-
line setting
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Fig. 4   Plots showing the results from the autoregressive analysis. 
Plots showing the transition from ILD time-series to generation of 
ROC AUC values over visits for gefitinib and paclitaxel/carboplatin 
(IPASS study). Top row: ILD time-series with mean model simula-
tions (solid red lines) and 95% CI (red dashed lines) overlaid. Mid-

dle row: distributions of alpha values—relative changes between two 
consecutive visits—moving from one visit to the next for the corre-
sponding raw ILD values shown in the top row. Bottom row: ROC 
AUC values when using alpha values to discriminate between con-
secutive visits
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size, assessed via an autoregressive visualisation approach, 
are markedly different for gefitinib versus paclitaxel/carbo-
platin, in further support of the findings using the resistance 
model competition.

Discussion

Tumour heterogeneity is known to exist at numerous levels, 
from between patients to between lesions within a patient, 
and even within an individual lesion [21–24]. This heter-
ogeneity has been discovered mainly through analyses of 
tumour material at the microscopic level. The impact of this 
heterogeneity on the within- and between-patient variability 
in tumour dynamics, under treatment, in a quantitative way 
has been largely unexplored. Here, we attempted to analyse 
these sources of variability by developing a joint mathemati-
cal biology and applied statistics approach, for application to 
routinely collected clinical trial imaging data via RECIST. 
Given that RECIST classifies lesions in a patient as target 
or non-target, and since only the former are recorded quan-
titatively over time, we, therefore, only used target lesions 
for this analysis. We applied our resultant framework to a 
sub-group of patients who relapsed from ten clinical studies 
in non-small cell lung cancer. The studies included chemo-
therapies (paclitaxel/carboplatin combination, docetaxel) 
and first-generation EGFR inhibitors (gefitinib, erlotinib), 
across both first- (treatment naive) and second-line set-
tings. The model-based approach was used to explore what 
insights can be gleamed regarding treatment resistance after 
the initial response.

The mathematical models developed here were purposely 
kept simple and based on our basic understanding of two 
types of resistance mechanisms as described by Hata et al. 
[4] The first, termed the de-novo model, is based on the 
idea that drug treatment selects out a pre-existing resistant 
clone; the other, termed the acquired model, describes the 
emergence of a resistant clone while under treatment (note 
that it is the treatment that dictates the resistance type). The 
resultant models were tested in a competition framework the 
same as those used in survival prediction competitions [7], 
to assess which model best-described tumour size dynamics 
across all ten study arms.

In the treatment naive setting, we found that the de-
novo model best-described the dynamics of tumours under 
gefitinib treatment, in two independent studies with dif-
ferent patient EGFR mutation selection criteria, IPASS 
(unselected Asian population) and IFUM (EGFR mutation 
positive Caucasian population). Using the resultant model, 
we were able to estimate the fraction of the initial tumour 
exhibiting resistance, and found this to be similar across 
both studies; mean resistance fraction was, approximately, 
0.3 in IFUM and 0.2 in IPASS. The slight difference in 

these mean resistant fractions may be due to differences in 
patient populations between the two studies, e.g., Asians 
(unselected) versus Caucasians (EGFR mutation positive). 
These values could be used to inform the development 
of co-culture xenograft studies, to further explore the 
dynamic interplay between drug sensitive and resistant 
cells in preclinical drug development [25].

For treatment naïve patients treated with paclitaxel/
carboplatin in contrast to gefitinib, we found that the 
acquired model best-described tumour size dynamics, 
in two independent studies. On comparing the dynamics 
between paclitaxel/carboplatin and gefitinib, we found 
faster shrinkage and slower re-growth for gefitinib ver-
sus doublet chemotherapy, although the shrinkage phase 
appeared to last longer for doublet chemotherapy. This 
result highlights how it may be possible to have no signifi-
cant differences in progression-free survival times between 
two treatments, yet the dynamics of the tumour size time-
series may differ between the two treatments.

