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Simple Summary: Reprogramming of glucose metabolism is a hallmark of cancer and can be tar-
geted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have
been approved for cancer treatment. Currently, more advanced and effective glucose metabolism
enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have
shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic
opportunities in cancer. However, most of them have failed to be translated into clinical applica-
tions due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining
glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other
conventional anticancer drugs may be a future direction for cancer treatment.

Abstract: Reprogramming of glucose metabolism provides sufficient energy and raw materials for the
proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-
related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting
glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development.
Although several glucose metabolism modulators have been approved for cancer treatment in recent
years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects.
With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism
enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that
some natural products can suppress cancer progression by regulating glucose metabolism enzymes.
In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism
and present enzymes that could serve as therapeutic targets. In addition, we systematically review
the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and
natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted
anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with
conventional anticancer drugs may be a promising cancer treatment strategy.

Keywords: malignant tumor; glucose metabolism enzymes; glycolysis; targeted therapy

1. Introduction

The primary physiological function of glucose is to serve as a source of carbon and
energy for the body’s important activities for meeting the needs of cell growth and pro-
liferation. There are three main glucose energy conversion pathways: aerobic oxidation,
anaerobic oxidation (glycolysis), and the pentose phosphate pathway (PPP). Glycolysis
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is defined as the breakdown of glucose or glycogen into lactate accompanied by the pro-
duction of small amounts of adenosine triphosphate (ATP) under hypoxic conditions.
Oxidative phosphorylation (OXPHOS) and anaerobic glycolysis are the two major catabolic
glucose pathways, in which glycolysis is the common initiation pathway of both [1]. Glu-
cose enters the cell through glucose transferase (GLUT) and produces pyruvate by the
functions of three rate-limiting enzymes, hexokinase (HK), phosphofructokinase (PFK),
pyruvate kinase (PK), as well as other non-rate-limiting enzymes. Under normal oxygen
concentrations, pyruvate enters the mitochondria for oxidative decarboxylation to pro-
duce acetyl coenzyme A, followed by complete oxidation by a series of rate-limiting and
non-rate-limiting enzymes to produce energy. Briefly, glucose is completely broken down
through glycolysis, the tricarboxylic acid cycle (TCA cycle), and OXPHOS (Figure 1A).
In the presence of oxygen, one molecule of glucose can yield a net production of 36 to
38 molecules of ATP if processed via this three-stage pathway, the most critical pathway
in cellular metabolism. Under anaerobic conditions, pyruvate produced by normal cells
through the glycolysis pathway will no longer enter the TCA cycle. However, it produces
lactate in the cytoplasm through lactate dehydrogenase (LDH), which produces less ATP.

In the 1920s, Otto Warburg first observed that cancer cells tend to metabolize glucose
to lactate even in the presence of sufficient oxygen, known as the Warburg effect or aerobic
glycolysis (Figure 1B) [2]. By the 1980s, with the application of fluorodeoxyglucose positron
emission tomography (FDG-PET), glucose uptake in clinical tissue samples could be im-
aged, and the Warburg effect was confirmed in almost all cancers [3–5]. The Warburg effect
promotes the glucose uptake of cancer cells in the tumor microenvironment [6]. Further
studies have revealed that the tumor growth rate positively correlates with glucose levels
and that high glucose levels in cancer patients are associated with poor prognosis [7–9].
Thus, cancer starvation therapy based on glucose deprivation is emerging as an effective
treatment for suppressing tumor growth [10–12]. For example, the ketogenic diet can inhibit
the metabolic proliferation of cancer cells by reducing blood glucose [13–15]. The Warburg
effect is mainly a compensatory activity of cancer cells to adapt to the tumor microenviron-
ment (TME). On one hand, high-efficiency aerobic glycolysis contributes to the proliferation
of cancer cells by allowing cancer cells to produce abundant ATP. Although the energy
produced by each glucose molecule during aerobic glycolysis is less than that produced by
OXPHOS, aerobic glycolysis can generate a number of ATP molecules comparable to OX-
PHOS when the amount of glucose is sufficient [16]. On the other hand, aerobic glycolysis
provides cells with intermediates required for biosynthetic pathways, including ribose for
nucleotide synthesis and glycerol, citrate, and nonessential amino acids for lipid synthesis.
For example, glucose-6-phosphate (G-6-P) is a substrate for the pentose phosphate path-
way that produces reduced nicotinamide adenine dinucleotide phosphate (NADPH) and
ribose-5-phosphate (R-5-P) substrates, and R-5-P is a substrate for nucleic acid synthesis.
Additionally, 3-phosphoglyceric acid is the main precursor substance for serine and glycine
synthesis, and serine is involved in one-carbon unit metabolism and is closely related to
the production of purines, thymidine, and NADPH [17], which protects cancer cells from
damage induced by oxidative stress [2]. Therefore, the Warburg effect is beneficial to the
bioenergetics and biosynthesis of cancer cells. In addition, aerobic glycolysis also brings
other benefits to cancer cells. For example, a large amount of pyruvate is converted into
lactate without entering the TCA cycle to complete OXPHOS during aerobic glycolysis in
cancer cells. On one hand, this can reduce the production of reactive oxygen species (ROS)
and thus protect mitochondria [2]. On the other hand, long-term maintenance of moderate
levels of ROS boosts cancer progression [2]. Meanwhile, glycolysis eventually creates a
high-lactate, low-glucose TME. Immunosuppressive cells such as myeloid-derived suppres-
sor cells (MDSCs) [18] and regulatory T (Treg) cells present better tolerance in high-lactate,
low-glucose environments. Treg cells can maintain their function by oxidizing lactate [19].
Lactate participates in the homeostatic regulation of M1 macrophages [20] and inhibits
CD8+ T cells and natural killer cells (NK cells) from producing γ-interferon [21], which
in turn maintains an immunosuppressive microenvironment [22,23]. Overall, metabolic
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reprogramming of glucose metabolism, namely the Warburg effect, provides cancer cells
with the energy, substrates, and environment required for their survival and contributes
significantly to cancer development.
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Figure 1. Reprogramming of glucose metabolism in cancer cells. (A) Glucose metabolism in
normal cells; (B) glucose metabolism in cancer cells. Cellular uptake of glucose is followed by
a series of reactions to transform glucose to pyruvate. Then, glucose enters the TCA cycle or
is converted to lactate. Enzymes or pathways predominant in cancer cells are shown in bold
red. Created with BioRender.com (accessed on 22 August 2022). Abbreviations: 1,3 BPG, 1,3-
bisphosphoglycerate; 2-PG, 2-phosphoglycerate; 3-PG, 3-phosphoglycerate; α-KG, α-ketoglutarate;
AcCoA, acetyl coenzyme A; ADP, adenosine diphosphate; ALDO, aldolase; ATP, adenosine triphos-
phate; DHAP, dihydroxyacetone-phosphate; ENO, enolase; F-1,6-BP, fructose-1,6-bisphosphate;
F-2,6-BP, fructose-2,6-bisphosphate; F-6-P, fructose-6-phosphate; FAS, fatty acid synthesis; G-3-P,
glyceraldehyde-3-phosphate; G-6-P, glucose-6-phosphate; HK, hexokinase; LDH, lactate dehydro-
genase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GCK, glucokinase; GLUT, glucose
transporter; glycerol-3P, glycerol-3-phosphate; GPI, glucose-6-phosphate isomerase; MCT, monocar-
boxylate transporter; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PFK1, phosphofructokinase 1;
PFKFB, 6-phosphofructo 2-kinase/fructose-2,6-bisphosphatase; PGAM1, phosphoglycerate mutase
1; PGK1, phosphoglycerate kinase 1; PK, pyruvate kinase; PPP, pentose phosphate pathway; TCA,
tricarboxylic acid; TPI, triosephosphate isomerase.

