
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports

A target‑driven visual navigation
method based on intrinsic
motivation exploration and space
topological cognition
Xiaogang Ruan1,2, Peng Li1,2, Xiaoqing Zhu1,2* & Pengfei Liu1,2

Target-driven visual navigation is essential for many applications in robotics, and it has gained
increasing interest in recent years. In this work, inspired by animal cognitive mechanisms, we
propose a novel navigation architecture that simultaneously learns exploration policy and encodes
environmental structure. First, to learn exploration policy directly from raw visual input, we use deep
reinforcement learning as the basic framework and allow agents to create rewards for themselves
as learning signals. In our approach, the reward for the current observation is driven by curiosity and
calculated by a count-based approach and temporal distance. While agents learn exploration policy,
we use temporal distance to find waypoints in observation sequences and incrementally describe the
structure of the environment in a way that integrates episodic memory. Finally, space topological
cognition is integrated into the model as a path planning module and combined with a locomotion
network to obtain a more generalized approach to navigation. We test our approach in the DMlab,
a visually rich 3D environment, and validate its exploration efficiency and navigation performance
through extensive experiments. The experimental results show that our approach can explore and
encode the environment more efficiently and has better capability in dealing with stochastic objects.
In navigation tasks, agents can use space topological cognition to effectively reach the target and
guide detour behaviour when a path is unavailable, exhibiting good environmental adaptability.

Humans and many animals can learn a variety of skills by interacting with their environment, and one useful skill
is navigation1. Navigation has been widely studied in psychology and neuroscience since 1948 when Tolman2
introduced the concept of cognitive maps to explain the detour behaviour of rats. Until now, there has been no
clear answer to the exact form of cognitive map. However, it is undeniable that animals can build a cognitive
model of their environment from raw sensory input and use it to support subsequent actions such as finding
food, shelter, or a mate.

Recently, deep reinforcement learning (DRL)3, a method that integrates the perceptual capability of deep
learning (DL)4 with the decision-making capability of reinforcement learning (RL)5, has been used to solve con-
trol tasks in high-dimensional state space. Relying on a learning framework that can create a direct mapping from
raw sensory input to action output, DRL has impressive results in target-driven navigation tasks. Zhu6 combined
pretrained ResNet with a Siamese actor-critic architecture to accomplish target-driven visual navigation. This
approach has a good generalization to new targets, but it lacks memory units and performs poorly in complex
environments. Mnih7 proposed an asynchronous RL method and used it to train a model that was combined with
long short-term memory (LSTM)8 network, for navigating in 3D mazes. Jaderbery9 studied the effects of vari-
ous auxiliary tasks and found that denser reward feedback was helpful in learning navigation policy. Mirowski3
constructed a stacked LSTM framework that learns target-driven behaviour in conjunction with depth predic-
tion and loop closure classification tasks and showed that data efficiency and task performance can be greatly
improved when additional navigation-related signals are provided. To better transfer learned navigation skills
to new environments, Ye10 introduced a model that includes a custom object recognition module. In this way,
the agent can recognize a target regardless of where the image of the object comes from. Although the agent can
reach 4 different targets in a scene, it is still not applicable to new environments. Yang11 proposed a framework
that combines a pretrained ResNet with a word encoder to solve the generalization problem in visual semantic
navigation. In their setup, they used a graph convolutional network (GCN) to encode semantic priors. It is worth

OPEN

1Faculty of Information Technology, Beijing University of Technology, Beijing, China. 2Beijing Key Laboratory of
Computational Intelligence and Intelligent System, Beijing, China. *email: alex.zhuxq@bjut.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07264-7&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

noting that this semantic approach is not a good choice for visual navigation tasks, since the target is specified
by the image rather than the semantic label. Devo12 proposed a novel architecture consisting of two networks,
the first of which aims to explore the environment and the other at locating the target. The experimental results
show that the agent can transfer learned skills to new environments without fine-tuning. These methods have
proven that DRL is an effective framework to learn navigation policy, only through vision. However, mapless
methods require retraining or at least fine-tuning the model to deal with changes in the environment. In the
real world, this operation can be time-consuming or even impossible to complete. Therefore, we want to encode
the structure of the environment while the agent learns control policy to better deal with the problems posed by
dynamic elements. To cover the state space as soon as possible, we prefer to obtain an exploration policy during
the interaction.

As we mentioned above, target-driven behaviour can be obtained based on specified targets and correspond-
ing rewards in the environment; however, what should drive the exploration policy? By reading the literature on
cognitive mechanisms in animals13–15, we found that curiosity is one of the motivations for animals to spontane-
ously explore their environment. Many AI agents take curiosity as an internal mechanism to push them to make
sense of the world. Bellemare16 proposed a pseudo-count method that generalizes count-based exploration to the
non-tabular case, and this method improves the efficiency of agent exploration in some difficult games, especially
the game named Montezuma’s Revenge. Ostrovski17 replaced the model providing the pseudo-count in Belle-
mare’s method with PixelCNN and showed excellent exploration performance in many Atari games. In addition,
they found that the mixed Monte Carlo update is a powerful facilitator for exploration. Tang18 combined a hash
table with classical count-based exploration to compute a novelty bonus for states, and this combination allowed
the method to reach near state-of-the-art performance on various continuous DRL benchmarks. Houthooft19
introduced an exploration method that creates intrinsic reward by maximizing the information gain of an agent’s
beliefs about the dynamics of the environment, which shows superiority in simple video games but still struggle
in complex environments. Relying on the theory that new states are more easily distinguished from other states,
Fu20 used an exemplar model to detect novelty during interaction and combined it with a count-based method
to guide exploration in egocentric observation. Pathak21 proposed an intrinsic curiosity module (ICM) that
calculates intrinsic rewards based on prediction errors to push the agent in VizDoom and Super Mar Bros to
explore the environment more efficiently, but it does not work when the agent observes something unpredictable.

The ICM model has given us some insight in building a curiosity-driven approach to exploration, but since
predicting the future is harder than retrieving things from memory, we do not use prediction errors as a source
of reward. Our reward function is related to episode memory22 and consists of two parts: (1) the frequency with
which an agent reaches a waypoint is recorded, and these counts are then used to calculate the reward according
to the classical count-based method; (2) we also take temporal distance23,24 as the basis for assigning rewards,
with reward size determined by the environmental steps between the current observation and those in memory.
Additionally, we encode the structure of the environment during exploration, and instead of constructing metric
maps in previous studies25–28, we use a topological map to represent the state space. This space cognition can
be used to gradually cover the environment by integrating observation sequences and as a planning module for
navigation systems. Finally, we complement space cognition with a locomotion network that allows the agent to
move between waypoints. Our contributions are as follows:

1.	 A novel navigation architecture that synchronizes learning exploration policy and encoding environmental
structure.

2.	 An intrinsic motivation construct method that guides agents to spontaneously explore the environment and
outperforms existing methods in terms of exploration efficiency.

3.	 Space topological cognition encodes the environmental structure by integrating observational sequences,
which agents can use to deal with dynamic blockages without retraining or fine-tuning.

Background
Reinforcement learning foundation.  Standard RL assumes that the agent interacts with the environ-
ment in many discrete time steps. At each time step t  , the agent observes a state st(s ∈ S) and chooses an action
at(a ∈ A) based on its policy π , where π is a mapping from the state to the action. In return, the agent enters the
next state st+1 and receives a scalar reward rt . This process is continuous until the maximum time steps of an
episode or a terminal state are reached. The reward Rt =

∑∞
k=0 γ

krt+k is the accumulated return from time step
t with discount factor γ ∈ (0, 1] . The target of the agent is to maximize the expected return from each state st ,
and there are two common methods to do this: value-based and policy-based methods.

The value function Vπ (π) = E[Rt |st = s] is the expected return of the following policy π from state s , and
the more familiar action-value function Qπ (s, a) = E[Rt |st = s, a] is defined as the expected return of choosing
action a in state s and the following policy π . In many RL approaches, the action-value function is represented
by a function approximator, the famous one being Deep Q Network (DQN)29, which aims to approximate the
optimal action-value function by a convolutional neural network (CNN). In contrast to the value-based method,
the policy-based method directly parameterizes the policy π(a|s; θ) and updates the parameter θ by the gradient
ascent on E[Rt] . An example of such algorithms is REINFORCE30, which updates the policy parameter θ in the
direction ∇θ logπ(at |st; θ)31.

