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Abstract

Summary: Prediction of transcription factor (TF) binding from epigenetics data and integrative ana-

lysis thereof are challenging. Here, we present TEPIC 2 a framework allowing for fast, accurate and

versatile prediction, and analysis of TF binding from epigenetics data: it supports 30 species with

binding motifs, computes TF gene and scores up to two orders of magnitude faster than before due

to improved implementation, and offers easy-to-use machine learning pipelines for integrated ana-

lysis of TF binding predictions with gene expression data allowing the identification of important TFs.

Availability and implementation: TEPIC is implemented in Cþþ, R, and Python. It is freely available

at https://github.com/SchulzLab/TEPIC and can be used on Linux based systems.

Contact: fschmidt@mmci.uni-saarland.de or marcel.schulz@em.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription Factors (TFs) are key players of transcriptional regula-

tion. Prediction of TF binding is essential to gain a deeper under-

standing of their function. While experimental identification of TF

binding is possible through laborious and expensive ChIP-seq

assays, several computational approaches have been proposed to

identify TF binding sites (TFBSs) (Jayaram et al., 2016). These pre-

dictions have been successfully augmented using epigenetics data

(Cuellar-Partida et al., 2012; Pique-Regi et al., 2011; Sherwood

et al., 2014). As delineated in Supplementary Section 1, TEPIC 2

builds upon and extends the functionality of existing TFBS predic-

tion tools. Among other features, TEPIC 2 allows the direct aggre-

gation of TFBS predictions on the gene level and uses these scores to

gain novel insights on cell type specific functions of TFs via several

machine learning analysis. This is a unique feature not supported by

competitive TFBS prediction approaches (Supplementary Tables S1

and S2). Compared to its predecessor, TEPIC 2 has substantially

lower runtime, contains an extended set of TF motifs, offers various

means for downstream machine learning analyses as easy-to-use

pipelines, and adds new functionalities to compute TF gene scores.

2 Features

The core functionalities of TEPIC 2 are to predict TFBS in user pro-

vided regions and to aggregate them to TF gene scores. The TF gene

score computation has been modified to compute statistical features

such as region length, region count, and the signal of an epigenetic

assay within the considered regions. TEPIC 2 can compute a binary

binding assessment, i.e. a TF binds or does not bind, based on

p-values obtained using a set of background regions of similar
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characteristics as the input set. This feature complements the con-

tinuous TF affinity values of TRAP, which are not suitable for all

downstream applications (Supplementary Section 4).

Additionally, the aforementioned TF gene scores can be used in

several integrative analysis workflows (Supplementary Section 7, 8

and 9). INVOKE refers to a sparse linear regression model to reveal

key TFs potentially regulating transcription. It highlighted several

known tissue-specific regulators in liver hepatocytes and CD4þ T

cells (Schmidt et al., 2017) and is also available as a web-server

(Kehl et al., 2017). Besides, TEPIC 2 includes a sparse logistic re-

gression classifier to infer TFs related to gene expression changes be-

tween samples (DYNAMITE). DYNAMITE has been successfully

applied to discover regulators of CD4þ T cell differentiation (Durek

et al., 2016). Recently, we combined TEPIC with DREM (Schulz

et al., 2012) to uncover master regulatory TFs from paired time-

series expression and epigenomics data (EPIC-DREM), which was

used to analyze mesenchymal stem-cell differentiation of osteoblasts

and adipocytes (Gerard et al., 2018).

Furthermore, we considerably extended the set of TF motifs

readily available in TEPIC 2. Now, this resource contains 30

species-specific and six taxonomy-specific sets from JASPAR

(Mathelier et al., 2016), as well as aggregated sets for humans, mice

and vertebrates containing 561, 380 and 690 TF motifs

(Supplementary Section 3). To streamline the training and interpret-

ation of statistical models (Supplementary Fig. S1), we provide clus-

tered versions of the merged TF motif files, representing families of

binding motifs with high similarity (Pape et al., 2008).

3 Implementation

TEPIC 2 uses a parallelized Cþþ implementation of TRAP (Roider

et al., 2007) that is considerably faster than the previous R implemen-

tation. Runtime was further reduced by using more efficient search

algorithms and by enabling pre-filtered analyses of samples in minutes

(Fig. 1a, Supplementary Table S5, Supplementary Fig. S2 and

Supplementary Section 5). We evaluated the accuracy of TFBS predic-

tions from TEPIC 2 using TF footprints called with HINT-BC

(Gusmao et al., 2016) on ENCODE data (The ENCODE Project

Consortium, 2012). In comparison to established tools for TFBS pre-

diction using epigenomics data (Cuellar-Partida et al., 2012;

Sherwood et al., 2014), TEPIC performs favorably in terms of area

under the precision recall curve (AUPR) (Fig. 1b, Supplementary Fig.

S3 and Supplementary Section 6). Details on samples used are pro-

vided in Supplementary Section 2. The machine learning pipelines

included in TEPIC 2 are implemented in R. Both workflows deliver

results that are easy to interpret, also for non-expert users, due to

automated figure generation and extensive documentation. As input,

the pipelines require standard file formats, e.g. bed files for candidate

TFBS and tab delimited txt files containing gene expression data.

TEPICs full functionality is brought to the user via start-to-finish

pipelines, which are automatically installed with TEPIC 2.

4 Conclusion

TEPIC 2 is a fast and easy-to-use tool for TFBS prediction combined

with integrative analysis capabilities for gene expression and epige-

nomic data. TFBS prediction and downstream machine learning pipe-

lines for various analysis settings allow a deep, seamless exploration

of epigenomic datasets supporting data driven hypothesis generation

about the role of individual TFs in complex regulatory landscapes.
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(a) (b)

Fig. 1. (a) Runtime comparison of TEPIC to TEPIC 2 using a subset of 458

human TFs. While the original implementation ran up to 1300 minutes to

compute TFBS, TEPIC 2 is able to compute TF affinities for peaks in the vicin-

ity of genes in at most 15 minutes. We used four cell line samples and three

primary human hepatocyte samples (LiHe1–3) to conduct the runtime experi-

ments. (b) We compared TEPIC TF affinities computed in footprints called

with HINT-BC (Gusmao et al., 2016) in four different cell-lines in terms of

AUPR against PIQ (Sherwood et al., 2014) and an extension of the widely

used method Fimo, called Fimo-Prior (Cuellar-Partida et al., 2012). Notably,

TF affinities computed with TEPIC outperform both PIQ and Fimo-Prior
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