Extensive studies have confirmed that metabolic reprogramming of glucose, which
plays a vital role in the proliferation, invasion and metastasis of cancer cells, is closely
associated with the survival of cancer cells [24,25]. Therefore, metabolic reprogramming
of glucose metabolism is considered the essential hallmark of tumorigenesis and develop-
ment [26]. Further research found that there are a large number of therapeutic targets for
aerobic glycolysis, mainly including key enzymes and transporters. Thus, targeting aerobic
glycolysis in cancer cells is a promising therapeutic strategy. Numerous studies have
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found that targeted intervention in the aerobic glycolysis of cancer cells can inhibit cancer
growth. Several aerobic glycolysis inhibitors are under investigation in preclinical and
clinical studies. A few of them, such as ivosidenib and enasidenib, have been successfully
translated into clinical applications for cancer treatment [27]. However, toxicity and inferior
anticancer efficacy still hinder clinical translation. With the rapid development of chemical
technology, more advanced and effective glucose metabolism enzyme-targeted anticancer
drugs have been developed. Additionally, several studies found that some natural products
could suppress cancer progression by regulating glucose metabolism enzymes. Overall,
significant progress has been made in recent years in developing anticancer therapeutics
targeting metabolic enzymes.

In this review, we briefly introduce normal and reprogrammed glucose metabolism
in cancer cells. Furthermore, we focus on enzymes that can serve as therapeutic targets,
which may help to develop new anticancer strategies. In addition, this review will present
the latest studies on emerging candidate agents targeting glucose metabolism enzymes that
could be used in cancer treatment, including small-molecule inhibitors and natural prod-
ucts. Finally, the opportunities and challenges for glucose metabolism enzyme-targeting
anticancer drugs are also discussed. This paper aims to highlight the importance of glucose
metabolism regulators as valuable tools for developing new anticancer therapies.

2. Drugs That Target Glucose Metabolism Enzymes

To meet the demand for reagents and energy for the rapid and continuous cell prolif-
eration in tumor development and progression, multiple metabolic pathways are changed
in tumor cells to promote proliferation, among which abnormal glucose metabolism is the
most classic and prominent feature. Therefore, inhibition of abnormal glucose metabolism
can inhibit cancer growth. Glucose metabolism enzymes as therapeutic targets may provide
a novel perspective and insight for cancer treatment. In the last decade, with the rapid
development of medicinal chemistry, several glucose metabolism enzyme inhibitors have
been, and continue to be, developed as anticancer drugs. In this section, we review the
glucose metabolism enzymes that could serve as therapeutic targets, as shown in Figure 2.
Meanwhile, we systematically summarize the current and emerging drugs targeting glucose
metabolism enzymes, which may provide fresh ideas for developing anticancer drugs.

2.1. Drugs Targeting Glucose Transferase (GLUT)

Cancer cells consume large amounts of glucose for glycolysis, and glucose enters
the cytoplasm through the phospholipid bilayer with the help of GLUT [28]. The GLUT
family has 14 members, all of which are capable of selectively transporting different sugar
molecules [28]. Among them, GLUT1, GLUT2 (SLC2A2), GLUT3 (SLC2A3), and GLUT4
(SLC2A4) are the four most well-known subtypes, which have distinct regulatory mecha-
nisms and kinetic characteristic and each subtype plays a specific function in maintaining
cellular and organismal glucose homeostasis [29,30]. GLUT1 is a widely distributed glucose
transporter whose expression is regulated by hypoxia-inducible factor-1α (HIF-1α) [31,32].
GLUT1 has a high affinity for glucose and is highly expressed in a variety of cancers,
including lung cancer, prostate cancer, kidney cancer, and lymphoma [33]. In most cancers,
a hypoxic TME induces high expression of GLUT1, which enhances the glucose uptake of
cancer cells [34]. In addition, high GLUT2 and GLUT3 expression is also simultaneously
found in cancer cells [35–37]. Multiple myeloma mainly expresses GLUT4, which is re-
sponsible for maintaining adequate glucose uptake [33,38]. The uptake of hexoses, such as
fructose and mannose, is also significantly increased in cancers as a result of rapid glucose
depletion, with GLUT5 specifically transporting fructose in lymphomas and mannose
sharing a transport enzyme with glucose [39,40].
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22 August 2022). Abbreviations: 1,3 BPG, 1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; 3-PG,
3-phosphoglycerate; ADP, adenosine diphosphate; ALDO, aldolase; ATP, adenosine triphosphate;
DHAP, dihydroxyacetone-phosphate; ENO, enolase; F-1,6-BP, fructose-1,6-bisphosphate; F-2,6-BP,
fructose-2,6-bisphosphate; F-6-P, fructose-6-phosphate; G-3-P, glyceraldehyde-3-phosphate; G-6-P,
glucose-6-phosphate; HK, hexokinase; LDH, lactate dehydrogenase; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; GLUT, glucose transporter; GPI, glucose-6-phosphate isomerase; MCT,
monocarboxylate transporter; PEP, phosphoenolpyruvate; PFK1, phosphofructokinase-1; PFKFB,
6-phosphofructo 2-kinase/fructose-2,6-bisphosphatase; PGAM1, phosphoglycerate mutase 1; PGK1,
phosphoglycerate kinase 1; PK, pyruvate kinase; TPI, triosephosphate isomerase.