The slower re-growth for gefitinib versus paclitaxel/
carboplatin suggests that de-novo resistance may lead to 
a less aggressive resistant clone than acquired resistance. 
One hypothesis as to why the growth rates of the resist-
ance clones differ between the two resistance modes may 
lie in how the selection pressure is applied. In the case of 
gefitinib, the drug is given daily, such that the selection 
pressure remains constant. This is in contrast to paclitaxel/
carboplatin, which is given once every 3 weeks: selec-
tion pressure is intermittent, as described previously by 
Chmielecki et al. [25]. An alternative hypothesis is that 
gefitinib, as a targeted agent, selects for a specific cell 
population, whereas paclitaxel/carboplatin does not select 
out for cells in the same manner [4].

This key finding in the treatment naive setting, namely 
that tumour size dynamics between gefitinib versus pacli-
taxel/carboplatin differ, was further explored via a data 
visualisation approach. This simply involved analysing 
relative changes in dynamics from one visit to the next, 
via an ROC analysis. Our results confirmed the key model-
based inferences: tumour size dynamics between gefitinib 
versus paclitaxel/carboplatin differ. The analysis also high-
lighted, similarly to the modelling exercise, that initial 
tumour shrinkage may well be greater for gefitinib than 
paclitaxel/carboplatin. Furthermore, it also indicated that 
most tumour shrinkage for gefitinib had already occurred 
by the first visit, 8-week time point, but could still con-
tinue for paclitaxel/carboplatin, albeit at a slower rate.

Our results also indicate that, although no further 
shrinkage is gained from continuing on gefitinib, post 
8 weeks, the re-growth rate of the resistant clone appears 
to be slower than that observed for doublet chemotherapy. 
This result supports the clinical findings that treating with 
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gefitinib post-progression may still provide patients with 
a benefit [26].

Application of the resistance model competition to sec-
ond-line treatments, where patients have previously received 
chemotherapy combinations, also led to contrasting infer-
ences for docetaxel versus gefitinib or erlotinib. For doc-
etaxel, we found that the acquired model best-described 
tumour size dynamics, although the strength of this infer-
ence varied across the three studies analysed.

On further analysis of the docetaxel studies, we found 
that the strength of evidence for the acquired hypothesis cor-
related with the chronological order patients were recruited 
to studies: INTEREST (weakest evidence—the oldest study: 
patient recruitment was between March 2004 and Febru-
ary 2006), followed by ZODIAC (patient recruitment was 
between May 2006 and April 2008), then VITAL (strongest 
evidence—the most recent study: patients recruited between 
September 2007 and February 2010).

As we move from the time period when INTEREST was 
conducted through to VITAL, prior treatments had changed. 
Of the patients recruited to INTEREST, the oldest study, 
none had previously taken bevacizumab, as part of a com-
bination therapy and the only platinum based combination 
used was paclitaxel. As we move on to ZODIAC a small 
proportion of patients had begun to receive bevacizumab 
with doublet chemotherapy (3%) with gemcitabine also 
emerging as a combination partner. Finally, as we move to 
the latest study, VITAL, approximately 12% of patients had a 
combination that involved bevacizumab with other platinum 
combinations involving gemcitabine as well as taxane-based 
treatments. This changing landscape in treatment history 
may explain the subtle differences regarding the strength 
of preference for the acquired model across those studies; 
selection pressure from the previous treatment would have 
influenced resistance mechanisms.

For second-line gefitinib and erlotinib, we found that nei-
ther model was better than the other at describing tumour 
size dynamics. This result may seem surprising at first, given 
that the de-novo model was the preferred one for first-line 
gefitinib, in two independent studies. However, the second-
line patients considered here were given chemotherapy com-
binations as a first-line treatment; for first-line paclitaxel/
carboplatin, the acquired model was preferred, which we 
interpreted as producing a more aggressive resistant pheno-
type. Thus, one hypothesis for our observation here is that 
administration of chemotherapy combinations first followed 
by a targeted EGFR inhibitor makes it harder to select out 
a specific clone. This result may suggest that patients for 
whom targeted therapies are an option should receive these 
first, before resorting to using chemotherapy.