As mentioned above, the value-based method and policy-based method have the same ultimate goal, but they
use different methods to obtain policies, and each has its advantages and disadvantages. To combine the advan-
tages of both, the actor-critic (AC)32 algorithm is proposed. Within the framework, the actor and critic are repre-
sented by policy π and value function Vπ (st) , respectively, and advantage estimation A(st , at) = Q(st , a)− V(st)

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

is used to scale the policy gradient. The operation diagram of the AC algorithm is shown in Fig. 1, which is an
iterative optimization process.

Asynchronous advantage actor‑critic algorithm.  The asynchronous advantage actor-critic (A3C)7
algorithm is an online RL learning method that maintains policy π(at |st; θ) and value function V(st; θv) during
interaction and relies on parallel actor-learners to provide accumulated updates. Similar to n-step Q-learning
variant, A3C operates in the forward view and uses the same mixed n-step return to update the policy and value
function after every tmax actions or when a terminal state is reached. The update is performed by the estimation
of advantage function A(st , at; θ , θv) given by Rt − V(st; θv) , where Rt =

∑k−1
i=0 γ irt+i + γ kV

(

st+k; θv
)

 and
k ∈ (0, tmax] . Furthermore, although the parameters θ of policy π(at |st; θ) and θv of value function V(st; θv) are
computed and updated separately, sharing some parameters and adding entropy regularization terms have been
shown to help in learning control policies.

In the A3C algorithm, each agent interacts with the environment independently. Due to the random ini-
tialization of parameters, the observed state, actions taken and rewards achieved are different between parallel
agents, as shown in Fig. 2, thus enabling asynchronous update and reducing the relevance of the training samples.
Similar to other nonsynchronous methods, the loss function of the policy and value function are calculated by
Eqs. (1) and (2), respectively:

(1)fπ (θ) = logπ(at |st; θ)(Rt − V(st; θv))

Value
function

Policy

Environment
Reward

Critic

Actor

Action

TD
error

State

Figure 1.   Flowchart of the AC algorithm.

global policy and
value network

Agent1

Agent2

Agentn

Environment

Sc
en
ar
io

1
Sc
en
ar
io

2
Sc
en
ar
io

n

experiences

experiences

experiences

batchingasynchronous update

Figure 2.   Flowchart of the A3C algorithm.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

The losses of each agent are collected and the global network is updated using the standard non-centered
RMSProp, as shown in Eqs. (3) and (4). After each update, the global network transmits the policy and value
function to each agent.

where g is the moving average of the elementwise squared gradients, 0 ≤ α ≤ 1 is a hyperparameter, η is the
learning rate and ε is a constant added to maintain numerical stability.

Nav A3C model.  A prominent application of the A3C algorithm in the navigation field is Nav A3C3, which
is an end-to-end framework that incorporates multiple objectives. Similar to the A3C algorithm, Nav A3C
maximizes accumulated return through actor-critic architecture and uses policy π(at |st; θ) and value function
V(st; θv) to select actions.

Details about the architecture of Nav A3C are shown in Fig. 3. Its encoder is a three-layer convolutional
neural network, and to address the memory requirement, Nav A3C employs a stacked LSTM after that. The
inputs to this model include: the agent observation ot ∈ R3×W×H(where W and H are the width and height of
the image), the velocity vt ∈ R6 , the previous action at−1 ∈ RNA and the previous reward rt−1 ∈ R . Inside the
model, the first LSTM layer receives the reward, and the velocity and previously selected action are fed directly
to the second recurrent layer. The policy and value functions share all intermediate representations, and each of
them is computed by a linear layer. In addition, two auxiliary tasks are used in the Nav A3C model, which we
also illustrate in Fig. 3: D1 and D2 are designed to use additional losses to provide depth information about the
environment, and the loop closure classification task (L). In the Nav A3C + D2(D1)L model, which incorporates
auxiliary tasks, the agent is trained by applying a weighted sum of the gradients coming from A3C, the gradients
from depth prediction and the gradients from loop closure.

Navigation method
In the following sections, we introduce all the components of our method. The first section describes how to
create rewards for the agent and use them to guide exploration behaviour. Then, the method for encoding the
environment with episode memory as inputs is presented, and finally, the target-driven navigation approach is
illustrated.

Learning exploration policy.  Temporal correlation network.  The temporal correlation network (TC-
network, φTC ) is trained to compute the temporal distance between observations, which is essential for creating
rewards and encoding environments. Additionally, the visual perception tasks, including agent location and
target detection, rely on this network.

Conceptually, we view the TC-network as a classification task: the network is trained to assign high similarity
to temporally close observation pairs and low similarity to temporally distant observation pairs. The architec-
ture of the TC-network is shown in Fig. 4, which consists of two parts: an embedding part φE , which is based
on ResNet-1833 and used to encode visual input, and a comparator part φC that takes the features as input, and
outputs the temporal correlation coefficient tc between observations (such as oi and oj):

(2)fv(θ) = (Rt − V(st; θv))2

(3)g = αg + (1− α)∇θ2

(4)θ ← θ − η∇θ
/√

g + ε

(5)tc = φTC
(

oi , oj
)

= φC
(

φE(oi),φE
(

oj
))

CONV1
CONV2

FC

LSTM1
CONV3

LSTM2

Depth(D1)
Loop(L)
Depth(D2)

Figure 3.   The Nav A3C model.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

The training samples of the TC-network are triples
〈

oi , oi+k , yik
〉

 , which consist of two observations and a
binary label. These observations are considered close

(

yik = 1
)

 if they are separated by at most k steps. Negative
examples are pairs where the two observations are separated by at least M · k steps, and the hyperparameter M
is necessary to create a gap between positive and negative examples. Finally, the network is trained with logistic
regression losses to output the probability of positive classes.

Formulate reward function.  Everyone knows that agents cannot take near-optimal actions until they fully
explore their environment or construct a cognitive model of the world34, but the basic question is how to obtain
an efficient exploration policy. Relying on simple action entropy maximization as a source of exploration behav-
iour is difficult in complex environments, and annotating each environment with a hand-designed dense reward
is not scalable. One available alternative is curiosity-driven exploration35, which is inspired by biological mecha-
nisms and uses intrinsic motivation to guide exploration. Across different fields, many theorists have suggested
the pattern of intrinsic motivation, including empowerment36, surprise37, and novelty38. The way we make up
the reward function is based on novelty theory, which shows the animal can reward itself for something novel.
Furthermore, our reward function consists of two novelty reward types, both of which are related to episodic
memory.

The first part of our reward function is calculated based on a count-based method, and for those models that
use the same approach, the novelty of a state-action pair is derived from the number of times the agent visits the
pair. Such approaches require an enumerable environmental representation to prevent dimensional explosion
problems, which is why the count-based method is not practical for high-dimensional state spaces since most
states occur only once. Our approach discretizes the state space by TC-network φTC : S → W and uses waypoints
ow(ow ∈ W) to represent the environment. States are mapped to waypoints, so their occurrences can be counted
by the corresponding waypoints. These counts are then used to calculate the novelty reward according to classical
count-based exploration theory, and such reward rcb : S → R is defined as:

where α ∈ R≥0 is the reward coefficient, oc is the current observation, and ow is the waypoint. For every mapping
oc → ow(ow ∈ W) found, the corresponding n(φTC(oc , ow)) is increased by one. You might be thinking that the
count-based method can effectively calculate the novelty reward for each state that has mappings. However, if
the mapping does not exist, in other words, the current observation is in the unexplored part of the environment,
then how is the reward calculated? That is the next question we want to address.

As described above, animals can reward themselves when they see something novel, but the size of the reward
varies with the effort put in by the agent. This idea can be formalized as giving rewards to observations outside
the already explored part of the environment, and the magnitude of the reward is proportional to the shortest
temporal distance between the current observation and the waypoints. Therefore, the other part of our reward
function rtd : S → R is defined as:

where β ∈ R≥0 is the reward coefficient, oc is the current observation, and ow(ow ∈ W) is the waypoint stored in
memory. The reward function ri(oc , ow) is defined as the sum of the two novelty reward types:

(6)rcb
(

oc , ow
)

= α√
n(φTC(oc , ow))

(7)rtd
(

oc , ow
)

= min
ow∈W

{

β

φTC(oc , ow)

}

Embedding Part

Comparator Part

Figure 4.   The TC-network model.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

The reward calculation process is shown in Fig. 5. To determine the novelty rewards of current observations,
we must keep track of what has been explored in the environment. Waypoints buffer provides a good choice,
they store instances of the past and can update in time as regions are explored.