Cytochalasin B (Figure 3A), a cell-permeable mycotoxin, was the first molecule identi-
fied to inhibit GLUT1, which reduces glucose uptake in hepatocellular carcinoma cells [41].
Since then, a series of GLUT inhibitors have been discovered, including synthetic small-
molecule inhibitors and natural products. The small-molecule compounds that inhibit
GLUT include STF-31, WZB117, BAY-876, and CG-5. Through high-throughput screening,
Chan et al. [42] first found that STF-31 (Figure 3B) could inhibit the growth of renal cancer
cells by directly binding to GLUT1 to inhibit glucose uptake. However, normal cells do
not rely on glycolysis to provide energy and can take up glucose through other isoforms
such as GLUT2. Therefore, STF-31 is non-toxic to normal tissues and can selectively kill
cancer cells [43,44]. WZB117 (Figure 3C) is a bishydroxybenzoate compound that inhibits
the growth of cancer cells by blocking glucose transport through binding to the glucose
binding site of GLUT1 [45–48]. Moreover, WZB117 can be used in combination with other
anti-cancer drugs, such as paclitaxel or cisplatin, to produce synergistic effects on lung
and breast cancer cells [46]. Siebeneicher H et al. [49] screened BAY-876 (Figure 3D) from
a compound library using high-throughput screening. BAY-876 inhibited GLUT1 with
good metabolic stability in vitro, had a high oral bioavailability in vivo, and its anticancer
activity was demonstrated in a variety of cancers, including ovarian and triple-negative
breast cancer [50,51]. CG-5 is a thiazolidinedione derivative that inhibits GLUT, blocks
glucose transport in T cells, and inhibits glycolysis, thus inhibiting the differentiation
of Th1 and Th17 cells, inducing differentiated Treg cells, and suppressing the prolifer-
ation of CD4+ T cells [52]. Although the anticancer effects of GLUT inhibitors such as
WZB117, BAY876, and CG-5 have been demonstrated in several tumor models, studies on
the safety and side effects of these inhibitors are still limited [43,49,53]. With the advance-
ment of technology, novel GLUT inhibitors, such as PUG-1 (Figure 3E) [54], chromopy-
nones (Figure 3F) [55–57], rapaglutin A [35,58], EF24 [59], ketoximes [36], polyphenolic
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esters [60], pyrazolo-pyrimidines [37], quinazolines [61], phenylalanine amides [62] and
many more [35,58,63–67], EF24 [59], ketoximes [36], polyphenolic esters [60], pyrazolo-
pyrimidines [37], quinazolines [61], phenylalanine amides [62], and many more [63–67],
have emerged but need to be more deeply investigated.
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Several natural products have also been shown to suppress growth in cancer cells by
inhibiting GLUT, including phloretin, genistein, fasentin, and apigenin. The polyphenol
phloretin (Figure 3G) was shown to inhibit GLUT2 in triple-negative breast cancer, leading
to the suppression of cancer growth and metastasis [53]. Additionally, phloretin can inhibit
GLUT1, which is overexpressed in the hypoxic area of resistant colon cancer cell lines,
and induce apoptosis by activating p53-mediated signaling, leading to suppression of
growth in resistant cancer cells [68]. Ji et al. [69] demonstrated that genistein (Figure 3H)
could induce apoptosis and inhibit the proliferation of renal cancer cells by increasing
CDKN2a expression levels and decreasing methylation, suggesting that genistein is also
a potential therapeutic agent for cancer. Moreover, as a GLUT inhibitor, genistein can
regulate miR-1260b to affect the Wnt signaling pathway to inhibit cancer tissue growth and
metastasis [70]. Fasentin (Figure 3I) and its analogs have been shown to inhibit glucose up-
take and decrease resistance to caspase activation, which is involved in the chemoresistance
of cancer cells [71–73]. In addition, fasentin resists angiogenesis via glucose-independent
metabolism [72]. For most malignant tumors, angiogenesis, a hallmark of cancer, is not only
a significant feature but also a drug target [74]. The dual mechanism of fasentin may change
the current state of the treatment for malignant tumors [72]. Inhibition of proliferation
and apoptosis induction of cancer cells by apigenin (Figure 3J) were associated with the
downregulation of GLUT1 expression, which was partly dependent on the inhibition of
HIF-1α [31]. Furthermore, apigenin reduced VEGF secretion by cancer cells under both
normoxia and hypoxia, suggesting its potential to inhibit cancer metastasis [75–77]. In
addition, natural products such as trehalose (Figure 3K) [78], silibinin (Figure 3L) [79],
curcumin (Figure 3M) [80], resveratrol (Figure 3N) [81], naringenin [82], quercetin [83],
isoquercetin [84], kaempferol [85], xanthohumol [86], caffeine [87], bezielle [88], theo-
phylline [89], (+)-Cryptocaryone [90], and melatonin [91] also have inhibitory effects on
GLUT1. Moreover, natural product compounds generally have better safety and less toxic-
ity in comparison to synthetic drugs. For example, Baeckea frutescens leaf extracts could
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inhibit tumor growth by reducing glucose uptake in breast cancer cells, but there was no
obvious cytotoxic effect on normal cells [92]. However, various natural products usually
have the limitations of low stability and solubility in the physiological environment and
low delivery efficiency due to multi-targeting and low site-specific distribution in the lesion.
Thus, drug delivery systems have been designed to improve those disadvantages, such as
liposomes, inorganic metal frames, and hydrogels [93–95]. Computational modeling and
computer-aided drug design have contributed immensely to the successful development
of drugs, especially in the contemporary pharmaceutical and drug industries. Integrating
computer-aided drug design (CADD) into the development of GLUT has contributed to the
enhancement of selective drug targeting with reduced toxicity and off-target effects [96–98].
However, few studies exist directly comparing the efficacy and safety of synthetic chemicals
against natural substances for targeting glucose transferase (GLUT). We expect that these
issues will attract more attention and contribute to intensive research.

In conclusion, GLUT inhibitors demonstrate the potential value of glucose transferase
as targets for cancer therapy. Exploring their mechanisms can help to better understand the
process of cancer development and progression and develop corresponding targeted drugs.
However, the widespread expression of GLUTs in normal cells limits the application of such
drugs. Therefore, developing highly selective inhibitors of GLUT to avoid the side effects
caused by inhibition of other isoforms is a central challenge in the development of this drug.
In addition, the combination of GLUT inhibitors with GLUT signaling pathway inhibitors
(e.g., Akt, mTOR, PI3K, HIF-1α, and AMPK) could be a new direction for cancer therapy.

2.2. Drugs Targeting Hexokinase (HK)

The first rate-limiting enzyme of glycolysis is HK, which catalyzes the conversion of
glucose to glucose-6-phosphate (G-6-P). Since G-6-P is a common intermediate product of
glycolysis, PPP, and glycogen synthesis, this process is considered to be the most critical
step in the process of glucose metabolism, and HK is regarded as the most important rate-
limiting enzyme. There are four isoforms of mammalian HK named HK1, HK2, HK3, and
HK4. HK1, HK2, and HK3 are high-affinity HKs, and HK1 and HK2 can specifically bind
in mitochondria to voltage-dependent anion channels (VDACs), known as mitochondrial
porins [99]. The autocatalytic product G-6-P mediates feedback inhibition of HK1, HK2,
and HK3 activity, and G-6-P induces conformational changes in HK1 and HK2 that separate
them from the mitochondria [99,100]. By binding to the outer mitochondrial membrane and
VDAC, HK1 and HK2 preferentially dephosphorylate glucose using mitochondria-derived
ATP, thereby linking OXPHOS and glycolysis [101]. HK1 is widely expressed in numerous
organs, and HK2 expression is significantly upregulated in cancer cells, promoting glucose
uptake and participation in multiple metabolic pathways [101]. Therefore, the high HK
activity in cancer cells mainly results from the induced expression of HK2 [101]. In addition,
p53 family members (p53, p63, and p73) play a significant role in regulating HK2 [102].
p53 can bind to the HK2 gene promoter, thus suppressing HK2 transcriptional activity and
regulating its expression [103,104]. p63 and p73 are homologs of p53 and share some com-
mon functions with p53 [105,106]. However, p63 and p73 are more complex in structure,
containing two major isoforms of each protein (TAp63, ∆Np63, TAp73, and ∆Np73). Similar
to p53, TAp63 and TAp73 can inhibit glycolysis by inhibiting HK2 [107]. Contrary to TAp63,
∆Np63 was shown to upregulate the expression of HK2 [107,108]. Furthermore, the high ex-
pression of HK2 in cancer tissue cells is directly related to DNA methylation [100]. Overall,
the elevated expression of HK2 causes significantly more efficient glycolysis in malignant
tumors than in normal cells, which promotes the proliferation of cancer cells. HK2 is barely
expressed in normal cells; therefore, its systematic knockdown selectively targets cancer
cells [109]. Further studies revealed that germline knockdown of HK2 results in embryonic
death, but systemic knockdown of HK2 in adult mice did not affect their survival. In addi-
tion, knockdown of HK2 was found to inhibit cancer development in mouse models and,
more importantly, did not activate HK1 expression [109]. Several studies have shown that
systemic inhibition of HK2 can safely and effectively block cancer growth [100,110–112].
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However, due to the high structural similarity of HK1 and HK2 [113,114], the development
of specific inhibitors remains a great challenge.

