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Smartphone and wearable devices are widely used in behavioral and clinical research to

collect longitudinal data that, along with ground truth data, are used to create models of

human behavior. Mobile sensing researchers often program data processing and analysis

code from scratch even though many research teams collect data from similar mobile

sensors, platforms, and devices. This leads to significant inefficiency in not being able to

replicate and build on others’ work, inconsistency in quality of code and results, and lack

of transparency when code is not shared alongside publications. We provide an overview

of Reproducible Analysis Pipeline for Data Streams (RAPIDS), a reproducible pipeline to

standardize the preprocessing, feature extraction, analysis, visualization, and reporting of

data streams coming frommobile sensors. RAPIDS is formed by a group of R and Python

scripts that are executed on top of reproducible virtual environments, orchestrated by a

workflow management system, and organized following a consistent file structure for

data science projects. We share open source, documented, extensible and tested code

to preprocess, extract, and visualize behavioral features from data collected with any

Android or iOS smartphone sensing app as well as Fitbit and Empatica wearable devices.

RAPIDS allows researchers to process mobile sensor data in a rigorous and reproducible

way. This saves time and effort during the data analysis phase of a project and facilitates

sharing analysis workflows alongside publications.
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INTRODUCTION

Researchers in computer science, behavioral science, medicine, and other fields are increasingly
harnessing data collected from smartphone sensors and wearable devices like smartwatches and
activity bands to passively monitor people’s activities and environment as they go about their
daily lives.

Raw or preprocessed mobile sensor data (e.g., smartphone accelerometer logs or Fitbit step
counts) collected over time are usually further manipulated to extract more meaningful behavioral
features, such as number of incoming calls, minutes spent at home, or number of screen unlocks
that are then used to create models of risk prediction or detection (1). If validated, these features
have the potential to become behavioral phenotypes (2) or digital biomarkers (3–5). Because these
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TABLE 1 | Number of behavioral features supported in RAPIDS.

Sensor Providers Platform Features Time segments

Accelerometer 2 Android/iOS 11 All

Activity recognition 1 Android/iOS 6 All

Applications crashes 0 Android 0 -

Applications foreground 1 Android 4 All

Applications notifications 0 Android 0 -

Battery 1 Android/iOS 6 All

Bluetooth 2 Android 30 All

Calls (incoming) 1 Android/iOS 12 All

Calls (outgoing) 1 Android/iOS 12 All

Calls (missed) 1 Android/iOS 5 All

Conversation 1 Android/iOS 30 All

Data yield 1 Android/iOS 2 All

Keyboard 1 Android 10 All

Light 1 Android 6 All

Locations 2 Android/iOS 34 All/N days

SMS (sent & received) 1 Android 10 All

Screen 1 Android/iOS 7 All

Wi-Fi connected 1 Android/iOS 3 All

Wi-Fi visible 1 Android 3 All

Data yield 1 Fitbit 2 All

Calories intraday 1 Fitbit 22 All

Heart rate summary 1 Fitbit 37 N days

Heart rate intraday 1 Fitbit 13 All

Steps summary 1 Fitbit 5 N days

Steps intraday 1 Fitbit 17 All

Sleep summary 1 Fitbit 36 N days

Sleep intraday 2 Fitbit 34 All/N days

Accelerometer 1 Empatica 5 All

Heart rate 1 Empatica 9 All

Peripheral skin temperature 1 Empatica 9 All

Electrodermal activity 1 Empatica 9 All

Blood volume pulse 1 Empatica 9 All

Inter beat interval 1 Empatica 9 All

data can be collected passively and prospectively with minimal
participant burden, this approach holds considerable promise
for risk screening, remote clinical monitoring, and personalized
just-in-time interventions (6). For example, mobile sensor data
features can be analyzed to discriminate between people such
as depressed and non-depressed individuals (7–9), to detect
or predict significant events such as an increase in symptoms
during chemotherapy (10), or to explore and explain clinical or
behavioral processes (11).

While available platforms and devices for mobile research data
collection have increased in recent years, software tools to help
researchers manage and make sense of mobile data in rigorous
and reproducible ways remain less common. This paper describes
RAPIDS, a research software tool that aims to address this gap in
the scientific process and literature. Behavioral feature extraction
from mobile sensor data is an essential but time-consuming and
nuanced task that needs to consider problems like missing data,

data format differences between and across device manufacturers
and platforms, time granularity at which the data is analyzed,
participants’ time zones, etc. As a result, the outcome of data
analysis can be inconsistent within and across teams, and the
code’s quality can vary. Furthermore, code is often not shared
alongside publications; when it is, it might not be stored on a
version control system andmost of the time there is no guarantee
the development environment can be replicated as programming
languages and libraries are updated.