Learning model.  DRL provides an effective framework to enable agents to acquire a control policy for a par-
ticular task39, and in our method, it is used as the basic method for learning exploration policy. Our learning
model is shown in Fig. 6, with an architecture that references the Nav A3C model and makes some adjustments
to fit the exploration task. One of the most obvious changes occurs in the structure of the encoder and the
memory unit. Because our method does not utilize auxiliary tasks, it does not require a stacked LSTM network
to store additional environmental information. The 1-layer LSTM can satisfy the memory requirement, and the
convolutional encoder can be relaxed from 3 to 2 layers. To further reduce the training complexity, our convo-
lutional layers output 16 and 32 features, respectively, instead of 32 and 64 for the Nav A3C model. The input
to this model includes: the observation ot ∈ R3×W×H(where W and H are the width and height of the image),
the previous action at−1 ∈ R|A| , and the previous reward rit−1 ∈ R . At every time step t  , action at is selected to
maximize reward rit . It should be noted that the reward rit does not include any reward from the environment,
except for these two types of novelty rewards. We use the A3C algorithm with n-step look-ahead values to tune
the policy π(at |st; θ) and value function V(st; θ) and a regularization penalty for entropy to prevent premature
convergence. During the training process, many agent instances interact in parallel with many environmental
instances.

Space topological cognition.  Episodic memory is one of the sources of our cognition of the world and
the basis for animals’ encoding their environment. However, encoding the environment using these observation
sequences remains a problem due to their complexity and redundancy. Inspired by the grid cells40 found in the
rat brain, we proposed the concept of waypoints. Waypoints are a special class of observations, each of which
can represent a state space within a temporal distance. Relying on the TC-network, we can find waypoints in
episodic memory and use them to encode the environment during exploration, and the encoding process can
be divided into two stages.

In the initial stage, we need to encode the exploration sequence, as there are no waypoints stored in memory.
Assume the agent lasts for T time steps in an episode and produces an observation sequence (o1, o2, ..., oT) . Tak-
ing the first elimination of redundant observations as an example, the temporal correlation coefficient between
o1 and the others in the sequence is obtained via the TC-network:

(8)ri
(

oc , ow
)

= rcb
(

oc , ow
)

+ rtd
(

oc , ow
)

(9)tc1 = φTC(o1, oi)

Waypoints
buffer

Comparator PartEmbedding Part

Figure 5.   The reward calculation process.

CONV1
CONV2

FC

LSTM

Figure 6.   The learning model.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

where tc1 represents the temporal correlation coefficient of the first iteration and i ∈ [2,T] . According to the
threshold tcth, the observations adjacent to o1 are omitted, and the simplified diagram is shown in Fig. 7. This
is the first iteration where all the retained observations cannot be mapped to observation o1 , so o1 is the first
waypoint ow1 stored in memory. Then, the sequence is continuously simplified with the retained observations
and in the same way until the last observation.

It is worth noting that our method follows the order of observation, and the waypoints within the memory
are stored incrementally and connected in theory. However, the agent’s movement is realized by the locomo-
tion network, and the connection between waypoints should be considered to determine whether it applies to
the locomotion network. In two cases, we connect waypoints with an edge: if the corresponding waypoints are
reachable according to the judgement of the TC-network, or if they are within certain time steps:

where e is the connection relationship between waypoints, owi and owj are waypoints, and tcre ∈
(

0.5, tcth
)

 is the
threshold of reachability. The first edge type corresponds to temporal distance, while the second type corresponds
to natural spatial adjacency between locations, and both connection types are acceptable for the locomotion
network.

In the extension stage, as shown in Fig. 8, we need to continuously discover waypoints in the current explora-
tion trajectory and use them to extend the space cognition.

Therefore, each observation in the current sequence (o1, o2, ..., oT)c needs to be compared with the waypoints
to obtain the temporal correlation coefficient between them:

where tcc represents the temporal correlation coefficient between the current sequence and waypoints,
oci (i ∈ [1,T]) is the observation in the current sequence, and owj

(

j ∈ [1, n]
)

 is the waypoint stored in memory. If
all observations in the current sequence can be represented by waypoints, there is no need to update the space

(10)e = 1 ⇔ φTC

(

owi , o
w
j

)

> tcre ∨
∣

∣i − j
∣

∣ ≤ k

(11)tcc = φTC

(

oci , o
w
j

)

temporally close to

omitted observations

reserved observations

temporally distant from

Figure 7.   Schematic diagram depicting a simplified version of the observation sequence.

current exploration trajectory
waypoints
in memory

expansion

reachable
from memory

far from memory

Figure 8.   Schematic diagram of cognitive expansion.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

cognition. Conversely, if there are observations that cannot be mapped by waypoints, then these observations
become new waypoints and are added to the memory. At this point, the edges connecting the new waypoints
need to be created:

where oci−1 is the previous observation of oci  , o
c
i (i ∈ [2,T]) is the added waypoint from the current sequence, and

owj
(

j ∈ [1, n]
)

 is a waypoint in the memory.

Navigation implementation.  Locomotion network.  The purpose of the locomotion network (L-net-
work, φL ) is to assist the agent in completing the motion between waypoints, which maps a pair of observations
(

oi , oj
)

 and produces probabilities P
(

oi , oj
)

∈ R|A|.
Since the input to the L-network are images, the first thing that comes to our mind is the use of inter-frame

difference41 to predict actions, whose salient feature is its real-time nature. However, this approach always runs
into trouble in two areas: limited prediction accuracy and easy distraction. To overcome these problems, we
use feature space rather than pixel-level inputs to predict actions, and objects encoded by the L-network can
be classified into three types: (1) objects that can be influenced by the agent’s actions, (2) objects that cannot be
influenced by the agent’s actions but whose actions can influence the agent, and (3) objects that are completely
unrelated to the agent’s actions. A good feature space for predicting actions should be closely related to (1) and
(2) and not interfered with by (3). The latter is because if there is a variation that is unconsidered for the agent’s
actions, then the agent has no incentive to know about it.

In contrast to manually designed features, we use a deep neural network (DNN)42 to generate features auto-
matically. The L-network model is shown in Fig. 9, which is an end-to-end framework with a forward-inverse
structure. One advantage of this framework is that actions are not separated from features but learned together,
thus ensuring that there is no incentive for features to encode any objects that cannot influence or are not influ-
enced by the agent’s actions. Inside the model, the forward part φF is a deep convolutional encoder based on
ResNet-18 that calculates the raw observations

(

oi , oj
)

 as feature vectors; the inverse part φI takes the features as
input and produces the probabilities of actions:

The training samples of the L-network are similar to those of the TC-network in that it contains a pair of
observations separated by k steps and an action:

((

oi , oi+k

)

, aoi
)

 , where the action corresponds to the first obser-
vation. Training the L-network amount to the learning function φL is defined as:

where âoi is the prediction of action aoi , and the neural network parameters θL are trained to optimize
min
θL

loss
(

âoi , aoi
)

 in a supervised fashion, with a softmax output layer and the cross-entropy loss.

(12)e =
{

1 φTC

(

oci−1, o
w
j

)

> tcre

0 i = 1

(13)P = φL
(

oi , oj
)

= φI
(

φF(oi),φF
(

oj
))

(14)
∧
aoi ⇔ P = φL

(

oi , oi+k; θL
)

Forward Part

Inverse Part

Figure 9.   The L-network model.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Goal reaching process.  The navigational tasks are performed in an episodic setting where each episode lasts for
fixed time steps. In an episode, the agent uses the space topological cognition constructed during exploration to
find an available path to achieve the goal, so we first need to know where the path begins and ends. The location
method is shown in Fig. 10. Relying on the TC-network and environmental memory, we can use the goal images
og collected during the training process to obtain the location of the goal (red circle) and use the current observa-
tion oc to locate the agent (yellow circle).

After obtaining the locations of the agent and the goal, we use Dijkstra’s algorithm43 to find the shortest path
between waypoints ows and owg  , marked in red in the topological cognition (Fig. 10) and denoted by Formula (15):

However, this is not the end of the story. Since space topological cognition is learned in barrier-free envi-
ronments, the planned paths produced by it are only applicable in non-blocking environments. When there
are blockages in the state space, especially a blockage presents in the navigation path (the black blockage in
Fig. 10), the agent will stay in front of the blockage. To deal with this situation, space topological cognition
must be updated in time according to changes in the environment. In our method, this adjustment is achieved
by changing the path cost of unavailable connections between waypoints. During navigation, if the goal is not
reached within a certain number of time steps, it proves that there are blockages in the planned path. We need
to find the connections that traverse blockages and set their path cost to infinity, thus ensuring that unavailable
connections cannot be used for path planning. The new path needs to be replanned based on the revised space
cognition. Since waypoints are interconnected and there may be multiple blockages in the environment, reaching
the goal is a dynamic process, the flow of which is shown in Fig. 11.

Experiment
In this section, we evaluate the performance of our method on exploration and goal reaching tasks and compare
it to relevant baselines.