Many HK inhibitors have been exploited for anticancer effects. Among them, 2-deoxy-
d-glucose (2-DG), lonidamine (LN), and 3-bromopyruvate (3-BrPA) have been the most
studied. These molecules all target HK2 in many in vitro and in vivo tumor models, detach
it from mitochondria, and elicit cancer cell death [112]. 2-DG (Figure 4A) is a glycolysis
inhibitor that targets HK2 and competes with glucose for HK to inhibit glycolysis [115].
Preclinical studies have demonstrated that 2-DG significantly inhibits glycolysis and ATP
synthesis [115]. Despite the promising results of 2-DG in preclinical studies, the results
of clinical trials have been inconsistent [116–118]. Currently, 2-DG has been reintroduced
for use in combination approaches, using 2-DG to produce synergistic anticancer effects
with other anticancer agents [119,120]. In several clinical studies, 2-DG has been used as an
adjuvant to clinical chemotherapeutic agents for various cancers, including breast, prostate,
ovarian, lung, and glioma [121–123]. However, the use of 2-DG in cancer therapy is still
limited. Studies have shown that the plasma half-life of 2-DG is only 48 min, and 2-DG
must be administered at a relatively high concentration (5 mmol/L) to compete with blood
glucose [121]. However, high doses of 2-DG can lead to adverse effects such as fatigue,
sweating, dizziness, nausea, and hypoglycemia [123]. LN (Figure 4B) was previously used
as an antispermogenic agent, but now it is known to have anticancer and proapoptotic
effects [124]. LN is an adenine nucleotide translocator (ANT) ligand that induces mito-
chondrial channel formation and inhibits complex I and complex II [125]. As an emerging
glucose metabolism enzyme-targeted drug, LN can be used alone or in combination with
other anticancer agents. This agent has entered clinical trials for cancer treatment [126],
such as lung, breast, and ovarian cancer [127–130]. Nevertheless, significant pancreatic and
hepatic toxicities have limited LN’s clinical success [131]. Combination therapy studies
revealed that combination with other chemotherapeutics, such as doxorubicin, produced
better anticancer effects for the treatment of breast, prostate, and ovarian cancers [132,133].
To reduce LN toxicity, current research has focused on developing alternative dosage forms
or local targeted delivery of LN. Nanomedicines for LN have been shown to inhibit glu-
cose metabolism in cancer cells and regulate the immunosuppressive microenvironment,
indicating great promise for the development of nanomedicines targeting glycolysis [134].
3-BrPA (Figure 4C) is another HK2 inhibitor that can directly inhibit HK2 activity, thereby
strongly inhibiting glycolysis [135]. 3-BrPA has been shown to enhance the cytotoxic effect
and decrease resistance to other anticancer drugs by inhibiting the ATP-dependent multi-
ple drug resistance (MDR) transporter, providing a promising candidate in combination
therapy [136,137]. Regrettably, these molecules inhibit all HKs with less specificity for HK2,
with the evident risk of suppressing glucose phosphorylation and utilization in crucial
normal organs. Therefore, improving the pharmacokinetic properties of HK inhibitors, pro-
longing the half-life of the drug, synthesizing novel analogs or prodrugs of HK inhibitors,
and enhancing the targeting of such drugs to cancer cells in vivo to reduce the occurrence
of adverse effects may be essential strategies to break the limits of clinical application.

Many new HK inhibitors have been identified in recent years. For example, metformin
can reduce mTORC1 activity in HCC cells, inhibiting protein synthesis and inducing cancer
cell death in the absence of HK2 expression [112]. Several flavone derivatives, including
oroxylin A (Figure 4D), chrysin (Figure 4E) [112], amentofavone (AF) (Figure 4F) [138],
Gen-27 (Figure 4G) [139,140], and GL-V9 (Figure 4H) [138], have shown anticancer effects
targeting HK2. Specifically, oroxylin A reduces HK2 expression and inhibits the binding of
HK2 to mitochondrial VDAC, which is dependent on the deacetylation of procyclin D by
SIRT3 [141]. Similarly, methyl jasmonate (MJ) (Figure 4I) can also inhibit HK2 expression
and suppress HK2 and VDAC binding [142–144]. However, the selectivity of MJ to HK2 in
cancers is relatively poor. Novel HK2 inhibitors, such as benserazide (Figure 4J) [145] and
benitrobenrazide (Figure 4K) [146], have also shown effects in cancer therapy. However,
the relevant studies are limited and further exploration is needed.



Cancers 2022, 14, 4568 9 of 32

Cancers 2022, 14, x FOR PEER REVIEW 9 of 33 
 

 

directly inhibit HK2 activity, thereby strongly inhibiting glycolysis [135]. 3-BrPA has been 
shown to enhance the cytotoxic effect and decrease resistance to other anticancer drugs 
by inhibiting the ATP-dependent multiple drug resistance (MDR) transporter, providing 
a promising candidate in combination therapy [136,137]. Regrettably, these molecules in-
hibit all HKs with less specificity for HK2, with the evident risk of suppressing glucose 
phosphorylation and utilization in crucial normal organs. Therefore, improving the phar-
macokinetic properties of HK inhibitors, prolonging the half-life of the drug, synthesizing 
novel analogs or prodrugs of HK inhibitors, and enhancing the targeting of such drugs to 
cancer cells in vivo to reduce the occurrence of adverse effects may be essential strategies 
to break the limits of clinical application. 

 
Figure 4. The chemical structures of drugs targeting hexokinase. 

Many new HK inhibitors have been identified in recent years. For example, metfor-
min can reduce mTORC1 activity in HCC cells, inhibiting protein synthesis and inducing 
cancer cell death in the absence of HK2 expression [112]. Several flavone derivatives, in-
cluding oroxylin A (Figure 4D), chrysin (Figure 4E) [112], amentofavone (AF) (Figure 4F) 
[138], Gen-27 (Figure 4G) [139,140], and GL-V9 (Figure 4H) [138], have shown anticancer 
effects targeting HK2. Specifically, oroxylin A reduces HK2 expression and inhibits the 
binding of HK2 to mitochondrial VDAC, which is dependent on the deacetylation of pro-
cyclin D by SIRT3 [141]. Similarly, methyl jasmonate (MJ) (Figure 4I) can also inhibit HK2 
expression and suppress HK2 and VDAC binding [142–144]. However, the selectivity of 
MJ to HK2 in cancers is relatively poor. Novel HK2 inhibitors, such as benserazide (Figure 
4J) [145] and benitrobenrazide (Figure 4K) [146], have also shown effects in cancer ther-
apy. However, the relevant studies are limited and further exploration is needed. 