For the final selected models across both first- (treat-
ment naive) and second-line settings, we also assessed if 
there was a degree of correlation in tumour size dynamics 

within a patient. We found that knowledge of “which 
lesion belongs to which patient” makes a considerable dif-
ference in each of the selected models’ ability to describe 
the data. This result suggests that there is a degree of cor-
relation in tumour size dynamics across metastatic lesions, 
within a patient. Thus, there is a degree of homogeneity 
within a patient when it comes to response and relapse of 
their metastatic lesions, in spite of the known genomic 
heterogeneity across those lesions [27].

The model-based approach taken within this study is 
not without caveats. The key one being our approach does 
not provide any molecular basis of resistance mechanisms, 
although it would be of interest to combine this approach 
in a quantitative study where circulating tumour DNA is 
being analysed longitudinally. We also have not considered 
recorded data on non-target lesions and new lesions. How-
ever, the approach does show that more can be gleamed 
from routinely collected clinical trial imaging data, and 
that this could be useful to differentiate between drugs and 
also assist in developing preclinical experiments. It is also 
noted that because longest diameter is used as a surrogate 
the modelling reported here is dependent upon that data. 
It would be useful if, in future trials, more detailed image 
analysis was performed including measuring tumour 
volume.

In summary, our approach and results show that exploring 
clinical trial imaging data in more detail than simply analys-
ing the sum of longest diameters of the target lesions can 
lead to important biological and treatment insights. Treat-
ment naïve patients will present with heterogeneous lesions 
and the choice of treatment will dictate the selection pres-
sure and resulting outgrowing fraction. This will have con-
sequences for the following lines of treatment. We are not 
aware of a comparable model-based study in the literature. 
We, therefore, encourage the scientific community to explore 
the tumour imaging data for more than just searching for a 
drug independent survival model given that our results show 
that the tumour dynamics are treatment-dependent; thereby, 
survival is likely as well.

Acknowledgements  H.B.M. would like to acknowledge financial sup-
port from AstraZeneca via the University of Manchester. This publica-
tion is based on research using information obtained from www.proje​
ctdat​asphe​re.org, which is maintained by Project Data Sphere, LLC. 
Neither Project Data Sphere, LLC nor the owner(s) of any informa-
tion from the web site has contributed to, approved or are in any way 
responsible for the contents of this publication.

Funding  This study was funded by AstraZeneca.

Compliance with ethical standards 

Conflict of interest  Hitesh B. Mistry declares that he has no conflict of 
interest. Gabriel Helmlinger declares that he has no conflict of interest. 
Nidal Al-Huniti declares that he has no conflict of interest. Karthick 

http://www.projectdatasphere.org
http://www.projectdatasphere.org


60	 Cancer Chemotherapy and Pharmacology (2019) 84:51–60

1 3

Vishwanathan declares that he has no conflict of interest. James Yates 
declares that he has no conflict of interest.

Ethical approval  This article does not contain any studies with human 
participants performed by any of the authors.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guide-
lines to evaluate the response to treatment in solid tumors. Euro-
pean Organization for Research and Treatment of Cancer, National 
Cancer Institute of the United States, National Cancer Institute of 
Canada. J Natl Cancer Inst 92:205–216

	 2.	 Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response 
evaluation criteria in solid tumours: revised RECIST guideline. 
Eur J Cancer Oxf Engl 45:228–247. https​://doi.org/10.1016/j.
ejca.2008.10.026

	 3.	 Ribba B, Holford NH, Magni P et al (2014) A review of mixed-
effects models of tumor growth and effects of anticancer drug 
treatment used in population analysis. CPT Pharmacomet Sys 
Pharmacol 3:1–10

	 4.	 Hata AN, Niederst MJ, Archibald HL et al (2016) Tumor cells can 
follow distinct evolutionary paths to become resistant to epidermal 
growth factor receptor inhibition. Nat Med 22:262–269. https​://
doi.org/10.1038/nm.4040