Experiment setup.  Experimental environment.  We test our approach and relevant baselines in multiple
mazes in DMlab44, and an illustration of an agent navigating towards a goal in the environment is shown in
Fig. 12. In this 3D simulation environment, the agent perceives the environment from a first-person perspective
and has access to additional environmental information such as inertial information and local depth informa-
tion. The action space is discrete while allowing fine control and includes 6 actions: move forwards/backwards,
turn left/right, turn left/right + move forwards. The environment runs at 60 frames per second and extrinsic
rewards are achieved by reaching apple (worth + 1 point) and goal (worth + 10 points) in the environment. If the
goal is reached, the agent is respawned to a new start location, and the episode does not end until a fixed number
of time steps. The software environment for this experiment is Ubuntu 18.04, and the hardware environment is a
DELL T7920 workstation with 64 GB RAM, an Intel Xeon Gold 5118 CPU and two Nvidia RTX 2080TI graphics
cards. All programs in the experiment were implemented in the Python language.

Baselines.  In experiments in which agents were guided to produce exploration behaviour, we compared our
method to a baseline set that also had intrinsic motivation as a motivator for exploration. The simplest baseline
is the basic RL algorithm trust region policy optimization (TRPO)45, which relies on the heuristic ε−greedy
method to encourage exploration. Then, we use VIME19 as a comparator, which is based on a Bayesian neural
network (BNN), to perceive dynamic changes in the environment and obtain an exploration policy by maximiz-

(15)
〈

ows , o
w
1 , ..., o

w
g

〉

, ows = oc , owg = og

Embedding Part

Waypoints
buffer

Comparator Part Space
Topological
Cognition

Figure 10.   The location method.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

ing this information gain. The third baseline is a classifier-centric approach called EX220, which explores novelty
detection relying exclusively on a discriminatively trained exemplar model. Finally, as a sanity check, we also
reproduce the state-of-the-art curiosity method ICM21, which makes predictions in the feature space and formu-
lates curiosity as the error of its actions.

In goal reaching experiments, we take three models equipped with the DRL framework as baselines. One is the
well-known feedforward model DQN29, the other is the recurrent model Deep Recurrent Q Network (DRQN)46,
and the last is Nav A3C3, which has been mentioned before. In addition, the enhanced version Nav A3C + D2L,
which jointly learns goal-driven behaviour with auxiliary tasks, is reported in the experiments.

Model implementation.  The architecture details of our learning model are as follows. It has two convolutional
layers: the first layer has 8× 8 filters applied with stride 4× 4 and 16 feature maps, while the second layer has
4× 4 filters with stride 2× 2 and 32 feature maps. This is followed by a fully-connected layer with 256 units, and
all three layers are followed by a ReLU nonlinearity unit. After that, an LSTM layer with 256 units is used to take
the CNN-encoded observation, previous action and reward as input, and the policy and value function are linear
projections of the LSTM layer output.

For the TC-network and L-network, their inputs are two observations, each of which is processed by the
ResNet-18 encoder and produces a 512-dimensional feature vector. The TC-network first concatenates these
features and then puts them in a fully connected network with 4 hidden layers, each with 512 units and a ReLU
nonlinearity unit, to predict whether the two observations are adjacent to each other. Likewise, the L-network
processes these features together after concatenating them in series. The fully-connected part consists of 2 hidden
layers, each with 512 units and a ReLU nonlinearity unit, and a softmax layer with 6 outputs, which correspond
to all available actions of the agent.

Hyperparameters.  During the exploration, we choose the commonly used A3C algorithm as the basic RL
approach and take 84× 84 RGB observations at 3 frame intervals (4 repetitions of each action) as input. There
are 8 workers equipped with a non-centered RMSProp that interact with the environment in parallel. The learn-
ing rates are sampled from a log-uniform distribution between 0.0001 and 0.005, and the entropy costs are
sampled from a log-uniform distribution between 0.0005 and 0.01.

Place the agent
at the starting location

Yes

No

Are there
any planned

paths?

Use space topological
cognition to plan the path

Does the
agent reach
the goal?

No

Use planned path to
advance towards the goal

Yes

Locate the positions
of the goal and agent

Reset the agent
to the starting location

Find unusable connections
and update the path cost

Use the rectified
space topological cognition

to plan the path again

Figure 11.   Flowchart of the procedure for reaching the goal.

Figure 12.   Simulation environment. (a) Go forwards. (b) Apple. (c) Goal. (d) Door.

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

The inputs to the TC-network and L-network are two RGB images at resolution 160× 120 pixels, and all
the training data are generated by agents themselves. During the training process, we randomly sample a mini-
batch of 64 observation pairs from the replay buffer B and perform an update using the Adam optimizer47 with
learning rate � = 0.0001.

Parameter selection experiment.  We are interested in agents that can spontaneously explore and encode
the environment, but some parameters need to be set in advance before testing the performance of our approach.
These parameters are related to two aspects, the training details of the TC-network and L-network, and the key
factors of the reward function, and we identify them in the maze shown in Fig. 13.

Sample separation parameter.  In training the TC-network, a threshold k is needed to distinguish between posi-
tive and negative sample pairs, and the training samples of the L-network are also distinguished by this value.
Therefore, we conduct an experiment by varying k from 1 to 10 and show its effects on these networks. The train-
ing results of the TC-network and L-network (1.5 M interaction quantity) are averaged over the top 5 random
hyperparameters, and the proportion of waypoints is calculated based on the corresponding TC-network and
30 random observation sequences. Table 1 shows that the training effect of the TC-network is closely related to
the difference between positive and negative samples. At the beginning, the accuracy of the TC-network is low
due to the small differences between samples. Then, the prediction ability increases with k , but the accuracy
decreases again when the threshold is greater than a value. Compared with the TC-network, the performance of
the L-network decreases continuously with the growth of k , especially after k > 4 . Finally, the number of way-
points decreases as k increases, but when k is greater than a value, as we mentioned before, the predictive power
of the TC-network reaches a bottleneck, leading to an increase in the number of waypoints.

The experimental results create a dilemma because the TC-network and L-network are key to the encoding
environment and navigation, and we must keep them in good condition. However, we also support storing as
few waypoints as possible during the interaction. After comprehensive consideration, we choose data separated
by 4 time steps as training samples.

Interaction volume parameter.  In addition to the threshold k , the amount of interaction with the environment
is another important parameter in the pretraining phase. In our method, the complexity of the sample consists of
two parts: pretraining and online learning. Exploration behaviour is performed through online learning without
concern for sample size, but the pretraining effect is related to the number of samples. Table 2 shows the relation-
ship between the interaction volume and the network performance, and the results are averaged over the top 5
random hyperparameters. As shown in Table 2, the accuracy of the TC-network increases with the expansion of
the training data and decreases when the network is in an overfitting state. Similarly, the prediction accuracy of

Figure 13.   Parameter selection environment.

Table 1.   The experimental results of the sample separation parameter.

Threshold k TC-network (%) L-network (%) Waypoints proportion (%)

1 88.68 95.74 31.25

2 91.53 95.26 22.34

3 93.06 93.42 16.27

4 92.32 91.04 12.51

5 90.87 86.35 11.63

7 86.59 80.73 12.48

10 81.93 75.68 12.65

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

the L-network improves as the interaction volume increases, but the percentage of growth gradually decreases.
To train efficiently and maintain the good performance of both networks, the number of pretrained interactions
is set as 2.5 M.

In summary, the TC-network and L-network can learn useful controllers based on the trajectories of ran-
domly acting agents and use them for visual perception tasks and short-range navigation. However, since all
samples in the pretraining phase are from the same environment, this inevitably leads to a lack of generality in
these networks. Therefore, during the subsequent exploration, we collect data from different environments to
train these networks twice.

Reward function parameter.  Our reward function ri is an augmented reward that includes two types of novelty
rewards. To weigh the effects between them, we test the effects of different parameter sets that are set α + β ≡ 1
and sampled within the same interval (0.1) and show two main results: the episode reward (novelty rewards
achieved by the agent within 1800 time steps) and the number of interactions required to encode the environ-
ment. The results are averaged over the top 5 random hyperparameters and summarized in Fig. 14 after nor-
malization of the data (the lowest result is taken as the criterion). As shown in Fig. 14, relying on a type of nov-
elty reward, where α,β = (0.0, 1.0) or α,β = (1.0, 0.0) , the agent can generate various exploration behaviours.
However, their exploration is less efficient than agents who use both novelty rewards, which is why these agents
require more interaction to encode the environment. Additionally, we can explain the experimental results in
terms of the composition of the reward function. Our reward function consists of two parts, each of which
focuses on one direction: (1) the count-based method focuses on novelty rewards for already explored environ-
ments and encourages the agent to reach seldom visited waypoints, (2) the temporal distance method focuses on
calculating novelty rewards for unexplored state spaces and tries to push the agent to distant places. Therefore, it
is useful to use these two rewards to guide the exploration.