Many natural products or natural compounds, such as arsenic trioxide (ATO), cur-
cumin, and epigallocatechin gallate (EGCG). have also been shown to inhibit HK2, sup-
pressing growth and inducing apoptosis in cancer cells. Arsenic trioxide (ATO) (Figure 
4L) is the main active ingredient of the traditional Chinese medicine (TCM) arsenic, which 
can inhibit the growth of gastric cancer by regulating glucose metabolism through down-
regulation of HK2 expression [147]. Curcumin also inhibits colorectal cancer growth by 
downregulating HK2 expression [148]. Epigallocatechin gallate (EGCG) dose-

Figure 4. The chemical structures of drugs targeting hexokinase.

Many natural products or natural compounds, such as arsenic trioxide (ATO), cur-
cumin, and epigallocatechin gallate (EGCG). have also been shown to inhibit HK2, sup-
pressing growth and inducing apoptosis in cancer cells. Arsenic trioxide (ATO) (Figure 4L)
is the main active ingredient of the traditional Chinese medicine (TCM) arsenic, which
can inhibit the growth of gastric cancer by regulating glucose metabolism through down-
regulation of HK2 expression [147]. Curcumin also inhibits colorectal cancer growth by
downregulating HK2 expression [148]. Epigallocatechin gallate (EGCG) dose-dependently
inhibits the anchorage-independent growth of human tongue squamous cell carcinoma. It
reduces HK2 protein expression by inhibiting the AKT pathway to suppress glycolysis and
inhibits HK2 binding to mitochondria to promote apoptosis [149]. Dai et al. [150] found
that resveratrol inhibited glycolysis and induced apoptosis in hepatocellular carcinoma
cells by inhibiting HK2 expression to activate mitochondria-associated apoptotic signaling,
and that it could also enhance the antihepatocarcinogenic effect of sorafenib. In addition,
natural products or natural compounds such as bufalin (Figure 4M) [151], cryptotanshi-
none (Figure 4N) [152], revsveratrol (Figure 4O) [153], shikonin [154], fenofibrate [155],
halofuginone [156], licochalcone A [157], jolkinolide B [158], ginsenoside 20(S)-Rg3 [159],
ketoconazole [160], posaconazole [160], and astragalin [161] have also exhibited inhibitory
effects on HK2.

2.3. Drugs Targeting Phosphofructokinase (PFK)

The second rate-limiting enzyme of glycolysis is PFK, which catalyzes the conversion
of fructose-6-phosphate (F-6-P) to fructose-1,6-bisphosphate (F-2,6-BP). PFK is allosterically
activated by adenosine monophosphate (AMP) and F-2,6-BP. PFK can be inhibited by the
elevated F-2,6-BP level to sustain cancer cell growth [162]. F-2,6-BP, a product of the reac-
tion catalyzed by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBPase-2,
PFKFB), is the most potent positive allosteric effector of PFK1 [163]. PFK2/FBPase-2 is a
bifunctional enzyme responsible for the catalysis of both the synthesis and degradation
of F-2,6-BP mediated through its N-terminal domain (2-Kase) and C-terminal domain
(2-Pase), respectively [164]. In other words, PFKFB is an enzyme with both kinase and
phosphatase activities, and the level of F-2,6-BP depends on the relative activities of kinase
and phosphatase. Therefore, inhibiting the kinase activity of PFKFB while maintaining its
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phosphatase activity can inhibit PFK1 activity by reducing F-2,6-BP levels to block cancer
growth [165]. In addition, PFKFB3 is commonly overexpressed in breast, colon, ovarian,
and thyroid cancers but is expressed at low levels in normal tissues and is the basis of
targeted therapy for a variety of cancers [166]. It was also found that inhibiting PFKFB3
could suppress pathological angiogenesis without affecting normal blood vessels.

PFK is controlled by a family of bifunctional enzymes, including PFKFBs [167].
PFKFB3 is overexpressed in various cancers, including breast, colon, nasopharyngeal,
pancreatic, and gastric cancers, and is associated with lymph node metastasis and sur-
vival [168]. A large number of inhibitors of PFKFB3 have been reported, including
3PO (Figure 5A) [169,170], PFK15 (Figure 5B) [171], PFK158 (Figure 5C) [172,173], YN1
(Figure 5D) [174], and N4A (Figure 5E) [174]. In contrast to 2-DG, which can cause serious
toxicity and systemic adverse effects, 3PO only partially and transiently reduces glycolysis
without causing serious toxicity to normal tissues. Administration of 3PO was shown to pro-
duce a rapid reduction in glucose uptake, lactate production, and ATP generation in Jurkat
T-cell leukemia cells [170]. PFK15, a derivative of 3PO, exhibits approximately a 100-fold
increase in PFKFB3 inhibitory activity when compared to 3PO. PFK15 has been reported
to exhibit significant anticancer activity by reducing 18FDG uptake and F-2,6-BP levels in
xenografted tumors. Moreover, PFK15 exhibits a proapoptotic effect in transformed cancer
cells in vivo and in vitro [171]. Several studies have demonstrated the ability of PFK15
and PFK158 to synergize with targeted and chemotherapeutic agents [173,175,176]. In
addition, it has also been shown that PFK15 increases the sensitivity of chronic granulocytic
leukemia cells to imatinib and enhances the cytotoxicity of oxaliplatin against colorectal
cancers [177,178]. The combination of CTLA-4 antibody and PFK158 can significantly
enhance the inhibition of cancer growth, showing a bright future for immunotherapy
combined with targeted glucose metabolism therapy [179]. Some studies have found that
PFKFB3 plays a key role in the repair of DNA damage by homologous recombination, lead-
ing to the development of the small-molecule PFKFB3 inhibitor KAN0438757 (Figure 5F),
suggesting that PFKFB3 may play a key role in the initiation and development of malig-
nant tumors [180]. Moreover, compounds such as BrAcNHEtOP (Figure 5G) [167], YZ9
(Figure 5H) [167], PQP (Figure 5I) [181], KAN0436151 (Figure 5J), benzindoles [182], and
salicylic acid sulfonamides [183] have also been found to have pharmacological effects on
PFK inhibition.
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2.4. Drugs Targeting Pyruvate Kinase (PK)

The third rate-limiting step in glycolysis is pyruvate kinase (PK), which catalyzes the
dephosphorylation of phosphoenolpyruvate to produce enolpyruvate. In mammalian cells,
there are four main isoforms of PK: PKM1, PKM2, PKR, and PKL. PKL and PKR are mainly
expressed in the liver and erythrocytes, respectively, and PKM1 is highly expressed in
muscle and brain tissues. In cancer cells, low-affinity PKM2 is the main isoform. Further
research has found that PKM2 exists in different forms, and in cancers, it mostly exists as a
low-activity dimer, a form that is more likely to promote cancer growth [184]. In addition,
PKM2 can exert its effects through post-translational modifications, including phosphoryla-
tion [185], O-acetylglucosamine (O-GlcNAc) modification [186], acetylation [187], succiny-
lation [188] and methylation [189]. Numerous studies have shown that inhibition of PKM2
can improve the sensitivity of cancer cells to chemotherapeutic drugs such as cisplatin and
reverse drug resistance [190,191]. Interestingly, either the inhibition or activation of PKM2
inhibited the growth of cancer cells, which may be related to the response of cancer cells to
different degrees of hypoxia [192,193].