	 5.	 Hede K (2013) Project data sphere to make cancer clinical trial 
data publicly available. J Natl Cancer Inst 105:1159–1160. https​
://doi.org/10.1093/jnci/djt23​2

	 6.	 Green AK, Reeder-Hayes KE, Corty RW et al (2015) The pro-
ject data sphere initiative: accelerating cancer research by shar-
ing data. Oncologist 20:464. https​://doi.org/10.1634/theon​colog​
ist.2014-0431

	 7.	 Guinney J, Wang T, Laajala TD et al (2017) Prediction of overall 
survival for patients with metastatic castration-resistant prostate 
cancer: development of a prognostic model through a crowd-
sourced challenge with open clinical trial data. Lancet Oncol 
18:132–142. https​://doi.org/10.1016/S1470​-2045(16)30560​-5

	 8.	 Efron B (1979) Bootstrap Methods: another Look at the Jackknife. 
Ann Stat 7:1–26. https​://doi.org/10.1214/aos/11763​44552​

	 9.	 Yule GU (1927) On a Method of Investigating Periodicities in 
Disturbed Series, with Special Reference to Wolfer’s Sunspot 
Numbers. Philos Trans R Soc Lond Ser Contain Pap Math Phys 
Character 226:267–298

	10.	 R Development Core Team (2011) R: a language and environment 
for statistical computing. the R Foundation for Statistical Comput-
ing, Vienna

	11.	 (2000) Fitting linear mixed-effects models. In: Mixed-effects mod-
els in S and S-PLUS. Springer New York, pp 133–199

	12.	 Fukuoka M, Wu Y-L, Thongprasert S et al (2011) Biomarker 
analyses and final overall survival results from a phase III, rand-
omized, open-label, first-line study of gefitinib versus carboplatin/
paclitaxel in clinically selected patients with advanced non–small-
cell lung cancer in Asia (IPASS). J Clin Oncol 29:2866–2874. 
https​://doi.org/10.1200/JCO.2010.33.4235

	13.	 Socinski MA, Bondarenko I, Karaseva NA et al (2012) Weekly 
nab-paclitaxel in combination with carboplatin versus solvent-
based paclitaxel plus carboplatin as first-line therapy in patients 
with advanced non–small-cell lung cancer: final results of a phase 
III trial. J Clin Oncol 30:2055–2062. https​://doi.org/10.1200/
JCO.2011.39.5848

	14.	 Douillard J-Y, Ostoros G, Cobo M et al (2014) First-line gefitinib 
in Caucasian EGFR mutation-positive NSCLC patients: a phase-
IV, open-label, single-arm study. Br J Cancer 110:55–62. https​://
doi.org/10.1038/bjc.2013.721

	15.	 Natale RB, Thongprasert S, Greco FA et al (2011) Phase III trial 
of vandetanib compared with erlotinib in patients with previ-
ously treated advanced non–small-cell lung cancer. J Clin Oncol 
29:1059–1066. https​://doi.org/10.1200/JCO.2010.28.5981

	16.	 Scagliotti GV, Krzakowski M, Szczesna A, et al. (2012) Sunitinib 
plus erlotinib versus placebo plus erlotinib in patients with previ-
ously treated advanced non–small-cell lung cancer: a phase III 
trial. J Clin Oncol. https​://doi.org/10.1200/JCO.2011.39.2993

	17.	 Fukuoka M, Yano S, Giaccone G, et al. (2003) Multi-institu-
tional randomized phase II trial of gefitinib for previously treated 
patients with advanced non–small-cell lung cancer. J Clin Oncol 
21:2237–2246. https​://doi.org/10.1200/JCO.2003.10.038

	18.	 Kim ES, Hirsh V, Mok T, et al. (2008) Gefitinib versus docetaxel 
in previously treated non-small-cell lung cancer (INTEREST): 
a randomised phase III trial. Lancet Lond Engl 372:1809–1818. 
https​://doi.org/10.1016/S0140​-6736(08)61758​-4