Among all the agents, the one equipped with parameter sets α,β = (0.2, 0.8) shows the best exploration effi-
ciency and requires less interaction to encode the environment, so we choose α = 0.2 and β=0.8 in the following
experiment. In addition, unlike the pretraining stage, agents no longer act randomly but learn the exploration
policy in the environment (Fig. 13), which is the basis for fine-tuning in the other mazes.

Exploration method experiment.  This experiment aims to quantitatively evaluate the exploration per-
formance of different learning approaches and training patterns and to illustrate their effects on the efficiency of
the encoding environment. The test environments are shown in Fig. 15, where Maze-1 and Maze-2 are inspired
by rodent spatial cognition experiments; the former consists of three paths of different lengths, and the latter

Table 2.   The experimental results of the interaction volume parameter.

Sample size TC-network (%) L-network (%)

300 K 80.35 82.91

500 K 82.42 86.57

1 M 87.95 90.83

2.5 M 92.63 93.78

5 M 91.02 93.94

Figure 14.   Experimental results on the reward function parameter.

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

consists of a central corridor and six arms. Maze-3 is a common maze that includes different obstacles and mul-
tiple paths. There are no extrinsic rewards (such as a goal or fruit) in these mazes.

The performance of each method is evaluated by a uniform count-based reward that is calculated based on
the area explored by the agent in an episode. The learning process is presented as an episodic reward/training
step diagram, where the agent must explore the environment as much as possible within a time limit of 7200
steps (equivalent to 2 min). At the end of each episode, the agent is respawned into a new location and has to
explore the environment again.

Learning exploration from scratch.  In our first set of experiments, all exploration policies are learned from
scratch. Since the TC-network and L-network require an additional 2.5 M data to complete the pretraining, for
a fair comparison, we shift the curves for our method by the number of environmental steps taken to train these
networks.

The training curves (averaged over the top 5 random hyperparameters) are shown in Fig. 16. Through the
analysis, we draw some conclusions. First, the VIME method achieves good results on simple and clean images
in the Atari game but performs poorly in all test mazes. This is because BNN is not sufficient for constructing
a dynamic model based on the first-person perspective, so the agents only perform some reactive behaviours
during the learning process. The worst case occurs in Maze-1, where this generative model explores areas even
smaller than the random-action agent. Second, EX2 is more suitable for challenging image-based environments
than VIME, which generates coherent exploration behaviour and guides the agent to reach alcoves of the end in
Maze-2. However, EX2 requires a large number of interactions to train the exemplar model, leading it to obtain
rewards below 300 in the early training phase. Because of the limited capability of the classifier, as the structure of
the maze becomes more complex, more regions are ignored by the agent because they are not rewarded with the
novelty they deserve. Finally, for both ICM and our method, they achieved exploration policy greatly exceeding
the prior exploration techniques, which proves that both methods are suitable for high-dimensional continuous
state spaces. The efficiency of exploration between them is more evident in Maze-3. Because this environment
includes many obstacles and hidden areas, relying on prediction errors alone tends to produce dead spots for
exploration. Our method, in contrast, generates intrinsic rewards based on episode memory that can drive the
agent to explore every corner of the environment. It is also important to note that although the final rewards
obtained by ICM and our method in Maze-1 and Maze-2 are almost identical, our method can push the agent
to reach distant states and discover more areas through the same interaction.

Table 3 collects the results averaged over the 5 best performances in the learning process. As seen in Table 3,
the rewards achieved and the maximum exploration rate increased as the exploration efficiency increased, and

Figure 15.   Top-down view of testing mazes. (a) Maze-1. (b) Maze-2. (c) Maze-3.

(a) (b) (c)

Figure 16.   The experimental results of learning exploration from scratch. (a) Maze-1 experiment results. (b)
Maze-2 experiment results. (c) Maze-3 experiment results.

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

the detailed results for each method are described below. To our surprise, the basic exploration method TRPO,
whose behaviour relies on random actions, still covers half of Maze-1 and obtains almost equal rewards to the
VIME method in Maze-2. For the second baseline, because the generative model lacks proper inference about
environmental dynamics, it is unable to consciously explore the environment and act like purposeless people.
The following methods show better performance in high-dimensional visual environments, with EX2 achiev-
ing at least 70% coverage in the first two mazes and allowing the agent to reach more than 50% of the area in
Maze-3; ICM guides the agent to gain complete cognition of Maze-1 and Maze-2, but it requires a large number
of interactions to stabilize the exploration behaviour, and this reasonable policy is not guaranteed in Maze-3.
Compared with previous methods, our approach maintains an effective exploration policy in each test maze and
uses it to drive agents to cover the environment. Additionally, our method outperforms other methods both in
terms of exploration efficiency and the quantity of training data required for policy convergence, a phenomenon
evident in Maze-1 and Maze-2.

In addition, as seen in Table 4 (the results are averaged over 3 times), the accuracy of the TC-network and
L-network completed in the pretraining stage decreases rapidly in the new test environments. If we insist on not
making any adjustments to them, the performance of subsequent encoding and navigation will definitely suffer.
We also find that training these networks for each maze is not a wise choice, because this targeted method, while
yielding better predictive power, increases the cost of pretraining exponentially and pushes back the process of
encoding the environment. Therefore, we train the TC-network and L-network twice in a fine-tuned manner.
This is an online method that randomly draws training data from new test environments while learning explora-
tion policy. Generalized training hurts the accuracy of these networks, but this reduction is acceptable for visual
perception and navigation tasks (staying above 90%), and the training process can be performed in a 2.5 M
interaction (equivalent to a pretraining phase) and does not interfere with the agent’s exploration of the mazes.

Table 3.   The experimental results of learning exploration from scratch.

Environment Method Reward
The maximum exploration ratio within an
episode (%)

The interaction required to encode
environment (training step/1e6)

Maze-1

TRPO 327.36 55.29 ∞
VIME 321.14 53.58 ∞
EX2 489.27 82.43 ∞
ICM 584.59 100.00 7.93

Ours 586.32 100.00 4.72

Maze-2

TRPO 232.47 41.02 ∞
VIME 228.34 39.98 ∞
EX2 425.73 74.56 ∞
ICM 567.28 100.00 8.07

Ours 571.87 100.00 5.15

Maze-3

TRPO 243.49 41.73 ∞
VIME 276.54 47.82 ∞
EX2 339.62 58.35 ∞
ICM 532.27 91.64 ∞
Ours 579.65 100.00 6.54

Table 4.   The secondary training results for the TC-network and L-network.

Method Environment TC-network (%) L-network (%)

Pre-training

Parameter selection 92.36% 93.78%

Maze-1 84.52% 89.84%

Maze-2 85.14% 87.43%

Maze-3 78.32% 89.15%

Targeted training

Maze-1 93.16% 93.12%

Maze-2 92.67% 94.58%

Maze-3 92.03% 93.24%

Generalization training

Maze-1/Maze-2 90.89% 92.43%

Maze-1/Maze-3 91.35% 92.52%

Maze-2/Maze-3 90.62% 91.97%

Maze-1/Maze-2/Maze-3 90.28% 91.64%

15

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Learning exploration with fine‑tuning method.  In the previous section, we showed that the ICM module and our
approach can guide agents to explore the environment efficiently. However, this policy is learned from beginning
to end in a maze, and we wonder if the fine-tuning method that plays an important role in the generalization
training of TC-network and L-network is useful for learning exploration policy. To investigate this issue, we take
as input the exploration policy obtained in the parameter selection experiment of the reward function, fine-tune
them with intrinsic motivation and extrinsic reward, and compare their training effects with those of the basic
method (results produced by learning from scratch).

Fine‑tuning with intrinsic motivation.  Figure 17 (results are averaged over the top 5 random hyperparameters)
shows that both ICM and our method can end random exploration earlier and obtain a more stable control
policy after training in combination with the fine-tuning method, but there are differences in the effects of the
fine-tuning method on exploration policy across the test mazes. From Table 5 (results are averaged over the 5
best performances in the learning process) we see that in Maze-1 there is no significant difference between the
scratch learning mode and the fine-tuned learning mode, both in terms of the rewards achieved and the number
of interactions required to cover the environment, but we also find something interesting in the learning curve.
Due to the relatively simple structure of Maze-1, the exploration policy can be quickly acquired from scratch.
The fine-tuning approach, in which behaviour such as wall walking and obstacle avoidance hidden in its initial
parameters, instead results in some mismatches in the early training phase. In Maze-2, the fine-tuning approach
significantly speeds up the training efficiency of ICM and allows the policy to converge with fewer interactions
compared to learning from scratch, but its contribution to our approach is weak. The role of fine-tuning can be
better illustrated in Maze-3, and this impact can be seen in two main ways: one is the performance of the ICM
module, where the exploration efficiency increases again after the first policy stabilization; the other is the appli-
cation of fine-tuning to further reduce the number of interactions needed to encode the maze.