There are three main types of PKM2 inhibitors that have been identified: shikonin,
metformin, and vitamin K. Shikonin (Figure 6A), the active ingredient extracted from the
plant comfrey, is the most potent and specific PKM2 inhibitor reported to date. Shikonin’s
analog, alkannin, also shows potential anticancer therapeutic value in targeting PKM2 [194].
Shikonin reduces platinum resistance in human colorectal and advanced bladder cancer
cells by inhibiting PKM2 activity and reverses cisplatin resistance in cervical cancer cells
in a dose-dependent manner [194]. In addition, shikonin significantly reduced gefitinib
resistance in lung cancer cells and inhibited the development and metastasis of esophageal
and bladder cancers [195,196]. However, due to shikonin’s poor solubility and complex
pharmacological activity [197], there are still many safety concerns for its direct incorpo-
ration into treatment protocols. Therefore, optimizing the drug structure to target and
enhance anticancer activity, utilizing nanoformulations, and other methods to enhance drug
solubility are ways to overcome these limitations. In the past decade, various advanced
drug delivery systems have been widely reported, including nanoparticles [198,199], lipo-
somes [200–202], microcapsules [203], electrospun nanofibres [204], microemulsions [205],
microneedles [206], polymeric micelles [207], etc. These nano-delivery systems transcend
the limitations of conventional carrier systems and facilitate the precise delivery of shikonin
and its derivatives to the target site of action [208–210]. Metformin (Figure 6B) is a com-
monly recommended drug for type II diabetes mellitus, but several studies have shown
that metformin also has high potential as an anticancer agent [211]. Metformin enhanced
the sensitivity of osteosarcoma stem cells to cisplatin by decreasing the expression level
of PKM2 and inhibited glucose uptake, lactate production, and ATP production in os-
teosarcoma stem cells [212]. In addition, the combination of metformin and anti-ENO1
antibody significantly reduced the resistance of human non-small cell lung cancer cells to
cetuximab and activated AMPK to downregulate PKM2 to inhibit metastasis and invasion
of kidney cancer cells [213]. However, metformin is not highly selective for PKM2, and
its pharmacological effects and clinical applications in other fields are very complicated.
Therefore, the clinical use of metformin for cancer therapy needs further exploration. Vi-
tamin K (VK) is a fat-soluble naphthoquinone, of which the VK3 (Figure 6C) and VK5
(Figure 6D) isoforms can inhibit PKM2 with an inhibitory effect that is more significant
than that of PKM1 [214]. Studies have shown that the combination of VK3 and vitamin C
(VC) can improve the therapeutic effect [215] and clinical trials have shown that VK3 can
reverse cellular resistance to doxorubicin and adriamycin [216]. However, the clinical use
of VK as an adjuvant for reversal of drug resistance is limited, which may be related to the
contraindication of the use of VK for hepatic dysfunction, as patients with cancers treated
with long-term chemotherapy are prone to impaired liver function or hepatic dysfunction,
which essentially limits the application of VK in anticancer therapy. Zhou Y et al. [217]
recently discovered that benserazide (Figure 6J), a dopa decarboxylase inhibitor for Parkin-
son’s disease, was also able to specifically bind and block PKM2 enzyme activity and
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inhibit glycolysis, which inhibited the growth of melanoma. Such discoveries provide
additional ideas for drug combinations for the treatment of cancers. In addition, several
compounds, such as lapachol (Figure 6E) [218], C3k (Figure 6F) [219], benzoxepane deriva-
tives (Figure 6G) [220], cyclosporin A (CsA), tannic acid (TA), and beta-elemeneand can
inhibit PKM2, leading to the suppression of glycolysis in cancer cells.
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Several natural products or natural compounds have also been shown to inhibit HK2.
For example, Liu et al. [221] found that oleanolic acid (OA) induced the conversion of PKM2
to PKM1 and attenuated the Warburg effect, suggesting that OA is a compound that inhibits
aerobic glycolysis. MC-4, an extract from Artemisia annua, reduced the expression of
PKM2 and GLUT1 and significantly inhibited cancer growth [222]. Further research found
that the combination of MC-4 and everolimus can synergistically exert anticancer effects
through AKT/PKM2 and mTOR to inhibit cancer growth and metastasis, which provides a
theoretical basis for the combination of targeted therapy with glycolysis inhibitors [222].
In addition, many natural products or natural compounds, such as curcumin [223,224],
resveratrol [225,226], proanthocyanidin B2 (PB2) (Figure 6H) [227], apigenin, wogonin,
chysin, and many more [228,229] are also able to bind to the variable site of PKM2 and
inhibit glycolysis.

As mentioned earlier, most PKM2 in cancer tissues are low-activity dimers, which
catalyze relatively less pyruvate production, thus providing sufficient intermediate compo-
nents for conversion into proteins, nucleotides, and other vital substances necessary for
cancer cell proliferation [229]. In a breast cancer model, knockdown of PKM2 can enhance
tumor formation, suggesting that PKM2 inhibition alone may not be effective [230]. TEPP-46
and DASA-58, both PKM2 activators, significantly increased the level of highly active PKM2
tetramers, which hindered tumorigenesis in animal experiments, inhibited the metabolism
of nucleotides and serine and reduced lactate production [231]. Mohammad et al. [232]
found that the use of TEPP-46 significantly enhanced PK activity in pancreatic cancer
cells, downregulated PKM2 dimer expression, and inhibited the growth of tumors in a
mouse model. In addition, many molecules, such as parthenolide (PTL 5) (Figure 6I) [233],
ML-265 (Figure 6K) [234], PA-12 [235], Pyridin-3 ylmethyl carbamodithioic esters [236],
ZINC08383544 [237], and compound 0089-0022 [238], inhibit tumor growth as PKM2 ag-
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onists. Some researchers have also explored the effects of herbal components on PKM2
enzyme activity. Aslan et al. [239] found that polyphenolic extracts such as prunetinone and
quercetin flavonoids have efficient activating effects on PKM2 enzyme activity. Mustard
acid and p-coumaric acid can also act as PKM2 activators for anticancer effects [239].

Although many studies have been conducted on inhibitors and activators targeting
PKM2, their specific applications have not been fully explored. For example, in individual-
ized cancer therapy, it is worthwhile to investigate which types of cancer and at which stage
of cancer the inhibitors and activators should be used. With development and research of
activators and inhibitors with high specificity, drugs targeting PKM2 will become more
widely used in cancer treatment.