	19.	 Herbst RS, Sun Y, Eberhardt WEE, et al. (2010) Vandetanib plus 
docetaxel versus docetaxel as second-line treatment for patients 
with advanced non-small-cell lung cancer (ZODIAC): a double-
blind, randomised, phase 3 trial. Lancet Oncol 11:619–626. https​
://doi.org/10.1016/S1470​-2045(10)70132​-7

	20.	 Ramlau R, Gorbunova V, Ciuleanu TE, et al. (2012) Aflibercept 
and docetaxel versus docetaxel alone after platinum failure in 
patients with advanced or metastatic non–small-cell lung cancer: 
a randomized, controlled phase III trial. J Clin Oncol 30:3640–
3647. https​://doi.org/10.1200/JCO.2012.42.6932

	21.	 Burrell RA, Swanton C (2014) Tumour heterogeneity and the evo-
lution of polyclonal drug resistance. Mol Oncol 8:1095–1111. 
https​://doi.org/10.1016/j.molon​c.2014.06.005

	22.	 Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resist-
ance. J Clin Oncol Off J Am Soc Clin Oncol 4:244–257

	23.	 Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: 
implications for targeted therapeutics. Br J Cancer 108:479–485. 
https​://doi.org/10.1038/bjc.2012.581

	24.	 Heppner GH (1984) Tumor heterogeneity. Cancer Res 
44:2259–2265

	25.	 Chmielecki J, Foo J, Oxnard GR et al (2011) Optimization of 
dosing for EGFR-mutant non-small cell lung cancer with evo-
lutionary cancer modeling. Sci Transl Med 3:9059. https​://doi.
org/10.1126/scitr​anslm​ed.30023​56

	26.	 Moiseyenko FV, Moiseyenko VM, Aleksakhina SN et al (2016) 
Survival outcomes in EGFR mutation-positive lung cancer 
patients treated with gefitinib until or beyond progression. Oncol 
Res Treat 39:605–614. https​://doi.org/10.1159/00044​9024

	27.	 Heindl A, Nawaz S, Yuan Y (2015) Mapping spatial hetero-
geneity in the tumor microenvironment: a new era for digital 
pathology. Lab Invest 95:377–384. https​://doi.org/10.1038/labin​
vest.2014.155

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1038/nm.4040
https://doi.org/10.1038/nm.4040
https://doi.org/10.1093/jnci/djt232
https://doi.org/10.1093/jnci/djt232
https://doi.org/10.1634/theoncologist.2014-0431
https://doi.org/10.1634/theoncologist.2014-0431
https://doi.org/10.1016/S1470-2045(16)30560-5
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1200/JCO.2010.33.4235
https://doi.org/10.1200/JCO.2011.39.5848
https://doi.org/10.1200/JCO.2011.39.5848
https://doi.org/10.1038/bjc.2013.721
https://doi.org/10.1038/bjc.2013.721
https://doi.org/10.1200/JCO.2010.28.5981
https://doi.org/10.1200/JCO.2011.39.2993
https://doi.org/10.1200/JCO.2003.10.038
https://doi.org/10.1016/S0140-6736(08)61758-4
https://doi.org/10.1016/S1470-2045(10)70132-7
https://doi.org/10.1016/S1470-2045(10)70132-7
https://doi.org/10.1200/JCO.2012.42.6932
https://doi.org/10.1016/j.molonc.2014.06.005
https://doi.org/10.1038/bjc.2012.581
https://doi.org/10.1126/scitranslmed.3002356
https://doi.org/10.1126/scitranslmed.3002356
https://doi.org/10.1159/000449024
https://doi.org/10.1038/labinvest.2014.155
https://doi.org/10.1038/labinvest.2014.155

	Resistance models to EGFR inhibition and chemotherapy in non-small cell lung cancer via analysis of tumour size dynamics
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Patients and data
	Resistance models
	Model assessment
	Autoregressive time-series analysis

	Results
	Characteristics of patients and studies
	Resistance models
	Autoregressive analysis

	Discussion
	Acknowledgements 
	References