Most importantly, the experimental results show that the fine-tuning approach cannot always play a posi-
tive role and sometimes interferes with the learning process, especially in simple environments. In contrast, the
fine-tuning approach works more prominently in complex environments, where it can use pretrained policy as
input to guide the agent to better adapt to the new environment.

(a) (b) (c)

Figure 17.   The experimental results of fine-tuning with intrinsic motivation. (a) Maze-1 experiment results. (b)
Maze-2 experiment results. (c) Maze-3 experiment results.

Table 5.   The experimental results of fine-tuning with intrinsic motivation.

Environment Method Reward The maximum exploration ratio within an episode (%)
The interaction required to encode environment (training
step/1–6)

Maze-1

ICM + scratch 584.59 100.00 7.93

Ours + scratch 586.32 100.00 4.72

ICM + fine-tuning 585.16 100.00 7.58

Ours + fine-tuning 585.45 100.00 5.14

Maze-2

ICM + scratch 567.28 100.00 8.07

Ours + scratch 571.87 100.00 5.15

ICM + fine-tuning 566.34 100.00 6.49

Ours + fine-tuning 568.25 100.00 4.81

Maze-3

ICM + scratch 532.27 91.64 ∞
Ours + scratch 579.65 100.00 6.54

ICM + fine-tuning 573.49 100.00 7.23

Ours + fine-tuning 572.86 100.00 4.73

16

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Fine‑tuning with extrinsic rewards.  The reader should keep in mind that the present experiment placed extrin-
sic rewards in the test setting and used them as drivers to guide exploration. Extrinsic rewards were in the form
of goals (Fig. 12b, value + 10) and apples (Fig. 12c, value + 1), whose positions were fixed within an episode and
varied randomly across episodes. If the goal is reached, the agent respawns to a new starting position and must
explore the maze again, with the performance of each method still measured by the uniform reward it receives
within an episode (the area explored was calculated by the count-based method).

We note some particular results in Fig. 18 (results are averaged over the top 5 random hyperparameters) and
Table 6 (results are averaged over the 5 best performances in the learning process). Compared to the former
method, using extrinsic rewards to conduct fine-tuning reflects a more negative effect; it not only slows down
the training process but also confuses the difference between exploration and navigation. This performance
impairment is at the root of the policy change because touching the goal can be perceived as achieving a large
intrinsic reward during exploration, which makes the state containing the extrinsic attractive reward and the
agent wants to reach it consistently. Additionally, since the agent is reset to a new starting position when reach-
ing the goal, the purpose of fine-tuning appears to be to find the goal rather than to explore the environment.
This is why agents can quickly gain great rewards in the early training stage, but still need more interaction to
complete the exploration, a phenomenon that is very prominent in Maze-1 and Maze-2. The worst happens in
Maze-3, where there is no way to cover the entire environment in one episode.

Thus, extrinsic rewards, which are specific objects in the environment, tend to be limited in number and are
better suited to lead agents to goal-driven behaviour. In contrast, intrinsic motivation is distributed throughout
the state space, and this drive can propel the agent to reach unfamiliar states in the environment and obtain a
goal-independent exploration policy.

“Noisy‑TV” experiment.  In the above text, we observe that the ICM method outperforms other baselines
and achieves almost the same performance as our method in the first two test mazes. However, the “couch
potato” problem, shown in the noisy-TV experiment, remains a hard problem for this prediction-based curiosity
approach. Our method relies on agent observation and memory to guide exploration, and this experiment aims
to provide more evidence to verify whether it is more robust to stochastic objects.

The noisy-TV experiment was implemented as follows. In all test environments, the TV was on the agent’s
frontal display, and its position was fixed within an episode and randomly reset in different episodes. At each
step, a random image with a resolution of 21× 21 is displayed on the TV screen, which is independent of the

(a) (b) (c)

Figure 18.   The experimental results of fine-tuning with extrinsic reward. (a) Maze-1 experiment results. (b)
Maze-2 experiment results. (c) Maze-3 experiment results.

Table 6.   The experimental results of fine-tuning with extrinsic reward.

Environment Method Reward The maximum exploration ratio within an episode (%)
The interaction required to encode environment (training
step/1–6)

Maze-1

ICM + scratch 584.59 100.00 7.93

Ours + scratch 586.32 100.00 4.72

ICM + fine-tuning 583.74 100.00 9.13

Ours + fine-tuning 586.56 100.00 7.24

Maze-2

ICM + scratch 567.28 100.00 8.07

Ours + scratch 571.87 100.00 5.15

ICM + fine-tuning 514.63 89.46 ∞
Ours + fine-tuning 569.44 100.00 6.83

Maze-3

ICM + scratch 532.27 91.64 ∞
Ours + scratch 579.65 100.00 6.54

ICM + fine-tuning 483.16 82.95 ∞
Ours + fine-tuning 542.68 92.63 ∞

17

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

agent’s actions and occupies one of the four quadrants observed by the agent, and each pixel in the image is
sampled from [0, 255] uniformly sampled.

The experimental results collected in Fig. 19 (results are averaged over the top 5 random hyperparameters)
and Table 7 (results are averaged over the 5 best performances in the learning process) show that the performance
of both the ICM and our method decreases after adding the randomness source, and it is the ICM that is most
affected. While learning from scratch, ICM quickly exhausts its curiosity and stops exploring, and the fine-tuning
approach can facilitate exploration to some extent, but the resulting policy is still unsatisfactory. You can see
that some parts of the state space cannot be modelled at all, such as leaves blowing in a breeze or the noisy-TV
used in this experiment. Their prediction errors remain high and show an irresistible attraction to the agent,
which causes the ICM approach to fall into the curiosity trap and degenerate into undesired behaviour. It is clear
that the motion of the leaves and the images of the TV are insignificant for exploration, and it is useless for the
agent to continue to be curious about them. Therefore, we searched for curiosity based on memory rather than
prediction. Relying on comparisons with the past, the agent does not remain curious about such random objects
and overcomes the “couch potato” problem. The experimental results show that our method allows reasonable
exploration of the environment and acquisition of complete memory for all tested mazes, although the pres-
ence of noisy-TV slows down learning. In addition, other causes of environmental randomness will be further
discussed in our future work.

Goal reaching experiment.  In navigational tasks, we compare our approach with a set of navigation mod-
els equipped with the DRL framework, including DQN, DRQN, Nav A3C, and an enhanced version of Nav
A3C + D2L. Since space topological cognition is done during exploration, it can be used directly to achieve the
goal. For a fair comparison, we trained these models using the same training steps used to learn the exploration
policy and save the trained models as baselines. The environment applied in section “Fine-tuning with extrinsic
rewards” was used to train these models and conduct subsequent goal reaching experiments. Instead of using
the extrinsic reward obtained by the agent within an episode (5000 time steps) to evaluate navigation efficiency,
we used the percentage of success in reaching the goal at different time steps as a benchmark for comparison.

Static maze experiment.  In this experiment, the structure in the environment does not change except for the
positions of the agent and the target, and we ensure that all operations in our approach are valid. Target localiza-

(a) (b) (c)

Figure 19.   The experimental results of “Noisy-TV”. (a) Maze-1 experiment results. (b) Maze-2 experiment
results. (c) Maze-3 experiment results.

Table 7.   The experimental results of “Noisy-TV”.

Environment Method Reward The maximum exploration ratio within an episode (%)
The interaction required to encode environment (training
step/1–6)

Maze-1

ICM + scratch 315.62 53.86 ∞
Ours + scratch 582.74 100 7.58

ICM + fine-tuning 374.52 64.05 ∞
Ours + fine-tuning 586.43 100 8.67

Maze-2

ICM + scratch 279.68 48.71 ∞
Ours + scratch 565.32 100 6.93

ICM + fine-tuning 317.54 56.18 ∞
Ours + fine-tuning 566.73 100 7.75

Maze-3

ICM + scratch 362.49 63.28 ∞
Ours + scratch 577.86 100 7.69

ICM + fine-tuning 305.47 54.72 ∞
Ours + fine-tuning 572.63 100 8.12

18

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

tion is performed only once at the beginning of an episode, and the only remaining computational operation is
the agent’s self-localization.