2.5. Drugs Targeting Lactate Dehydrogenase (LDH)

Lactate dehydrogenase (LDH) catalyzes the last step in the glucose metabolism pro-
cess, catalyzing the reversible conversion of pyruvate to lactate. The accumulation of lactate
affects the pH in the TME. As a proinflammatory and immunosuppressive mediator, lactate
promotes the malignant progression of tumors. Studies have shown that high levels of
lactate are associated with early distant metastasis of cancer [240]. Lactate also activates ma-
trix metalloproteinase (MMP) histone proteases; upregulates vascular endothelial growth
factor (VEGF), HIF-1α, and transforming growth factor-β2 (TGF-β2); and directly enhances
the migration ability of cells [241]. The human genome has four LDH genes: LDHA, LDHB,
LDHC, and LDHD. LDHA and LDHB are highly expressed in cancers [242], with LDHA
responsible for converting pyruvate to lactate and LDHB responsible for converting lactate
to pyruvate. The predominant isoform in cancers is LDHA [23]. High LDHA expression is
related to the poor prognosis of malignant tumors [243,244]. In addition, LDHA can also
promote lactate production, thereby remodeling the TME and suppressing the immune
system to promote immune escape [23,65]. Furthermore, it was found that upregulation of
LDHA ensures efficient aerobic glycolysis in cancer cells, but the enzyme is not required for
healthy cells under normal conditions [245]. Knockdown of LDHA can inhibit cancer cell
proliferation, suggesting that targeting LDHA is a promising strategy to inhibit the growth
of malignant tumors. In addition, knockdown of LDHA can also have an effect on matrix
metalloproteinases, thus affecting cancer cell invasion and metastasis [246]. Therefore, the
main target for developing anticancer drugs against LDH is LDHA.

There is currently much research devoted to the search for selective inhibitors of
LDHA [23]. The natural compound gossypol (Figure 7A), a nonselective LDHA inhibitor,
has shown efficient anticancer activity in vitro and in preclinical experiments, but gossypol
also interacts with other components in the cell involving multiple biological functions,
leading to nonspecific toxicities [247]. Therefore, there is a need to design chemically
synthesized LDHA inhibitors to improve the efficiency and safety of these drugs. FXII
(Figure 7B), a catechol-containing small compound that inhibits LDHA, was shown to
inhibit tumor growth in xenografts [248]. In lymphoma and pancreatic cancer, FX-11 can
reduce cellular lactate production, induce oxidative stress, and ultimately lead to apoptosis
and the inhibition of cancer progression [248]. In prostate cancer, FX-11 as a single agent was
also shown to be effective in inhibiting the glycolysis of cancer cells and consequently the
growth of cancer cells [248]. In addition, galloflavin (Figure 7C) has been reported to bind to
free LDHA and inhibit glycolysis in breast cancer cells, which inhibits cancer growth [249].
Oxamate (Figure 7D) is a competitive LDH inhibitor that exerts its pharmacological effects
by competing with the LDHA substrate pyruvate. When combined with LDHA, oxamate
can inhibit the conversion of pyruvate to lactate by inhibiting LDH and inhibiting the
proliferation and migration of prostate and breast cancer [250–252], and its sensitivity
can be effectively improved when combined with temozolomide [253]. However, in vitro
studies have shown that oxalate requires concentrations above the millimolar level to exert
anticancer effects. Notably, oxidative cancer cells are less sensitive to LDHA inhibitors,
while some glycolytic cancer cells will compensate for the inhibition of glycolysis by
OXPHOS and become resistant to LDHA inhibitors. Therefore, LDHA inhibitors can
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be used in combination with OXPHOS inhibitors (e.g., phenylephrine) to exert a more
comprehensive anticancer effect [254]. In addition, morin (Figure 7E), EGCG (Figure 7F),
the NADH competitive inhibitor GSK2837808A [255], pyruvate and NADH competitive
inhibitors NHI1 and NHI2 [256], metamorphic inhibitor PSTMB [257], and piperidine
derivative GNE140 [258] all have strong inhibitory and selective effects on LDHA and can
inhibit cancer progression with less effect on normal cells, and are therefore considered as
potential novel anticancer drugs [259].
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2.6. Drugs Targeting Aldolase (ALDO)

Aldolase (ALDO) catalyzes the breakdown of F-1,6-BP to dihydroxyacetone phosphate
and glyceraldehyde-3-phosphate in a reversible reaction. ALDO can bind to actin fibers,
and the PI3K signaling pathway allows ALDO to separate from actin fibers and promote
glycolysis [260]. ALDOA expression is significantly increased in HCC tissues and is
associated with the malignant progression of HCC [261]. On the other hand, dietary
restriction (DR) can upregulate the ALDOA/DNA-PK/p53 pathway, a potential mechanism
for the anticancer effect of DR [262]. TDZD-8, a small molecule metamorphic inhibitor,
has been found to specifically target the Cys289 site of ALDOA, inhibit the glycolytic
function of ALDOA, and reduce the stability of HIF-1α to exert anticancer effects [263]. In
addition, Chang et al. [264] found that raltegravir suppresses lung cancer metastasis by
inhibiting ALDOA–γ-actin interactions and was not significantly toxic to normal lung tissue.
However, this was limited to laboratory studies, and raltegravir is mainly useful in antiviral
therapy, so the therapeutic role of raltegravir in tumors needs to be further explored.

2.7. Drugs Targeting Phosphoglycerate Kinase 1 (PGK1)

Another key enzyme in glycolysis is phosphoglycerate kinase 1 (PGK1). In non-small
cell lung cancer cells, the long noncoding RNA MetaLnc9 interacts with the glycolytic ki-
nase PGK1. It prevents ubiquitination, which activates the oncogenic AKT/mTOR signaling
pathway and accelerates cancer progression [265]. Overexpression of the proto-oncogene
gankyrin attenuates cellular oxidative stress and increases the oncogenic properties of
gastric cancer cells through activation of the PGK1/AKT/mTOR pathway [266]. How-
ever, since there is a lack of promising lead compounds, studies on PGK1 inhibitors are
comparatively weak [267]. Moreover, the effects of existing PGK1 inhibitors such as CBR-
470-1, bisphosphonates, terazosin, and their derivatives on cancer cells have not been
reported [268].
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2.8. Drugs Targeting Phosphoglycerate Mutase 1 (PGAM1)

Phosphoglycerate mutase 1 (PGAM1), which is regulated by TP53, is commonly up-
regulated in human cancers and promotes cancer cell proliferation and cancer growth
by regulating the levels of its substrate 3-PG and product 2-PG [269]. Moreover, the
expression level of PGAM1 was negatively correlated with the prognosis of cancer pa-
tients and positively correlated with tumor stage and pathological grade in HCC [270],
bladder cancer [271], and lung cancer [272]. Therefore, PGAM1 is a promising target for
antitumor drugs. Evans et al. [273] first reported the small molecule compound MJE3,
which can specifically act on PGAM1 and inhibit the proliferation of breast cancer cells.
Hitosugi et al. [274] identified three compounds through in vitro screening and obtained
PGMI-004 after structural optimization; it can selectively inhibit PGAM1 activity, signifi-
cantly inhibit glycolysis and PP in cancer cells, and reduce the synthesis of biomolecules
such as nucleotides, amino acids, and lipids, while being less toxic to normal cells.