For example, we reviewed the first 200 results of a Google
Scholar search carried out in March 2021 with the keywords
“smartphone wearable digital phenotype biomarker feature” and
identified 31 publications that collected smartphone or wearable
data to extract behavioral features. These works processed data
from different sources including accelerometers, light sensors,
screen events, photoplethysmography measurement of heart
rate, keyboard strokes, location and others, within varied time
segments (windows) such as 1min, 15min, 6 h, 24 h, and 7 days
(12–20). Among these papers, only four (21–24) released the
source code of their data processing approaches or offered to
provide code on-demand while the rest provided various levels
of detail that do not guarantee their results can be replicated.
Additionally, for most papers it was not clear if they had re-used
code created by themselves or others or implemented their code
from scratch. Although this is a convenience sample, we expect
this ratio reflects the state of this growing literature as the same
problem has been observed in other fields (25–31).

Given that “software must be recognized as an important
output of scholarly research” (32), it is critical to develop
shared resources to improve the rigor and reproducibility of
mobile sensing work that supports and accelerates research
in this new and rapidly growing field. Such resources would
enable researchers to reproduce or extend previous findings with
minimal duplication of effort and with full transparency of the
many decisions and assumptions underlying the extensive data
cleaning and processing required to translate mobile sensor data
into meaningful and actionable signals.

Recently several tools have been created to alleviate some
of the aforementioned mobile data processing and analysis
problems. The Digital Biomarker Discovery Pipeline (DBDP) (5)
computes features and provides statistical and machine learning
analysis modules to predict health outcomes, but supports only
wearable device data. The “Health Outcomes through Positive
Engagement and Self-Empowerment” (HOPES) (33) platform
extended the Beiwe ecosystem (34) and can process Android,
iOS as well as Fitbit data collected with their platform, but is
not publicly available yet. Forest is a Python library that as of
August 2021 can summarize location, calls, and survey data
collected with Beiwe’s smartphone applications (35). Doryab et
al. (36) provide Python scripts upon request to extract behavioral
features from Fitbit devices and smartphone data logged by the
AWARE Framework (37). Finally, the MD2K project (38) has a
data analysis library that developers can use to extract behavioral
features from data collected with their Android smartphone
sensing platform and the MotionSenseHRV wearable.

To build on these existing tools, our team created RAPIDS
to support a broader range of smartphone sensing applications
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and wearable devices and to encourage transparency and open
science in mobile sensing research. The purpose of RAPIDS
is to improve the rigor and efficiency of mobile sensing data
analysis by addressing two problems. First, RAPIDS targets the
time-consuming and laborious nature of this mobile sensing
data processing and analysis by providing a modular, efficient,
tested, and scalable software platform that researchers can
use to reduce the time and effort required to extract new
and existent behavioral features, visualize mobile data, and
organize data modeling workflows. Second, RAPIDS targets the
significant variability in how mobile sensor data is produced
across teams, individuals, and time by relying on open algorithms
and software packages that standardize data processing and
analyses as well as on open discussions, documentation, and
software distribution tools that support code sharing, open
science, and reproducibility.

Even though this manuscript is neither an empirical paper nor
a complete technical reference of RAPIDS, we aim to provide
mobile health researchers with an overview of its functionality
so they can decide whether to use RAPIDS to support their
sensor data processing and analysis. For example, let us assume
that a group of researchers want to develop a model to detect
momentary stress levels in adults using mobile sensors for use in
a future trial delivering a mobile stress reduction intervention at
times of high stress. They recruit 100 participants living in two
different time zones that, for 12 weeks, self-report their stress
every 3 h, collect continuous location and event-based screen
smartphone data with the AWARE framework and log heart rate
data every minute using a Fitbit device. One of the researchers’
goals is to train a machine learning classificationmodel to predict
momentary stress. In the rest of this paper, we describe the
functionality that would allow these hypothetical investigators to
process their participant sensor data to extract behavioral features
and create plots of data compliance in a reproducible, extensible,
and robust way. After this step, researchers can use such features
to create the desired statistical and machine learning models in
their favorite programming language. Real world deployments
of RAPIDS have been used for predicting depression symptoms
(9, 39), perioperative symptom burden estimation (40), creating
individual signatures linking brain, behavior, and mood (41) and
as a part of a machine learning pipeline for monitoring and
forecasting mobile health data (42).

METHODS

A mobile sensing research project has roughly the following
stages: design, instrumentation, recruitment, data collection, data
analysis, and publication. Researchers can use RAPIDS during
data analysis if they collected Android or iOS smartphone data,
or wearable data using Fitbit and Empatica devices (see Figure 1).