As shown in Fig. 20 (results are averaged over 30 times), due to the randomness of the target location across
episodes, DQN simply obtains some reactive or wall-following policy held by the encoder weights, which makes
it difficult to derive an effective navigation policy for this method and makes it more desirable to enter the target
state when the agent is localized near the target. The DRQN model is equipped with an LSTM and compensates
for the memory deficit of the DQN, which remembers the target location and returns as many times as possible
in an episode, but it requires a large number of time steps to find the target for the first time. Additional informa-
tion (agent-relative velocity, action and reward) is used in the Nav A3C model, and these inputs further improve
the navigation efficiency. When combined with ground-truth depth map and loop closure, it achieves a similar
performance to our approach in the first two test mazes. However, this phenomenon changes in Maze-3 because
the structure of this environment is more complex, the contribution of depth information to the selection of
actions decreases, and the navigation efficiency of Nav A3C + D2L shows a decreasing trend, while our method
still maintains an efficient navigation policy.

Table 8 (the results are averaged over random 30 episodes in the testing process) presents the navigation
performance of each model in more detail, and we note some particular results for different test environments.
First, there is no doubt that the memory function is crucial for navigation, and the absence of a memory func-
tion significantly reduces the number of times an agent reaches a goal and the rewards it achieves within an
episode. Such a result is more pronounced in environments requiring explicit memory, such as Maze-2, where
the DRQN model has almost twice as much reward as the DQN model. Second, although the DRQN model
outperforms the DQN model in terms of navigation efficiency in all test mazes, the DRQN model still requires
a significant number of time steps to reach the goal. We believe the reason for this is due to the inability of the
agent to clearly identify some observations, which supports the addition of additional inputs and depth informa-
tion to consolidate the mapping relationship between states and actions. Finally, it can be seen from the collected
data that the map-less approach is an alternative to the map-based approach in simple environments, but the
performance of the former decreases in Maze-3, indicating that the map-based approach can better handle the
increased complexity of the state space.

(a) (b) (c)

Figure 20.   The goal reaching experimental results in static mazes. (a) Maze-1 experiment results. (b) Maze-2
experiment results. (c) Maze-3 experiment results.

Table 8.   The goal reaching experimental results in static mazes.

Environment Method The number of times to reach the goal within an episode The reward achieved within an episode

Maze-1

DQN 0.65 8.74

DRQN 0.82 11.53

Nav A3C 1.39 17.28

Nav A3C + D2L 1.72 20.34

Ours 1.68 19.87

Maze-2

DQN 0.53 7.82

DRQN 0.94 13.16

Nav A3C 1.57 18.45

Nav A3C + D2L 2.28 24.93

Ours 2.15 23.75

Maze-3

DQN 0.62 8.53

DRQN 0.78 10.65

Nav A3C 1.18 14.29

Nav A3C + D2L 1.32 17.84

Ours 1.67 19.58

19

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Dynamic blockage experiment.  In this section, we discuss the performance of each method in state space with
dynamic blockages. The test environments have the same layout as Maze-1 but with additional blockages in the
maze, whose locations are shown in Fig. 21 (there are still available paths within the maze). We then use the
space topological cognition and navigation model obtained in Maze-1 to conduct experiments in the environ-
ments shown in Fig. 21.

In fact, as seen in Fig. 22 (the results are averaged over 30 times), adding dynamic blockages to Maze-1 affects
the navigation efficiency of all methods. However, the impact of blockages is fatal for map-less methods compared
to map-based methods. For DQN and DRQN, these methods prefer to use reactive behaviour to find the target.
Therefore, if the agent is separated from the target by a blockage, it will stall at the blockage until the end of the
episode, which makes the success rate much lower. Nav A3C and Nav A3C + D2L are also affected, and both
of them lose the guarantee of reaching the target when the blockage appears at position A or B, although they
have excellent performance in the non-blocking state space. This degradation in performance is more obvious
in the last environment because there are two blockages, and the probability of the agent and the target being
separated by the blockage increases significantly. Similarly, the success rate of our approach decreases because
our approach requires more time steps to guide the agent around the blockage.

Table 9 (results are averaged over 30 random episodes during the test) shows the same trend as in Fig. 22.
For all methods the number of times they reach the goal and the rewards achieve decreases as blockages appear,
with the methods without maps being the most affected. In particular, the rewards of DQN and DRQN decrease
by nearly 30% when blockages are placed at either location A or B and by nearly half in environments that
included two blockages. Additionally, the presence of blockages exposes the shortcomings of Nav A3C and Nav
A3C + D2L, especially in the case where the agent and the target are placed at both ends of the blockage, where
agents constantly attempt to break through the blockage, resulting in a significant decrease in their frequency of
reaching the target. Relying on the memory of the environment structure and dynamic path planning mecha-
nism, our approach ensures that the agent can find an available path to reach the goal. Specifically, the agent can
correct the topological memory during navigation and use it to bypass blockages A and B. However, due to the
increased navigation distance, our approach often requires the entire episode to reach the goal, which results
in lower rewards.

Conclusion
In this work, we proposed a novel navigation architecture consisting of intrinsic motivation exploration and
space topological cognition. The goal of the first component of our approach is to explore the environment,
while the goal of the other component is to encode the environment, and they are specifically designed to work
together. Experimental results and analyses highlight the role of reward function and training patterns in learn-
ing exploration policy. Additionally, we investigated the navigation performance of agents equipped with space
topological cognition in static and semi-dynamic environments.

Figure 21.   Dynamic blockages experimental environment. (a) Non-blocking. (b) Block at point A. (c) Block at
point B. (d) Block at point A and B.

(a) (b) (c) (d)

Figure 22.   The goal reaching experimental results in dynamic blockages environments. (a) Non-blocking
experiment results. (b) Block at point A experiment results. (c) Block at point B experiment results. (d) Block at
point A and B experiment results.

20

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Our approach is inspired by the cognitive mechanism of animals, which can explore their environment and
encode its structure in a synchronized manner. For AI agents, to accomplish spontaneous exploration from raw
visual inputs, we used DRL as the basic learning framework and allowed agents to create rewards for themselves.
Considering the limitations of prediction-based exploration methods, our reward function is computed based on
episode memory and includes two types of novel rewards. Space topological cognition is populated by waypoints
during exploration, which is also found in episode memory. Such spatial cognition can be used to gradually
cover the environment by integrating exploration sequences and as a planning module for the navigation system.

Although our approach successfully learns exploration policy through the end-to-end DRL framework, the
capacity of the 1-layer LSTM can be stretched in very large environments due to its limited memory. In the future,
it will be important to increase the LSTM or utilize external memory to improve the capability of our learned
model. Moreover, in our approach, the size of spatial cognition grows linearly with the area explored. Again, this
can become a problem when navigating in very large environments. A possible solution is secondary sampling,
where only the most informative or discriminative waypoints are stored. Finally, we see future work in migrating
our approach to the real world and comparing it with vision-based SLAM methods.

Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reason-
able request.

Received: 5 July 2021; Accepted: 2 February 2022

References
	 1.	 Oudeyer, P.Y. Computational theories of curiosity-driven learning. arXiv:​1802.​10546 (2018).
	 2.	 Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55(4), 189–208 (1948).
	 3.	 Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.J., Deil, M., Goroshin, R., Sifre,L., Kavukcuoglu, K., Kumaran, D., &

Hadsell, R. Learning to navigate in complex environments. arXiv:​1611.​03673 (2017).
	 4.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444 (2015).
	 5.	 Oh, J., Chockalingam, V., Singh, S. P., & Lee, H. Control of memory, active perception, and action in Minecraft. arXiv:​1605.​09128

(2016).
	 6.	 Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., & Farhadi, A. Target-driven visual navigation in indoor scenes

using deep reinforcement learning, in 2017 IEEE International Conference on Robotics and Automation (ICRA) 3357–3364 (2016).
	 7.	 Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Sliver, D., & Kavukcuoglu, K. Asynchronous methods for

deep reinforcement learning. arXiv:​1602.​01783 (2016).
	 8.	 Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10), 2451–2471

(2000).
	 9.	 Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Sliver, D., & Kavukcuoglu, K. Reinforcement learning with

unsupervised auxiliary tasks. arXiv:​1611.​05397 (2016).
	10.	 Ye, X., Lin, Z., Li. H., Zheng, S., & Yang, Y. Active object perceiver: Recognition-guided policy learning for object searching on

mobile robots. arXiv:​1807.​11174​v1 (2018).
	11.	 Yang, W., Wang, X., Farhadi, A., Gupta, A., & Mottaghi, R. Visual semantic navigation using scene priors. arXiv:​1810.​06543 (2018).