RAPIDS is an open-source collection of Python and R
scripts that are executed by the Snakemake workflow manager
(43) and organized based on the cookie cutter data science
project structure (44). Its source code is published in GitHub
under a GNU Affero General Public License v3.0 and
the project has adopted the Contributor Covenant code of

conduct (45). Installation, configuration, usage, and development
documentation is available online (46). RAPIDS can be installed
in Windows, MacOS and Linux using our Docker container
or natively in the last two platforms using Python and R
virtual environments.

RAPIDS provides modules, which we call providers, for
behavioral feature extraction and data visualization. RAPIDS can
compute 5 plots and 407 behavioral features from 15 smartphone
sensors, 4 Fitbit sensors through 20 providers (see Table 1).
Behavioral features are grouped per sensor, per participant and
per study on CSV files that can be used as input for statistical
or machine learning models. Although RAPIDS does not yet
provide modules to create statistical or machine learning models,
it does provide an analysis workflow example that guides users
though the implementation of their own models while taking
advantage of RAPIDS’ capabilities. Other researchers can also
extend RAPIDS to support their own behavioral features, mobile
sensing apps, and data containers.

Consistent with open science practices, the development of
RAPIDS is community-driven and we are transparent about the
algorithms and assumptions we have made in our processing
computer code, encouraging researchers to participate in such
conversations and to modify RAPIDS code as needed to suit their
needs and research questions via GitHub issues (47). So far other
researchers have shared behavioral features for accelerometer,
Bluetooth, used applications, and location data (36, 48–50). We
invite others to contribute with their work as RAPIDS has the
potential to allow other members of the community to reuse it
while keeping citations and authorship.

RESULTS

RAPIDS Capabilities
RAPIDS implements novel capabilities to support certain
aspects of data processing, open-source development, and
reproducibility of mobile sensing projects.

Supported Devices and Sensors
RAPIDS can compute behavioral features for calories, heart
rate, sleep, and steps Fitbit sensors; accelerometer, heart rate,
skin temperature, electrodermal activity, blood volume pulse,
and inter beat interval Empatica sensors; and the following
smartphone sensors: accelerometer, activity recognition,
application notifications, used applications, application crashes,
application logs, battery, Bluetooth, incoming calls, outgoing
calls, missed calls, conversations, keyboard, light, locations,
sent and received messages (SMS), screen, visible Wi-Fi access
points and connected Wi-Fi access points. As of August 2021,
RAPIDS can process smartphone data logged with the AWARE
Framework and stored in CSV files, MySQL, and InfluxDB
databases but researchers can bring support for any other storage
medium and Android or iOS mobile sensing applications.

Flexible Time Segments
In mobile sensing research, behavioral features are usually
extracted within specific time windows that aim to summarize
human activities at a specific time granularity, for example
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FIGURE 1 | RAPIDS supports researchers during the data analysis phase of a mobile sensing project. RAPIDS scripts can be categorized by purpose, those with a

continuous border are reusable by other projects while those with a dashed border are provided as an example so other researchers can implement their own analysis.

every hour or day. RAPIDS provides users with three types of
flexible time segments that enable them to compute features
that have the potential to adapt to many sensing study designs.
Frequency segments represent repetitive windows of the same
length on every day of a study; e.g., 5-min windows starting from
midnight, which could be useful for momentary stress or sleep
classification. Periodic segments represent periods of any length
that can start at any time of every day or on specific days of
the week, month, quarter, or year. These segments are useful to
create popular extraction periods that span mornings, weekends,
weekdays, weeks, overnights, and others, allowing researchers to
examine how behaviors vary over these periods. Finally, event
segments represent periods of any length that can start before,
on or after specific events of interest as defined by each study.
These segments are meant to quantify human behavior around
events like ecological momentary assessments or adverse health
incidents like migraines or drinking episodes.

Flexible Time Zones
RAPIDS automatically adjusts participants’ sensor data to one
or more time zones on which it was originally collected. This is
relevant for studies that recruited people living across different
time zones or participants that traveled during their enrollment.
Researchers do not have to deal with daylight saving changes
or date arithmetic. Flexible time zones and time segments can
process sensor data streams that are supposed to be interpreted
as “episodes” spanning multiple hours or days and need to
be segmented like screen or sleep. They also ensure features
extracted from different sensors and devices are aligned based on

their creation date and time. For example, if the user is extracting
daily features from smartphone and Empatica data, these features
will automatically be indexed by the midnight-to-midnight
windows where data is present for either or both devices.

Device Study Management
RAPIDS can merge data from multiple smartphone or wearable
devices that were used by the same participant. Data merging is
a common problem when people carry more than one device or
switch devices during a study. RAPIDS also provides plots and
estimations of smartphone and Fitbit data yield that represent
monitored and unmonitored periods due to factors like data
synchronization problems, mobile app crashes or a discharged
battery. Researchers can use this information to discard time
segments with insufficient data. For example, any inferences
made on a day with only 1 h of mobile data available can
be considered less valid than inferences made on days with
24 h of data; each research team can decide where the validity
threshold lies.

Modular, Scalable, and Transparent Workflows
RAPIDS uses the workflow manager Snakemake to organize
analysis pipelines into contained, ready-to-use, scalable,
auditable steps. These steps produce the different behavioral
features and plots RAPIDS supports, can be configured using
plain text files and do not require researchers to produce any
computer code. In RAPIDS, every sensor for every participant
goes through the exact same processing in isolated steps with
input and output files that can be inspected at any time. This in
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turn means that the workflow is efficient because an analysis step
is only executed when its input or parameters change and, when
this happens, any dependent step is automatically re-computed.
For example, if the accelerometer data for participant A is
updated, only features for that sensor and that participant will be
updated, while features for any other sensor or person will keep
the most recent results. Finally, this step-based structure allows
researchers to execute their analysis workflows over multiple
CPU cores or computer cluster nodes without modifying
RAPIDS’ code.

Reproducible Programming Environments
All the scripts in RAPIDS run on top of isolated R and
Python virtual environments which means that when a RAPIDS
workflow is shared online along with a research paper, it can be
reinstalled and rerun using the same libraries and producing the
same results that the authors intended regardless of any software
updates to the libraries the workflow relies on.

Tests
We have also implemented tests for 17 out of the 25 mobile
sensors we support to verify that our code produces correct
results under different scenarios, and we are constantly adding
more tests and scenarios.

Web Documentation
RAPIDS is supported by thorough and consistent online
documentation that includes installation, configuration, and
usage instructions, a description of the supported behavioral
features and data streams, tutorials to add new ones, common
troubleshooting, available test cases, code of conduct, and citation
guidance (46).

Data Visualizations
RAPIDS provides five interactive plots for data exploration.
These include histogram and heatmaps for data yield per study,
participant, sensor, and time segment, as well as a correlation
matrix for extracted behavioral features. New plots can be added
by the community.

Data Analysis in a RAPIDS Workflow
Even though the bulk of RAPIDS’ current functionality is
related to the computation of behavioral features, we recommend
RAPIDS as a complementary tool to create a mobile data
analysis workflow. This is because RAPIDS capabilities allow
researchers to divide an analysis workflow into small parts that
can be audited, shared in an online repository, reproduced
in other computers, and understood by other people as
they follow a familiar and consistent structure. To create
analysis workflows in RAPIDS, researchers can still use any
data manipulation tools, editors, libraries, or languages they
are already familiar with. RAPIDS is meant to be the
destination of analysis code developed in interactive notebooks
or stand-alone scripts. The idea is that when it is time
to publish a piece of research, a RAPIDS workflow can
be shared in a public repository as is, making it easy for
other teams or collaborators to replicate and extend mobile

sensing results. We describe an example workflow in our
online documentation.

Preliminary Usability Evidence
To obtain preliminary evidence of the usability, utility, and value
of RAPIDS for mobile sensing researchers, we surveyed five early
adopters of RAPIDS from three Universities in the USA and
one in Finland. Two of them are PhD. candidates and three are
research assistants with a background in Computer Science or
similar that used RAPIDS to extract behavioral features.

They completed the System Usability Scale (SUS) with an
average score of 73.5 corresponding to a Sauro-Lewis Curved
Grading Scale Grade (51) of B-; 0.6 points below the mean
usability score range for Internal Productivity Software (IPS).
Based on the SUS’ Item benchmarks (52) targeting a score of
76.7 (mean score for IPS), items 1, 2, 3, 5, 7, and 8 represented
an above average experience while items 4, 6, 9, and 10 a
below average experience. These results indicate that RAPIDS’
complexity, ease of use, and functionality integration are good,
but users perceived some inconsistency and a relevant learning
curve which affected how confident they were using the system.
We expect that future documentation updates based on our users’
feedback and alternative didactic resources like video tutorials
will support users’ learning process.