Table 9.   The goal reaching experimental results in dynamic blockages environments.

Environment Method
The number of times to reach the goal within an
episode The reward achieved within an episode

Non-blocking

DQN 0.65 8.74

DRQN 0.82 11.53

Nav A3C 1.39 17.28

Nav A3C + D2L 1.72 20.34

Ours 1.68 19.87

Block at A

DQN 0.51 7.34

DRQN 0.58 8.06

Nav A3C 0.95 11.52

Nav A3C + D2L 0.93 11.48

Ours 1.28 14.73

Block at B

DQN 0.47 7.15

DRQN 0.63 8.32

Nav A3C 0.96 11.86

Nav A3C + D2L 0.95 11.54

Ours 1.32 15.06

Block at A and B

DQN 0.38 5.74

DRQN 0.43 6.28

Nav A3C 0.85 10.64

Nav A3C + D2L 0.89 11.37

Ours 1.15 13.21

https://arxiv.org/abs/1802.10546
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1605.09128
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1807.11174
https://arxiv.org/abs/1810.06543

21

Vol.:(0123456789)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

	12.	 Devo, A., Mezzetti, G., Costante, G., Fravolini, M. L. & Valigi, P. Towards generalization in target-driven visual navigation by using
deep reinforcement learning. IEEE Trans. Robot. 36(5), 1546–1561 (2020).

	13.	 Berlyne, D. E. Conflict, Arousal and Curiosity 38–54 (McGraw-Hill Book Company, 1960).
	14.	 Harlow, F. H. Learning and satiation of response in intrinsically motivated complex puzzle performances by monkeys. J. Comp.

Physiol. Psychol. 43, 289–294 (1950).
	15.	 Sylva, K., Bruner, J. S., & Jolly, A. Play: Its role in development and evolution 279–292 (Penguin Books Ltd, 2017).
	16.	 Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos, R. Unifying count-based exploration and intrinsic

motivation, in NIPS (2016).
	17.	 Ostrovski, G., Bellemare, M.G., Oord, A. V. D., & Munos, R. Count-based exploration with neural density models. arXiv:​1703.​

01310 (2017).
	18.	 Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., Turck, F. D., & Abbeel, P. Exploration: A study of

count-based exploration for deep reinforcement learning, in NIPS (2017).
	19.	 Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck, F. D., & Abbeel, P. Vime: Variational information maximizing exploration,

in NIPS (2016).
	20.	 Fu, J., Co-Reyes, J. D., & Levine, S.: EX2: Exploration with exemplar models for deep reinforcement learning, in NIPS (2017).
	21.	 Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. Curiosity-driven exploration by self-supervised prediction. arXiv:​1705.​05363

(2017).
	22.	 Pritzel, A., Uria, B., Srinivasan, S., Puigdomenech, A., Vinyals, O., Hassabis, D., Wierstra, D., & Blundell, C. Neural episode control.

arXiv:​1703.​01988 (2017).
	23.	 Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., & Levine, S. Time-contrastive network: Self-supervised learning

from video. arXiv:​1704.​06888 (2018).
	24.	 Aytar, Y., Pfaff, T., Budden, D., Paine, T. L., & Wang, Z. Playing hard exploration games by watching youtube. arXiv:​1805.​11592

(2018).
	25.	 Cadena, C. et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE

Trans. Robot. 32(6), 1309–1332 (2016).
	26.	 Bhatti, S., Desmaison, A., Miksikm, O., Nardelli, N., Siddharth, N., & Torr, P. H. S. Playing doom with SLAM-augmented deep

reinforcement learning. arXiv:​1612.​00380 (2016).
	27.	 Parisotto, E., & Salakhutdinov, R. Neural map: Structured memory for deep reinforcement learning. arXiv:​1702.​08360 (2017).
	28.	 Gupta, S., Tolani, V., Davidson, J., Levine, S., Sukthankar, R., & Malik, J. Cognitive mapping and planning for visual navigation.

arXiv:​1702.​3920 (2019).
	29.	 Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
	30.	 Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256

(1992).
	31.	 Nachum, O., Norouzi, M., Xu, K., & Schuurmans, D. Bridging the gap between value and policy based reinforcement learning.

arXiv:​1702.​08892 (2017).
	32.	 Sutton, R. S., & Barto, A. G. Reinforcement learning: An introduction 215–260 (The MIT Press, 1998).
	33.	 He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. arXiv:​1512.​03385 (2015).
	34.	 Friston, K., Fitzgerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: A process theory. Neural Comput. 29(1),

1–49 (2017).
	35.	 Forestier, S., & Oudeyer, P. Y. Modular active curiosity-driven discovery of tool use, in 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 3965–3972 (2016).
	36.	 Salge, C., Glackin, C. & Polani, D. Changing the environment based on empowerment as intrinsic motivation. Entropy 16(5),

2789–2819 (2014).
	37.	 Little, D. Y. & Sommer, F. T. Learning and exploration in action–perception loops. Front. Neural Circuits 7(37), 1–19 (2013).
	38.	 Sutton, R. S. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming, in

Proceedings of the Seventh International Conference on Machine Learning 226–224 (1995).
	39.	 Sigaud, O., & Stulp, F. Policy search in continuous action domains: An overview. arXiv:​1803.​04706 (2018).
	40.	 Moser, E. I., Kropff, E. & Moser, M. B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31,

69–89 (2008).
	41.	 Kirichuk, V. S., Kosykh, V. P., Popov, S. A. & Shchikov, V. S. Suppression of a quasi-stationary background in a sequence of images

by means of interframe processing. Optoelectron. Instrument. Data Process. 50(2), 109–117 (2014).
	42.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	43.	 Cormen, T. H., Leiserson C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, 3rd ed, 658–664, 682 (The MIT Press, 2005).
	44.	 Beattie, C., Leibo, J.Z., Teplyashin, D., Ward, T., Wainwright, M., Kuttler, H., Lefrancq, A., Green, S., Valdes, V., Sadik, A., Schrit-

twieser, J., Anderson, K., York, S., Cant, M., Cain, A., Bolton, A., Caffney, S., King, H., Hassabis, D., Legg, S., & Petersen, S. Deep-
mind lab. arXiv:​1612.​03801 (2016).

	45.	 Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. Trust region policy optimization. arXiv:​1502.​05477 (2017).
	46.	 Hausknecht, M., & Stone, P. Deep recurrent Q-learning for partially observable MDPs. arXiv:​1507.​06527 (2017).
	47.	 Kingma, D. P., & Ba, J. Adam: A method for stochastic optimization. arXiv:​1412.​6980 (2017).

Author contributions
Mr. X. R. and Mr. X. Z. contributed to the conception of the study. Mr. P. L. completed the algorithm design and
wrote the manuscript. Mr. P. L. performed the experiment and data analyses.

Funding
This work was supported by the National Natural Science Foundation of China (No.61773027), the Natural
Science Foundation of Beijing (No. 4202005) and the Project of S&T Plan of Beijing Municipal Commission of
Education (No. KM201810005028).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Z.

Reprints and permissions information is available at www.nature.com/reprints.

https://arxiv.org/abs/1703.01310
https://arxiv.org/abs/1703.01310
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1703.01988
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1805.11592
https://arxiv.org/abs/1612.00380
https://arxiv.org/abs/1702.08360
https://arxiv.org/abs/1702.03920
https://arxiv.org/abs/1702.08892
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1803.04706
https://arxiv.org/abs/1612.03801
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1412.6980
www.nature.com/reprints

22

Vol:.(1234567890)

Scientific Reports | (2022) 12:3462 | https://doi.org/10.1038/s41598-022-07264-7

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	A target-driven visual navigation method based on intrinsic motivation exploration and space topological cognition
	Background
	Reinforcement learning foundation.
	Asynchronous advantage actor-critic algorithm.
	Nav A3C model.

	Navigation method
	Learning exploration policy.
	Temporal correlation network.
	Formulate reward function.
	Learning model.

	Space topological cognition.
	Navigation implementation.
	Locomotion network.
	Goal reaching process.

	Experiment
	Experiment setup.
	Experimental environment.
	Baselines.
	Model implementation.
	Hyperparameters.

	Parameter selection experiment.
	Sample separation parameter.
	Interaction volume parameter.
	Reward function parameter.

	Exploration method experiment.
	Learning exploration from scratch.
	Learning exploration with fine-tuning method.
	Fine-tuning with intrinsic motivation.
	Fine-tuning with extrinsic rewards.

	“Noisy-TV” experiment.

	Goal reaching experiment.
	Static maze experiment.
	Dynamic blockage experiment.

	Conclusion
	References