Despite the initial effort required to get familiar with RAPIDS,
our users reported significant benefits. They perceived RAPIDS
made their feature engineering process two, four, and up to six
times faster with net savings of 1, 2.5, 8, 15, and 100 hours,
acknowledging that they would have had to implement their
own computer scripts if RAPIDS was not available. Additionally,
everyone thought that RAPIDS makes the reproducibility of
a mobile sensing project “much better,” that it makes them
“somewhat more” or “much more” confident in their own and
other’s results, and that it “somewhat more” or “much more”
improves their ability to add new mobile devices or participants
to their analysis. Finally, on a scale from 0 to 100 with 0 being
“not at all likely” and 100 “extremely likely,” users reported an
average score of 89 (range 80–100) on their likeliness to use
RAPIDS again and 91 (range 85–100) to recommend RAPIDS
to a colleague. Everyone agreed or strongly agreed that RAPIDS
“could advance the field of mobile sensing research.”

Overall, our participants’ answers suggest that RAPIDS
provides data analysis functionalities for mobile sensing projects
that reduce users’ effort and are easy to use, are faster than
implementing your own analysis code, and represent distinct
contributions to the mobile data analysis landscape.

RAPIDS Behavioral Features
RAPIDS organizes behavioral features by sensor and by provider.
A provider is an R or Python feature extraction script
implemented by a group of authors for a particular mobile
sensor. Most features are implemented by our team (provider
RAPIDS) but we also include code created by other researchers
(in our documentation we ask users to cite these other works
as well as RAPIDS). Some sensors are only available for specific
smartphone platforms due to their own restrictions, e.g., at this
time it is not possible to collect app usage data in iOS similar
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to what can be collected in Android. We recommend the reader
checks the latest online documentation as new features will
be added in the future. Researchers can choose to extract as
many features as needed for their research, whether they plan
to use meaningful summary features like longest sedentary bout
duration or percentage of time spent at home in traditional
statistical analyses or to use a larger array of features in machine
learning models aimed at detecting or predicting changing
health states.

Our online documentation lists considerations for each sensor
that RAPIDS takes into account to compute behavioral features.
Some are inherent to the smartphone platforms (Android or iOS)
while others are introduced by the sensing mobile applications.
RAPIDS can also be extended to support any mobile sensing app,
but it was initially built with the AWARE Framework in mind.
Thus, some of the listed sensors might not be available in other
smartphone applications.

DISCUSSION

RAPIDS is an open-source pipeline designed to save researchers
time and effort through documented, reproducible, consistent,
efficient, and parallel processing of mobile sensor data. As
of August 2021, it can extract 407 behavioral features from
smartphones, Fitbit, and Empatica devices and provides five data
visualization plots. Users do not need to write any computer
code to compute these features within time segments of any
length that start around specific days or events. At the same
time, researchers can implement new features and add support
for new sensing devices or platforms like “Effortless Assessment
of Risk States” (EARS) (53), “Learn Assess Manage and Prevent”
(LAMP) (54), or Beiwe (34). RAPIDS is also suggested as a tool
to organize and share analysis workflows that would provide
future readers a familiar, transparent, and reproducible analysis
environment. We hope all these functionalities will encourage
scientists to share their work and therefore allow third parties
the ability to compare, reuse, and build upon the methods and
results of mobile behavioral sensing studies. If the community
adopts RAPIDS or a similar tool, it has the potential to unify the
behavioral features used in research and accelerate progress in the
field. Although there is a risk that uncovered bugs in RAPIDS
could systematically bias any projects using it in the future, we
believe that the transparency that comes with an open-source
project, community engagement, and our efforts toward testing
our code will help mitigate this risk.

In the future, the core development team of RAPIDS and we
hope the community will add new functionality to this project.
We expect to support combinatorial features that mix data from
multiple sensors. Data cleaning modules based on packages like
vtreat (55) are a work in progress, as well as integration with data
testing libraries like Great Expectations (56). Additionally, we
plan to support other wearable devices like the Oura Ring (57)
or continuous glucose monitors. Finally, we hope to contribute
new visualizations and reports for data quality control and
exploration. Given the time constraints of our team, we expect
thatmost of these improvements will come on an as-needed basis.
Still, we encourage interested colleagues to consider contributing
or to get in touch to discuss priorities that benefit the research
community.

CONCLUSIONS

We presented RAPIDS, an open-source, reproducible,
documented, extensible, and tested pipeline that ships with
behavioral features and plots that can be extracted from data
collected with Android and iOS smartphones as well as Fitbit
and Empatica devices. We also provided a workflow example
that other researchers can follow to structure their own data
analysis pipelines within RAPIDS that can be shared online
along with research publications. RAPIDS capabilities support
data processing, development, and reproducibility of mobile
sensing projects and enable other scientists to replicate or
extend previous results with minimal duplication effort and
complete transparency.
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