2.9. Drugs Targeting Enolase (ENO)

Enolase (ENO) catalyzes the reversible reaction of phosphoenolpyruvate production
and is highly expressed in nasopharyngeal carcinoma and non-small cell lung cancer.
ENO can promote cell proliferation, migration, and invasion by upregulating glycolysis
through activation of the PI3K/AKT pathway [275]. The expression of ENO1 is elevated
in several cancer tissues, suggesting its close association with carcinogenesis. According
to Yin H et al. [276], ENO1 overexpression in pancreatic cancer is associated with clinical
stage, lymph node metastasis, and poor prognosis. ENO1 also promotes cisplatin resistance
in patients with gastric cancer [277]. Chemical enolase inhibitors include sodium fluoride,
D-tartonate, and 3-aminoenolpyruvate 2-phosphate, but none of these are appropriate
for cancer therapy [278,279]. Phosphonoacetohydroxamicacid (PhAH), a pan-enolase
transition-state analogue inhibitor, can inhibit both enzymatic activity and proliferation in
cancer cells, including pancreatic, breast, and lung cancers [280,281]. In addition, ENOblock
(AP-III-a4) has also been found to have anticancer effects [282]. Overall, concerted efforts
are still required to develop suitable drugs that do not affect normal cells.

2.10. Drugs Targeting Monocarboxylate Transporters (MCTs)

In addition to the above glucose metabolism enzymes, monocarboxylate transporters
(MCTs) are also functional molecules essential for the glycolytic process and play a vital
role in the growth of cancer cells. MCTs are responsible for transporting lactate produced
by glycolysis to the extracellular compartment, preventing excessive acidification of the
cytoplasm, and protecting cells from damage caused by the acidic environment. MCT
overexpression in cancer cells can maintain the appropriate pH for cancer growth, thus
promoting proliferation [283]. AstraZeneca developed AZD3965, a selective inhibitor
of MCT1 which was shown to inhibit the bidirectional transport of lactate in cancers.
AZD3965 caused an increase in intracellular lactate content and a decrease in ATP, which in
combination with radiotherapy reduced cancer growth and prolonged survival, enhancing
radiotherapy sensitivity [284]. A recent study found that the MCT inhibitor AZD3965
also inhibits lipid biosynthesis and increases tumor immune cell infiltration involving
dendritic cells (DCs) and NK cells in the TME [285]. AZD3965 in combination with an
anti-PD-1 antibody reverses the immunosuppressive microenvironment of solid tumors by
targeting MCT1.

A nanodrug composed of an MCT1 inhibitor (AZD3965) loaded inside the ultra-
pH-sensitive nanoparticles (AZD-UPS NPs) can reduce the dose of AZD3965 and can
increase the effect of immunotherapy [286]. AZ93 has been reported to selectively inhibit
MCT4 and has been used in preclinical studies [287]. More compounds that can effectively
reduce lactate flux are 7-aminocarboxycoumarins (7ACCs). 7ACCs retard the growth of a
variety of cancer cells, and 7ACCs inhibit the recurrence of cervical cancer after cisplatin
treatment [288]. In addition, MCT inhibitors such as AR-C155858 [289] and VB124 [290]
have also been found to have an anticancer effect.
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2.11. Drugs Targeting Isocitrate Dehydrogenase (IDH)

IDH is a family of metabolic enzymes with important roles in the TAC cycle that is
widely involved in glucose metabolism, amino acid metabolism, and lipid metabolism [291].
The main role of IDH is to catalyze the oxidative decarboxylation of isocitrate to generate
a-ketoglutarate (a-KG), while reducing nicotinamide adenine dinucleotide (NAD+) and
beta-nicotinamide adenine dinucleotide phosphoric acid (NADP+) to the reduced form
of nicotinamide adenine dinucleotide (NADH) and the reduced form of nicotinamide
adenine dinucleotide phosphate (NADPH). IDH1/2 mutations promote the development
of various cancers, such as lymphoma and glioma; ivosidenib, which targets mutated
IDH1, and enasidenib, which targets IDH2, were approved for marketing and use in the
treatment of acute myeloid leukemia in 2017 and 2018, respectively [292–294]. Moreover,
other compounds, such as IDH305 and AG-881, have been in clinical trials [295].

3. Combinational Strategies Using Glucose Metabolism Enzyme Inhibitors

Despite the rapid development of various small-molecule inhibitors of glucose metabolism
enzymes, their clinical applications are still limited. Combination with other anticancer
drugs may show enhanced anticancer effects. For example, the combination of PKM2
activators and LDHA inhibitors significantly reduced cancer growth in a mouse model of
pancreatic adenocarcinoma transplantation, suggesting the potential value of multitarget
glycolytic inhibitors in combination [232]. In addition, treatment with drugs targeting
glucose metabolism enzymes will cause a compensatory enhancement in the metabolism
of other nutrients in cancer cells [254]. For example, significantly elevated levels of redox
reactions were found in various cancer cells after glycolysis was inhibited [296,297]. This
problem can be solved by combining a glucose metabolism enzyme inhibitor with an
OXPHOS inhibitor [254,298].

In addition, increasing evidence suggests that aerobic glycolysis not only promotes
cancer cell proliferation but is also associated with chemotherapy resistance. Therefore,
drugs targeting glycolysis may provide additional killing capacity for chemotherapy. For
example, Korga et al. [299] used 2-DG in combination with adriamycin to treat liver cancer
cells. The results showed that the combination therapy was more effective in inhibit-
ing liver cancer cell activity and promoting apoptosis than adriamycin treatment alone.
Further studies revealed that 2-DG inhibited protein N-glycosylation and improved the
efficacy of standard chemotherapy through chemo-sensitization and reversing resistance to
5-fluorouracil (5-FU) in prostate cancer cells, trastuzumab in breast cancer cells, and Bcl-2
inhibitors in leukemia cells [300,301]. The use of 2-DG also significantly reduced resistance
to paclitaxel and adriamycin in osteosarcoma and non-small cell lung cancer transplanted
mice when compared with chemotherapy alone [302]. 2-DG combined with sorafenib
and 2-aminophenoxazine-3-one (Phx-3) also enhanced the anticancer effect of 2-DG in
hepatocellular carcinoma [115,303]. The GLUT1 inhibitor BAY876 was found to enhance
cisplatin-mediated antiproliferative effects in laryngeal squamous carcinoma [304]. This
suggests that glycolysis inhibitors can enhance the sensitivity of cancer cells to chemothera-
peutic drugs. The mechanism by which this occurs seems to be that glycolysis inhibitors
deprive the energy supply of cancer cells, thus reducing the resistance of cancer cells to
chemotherapeutic drugs. In conclusion, combining chemotherapeutic agents and glycolysis
inhibitors is a promising strategy for the treatment of cancer.

A negative correlation was found between glucose metabolism enrichment scores and
immune cell activity in triple-negative breast cancer. It is suggested that combining PD-1
or PD-L1 antibodies with glycolytic inhibitors is a promising therapeutic strategy. The
combination of a PD-1 inhibitor and LDH inhibitor FX11 significantly increased tumor
CD8+ and NK cells infiltration and demonstrated remarkable anticancer effects [305].
Zappasodi et al. [306] found that knockdown of LDH and blockade of CTLA-4 in a high
glycolytic mouse breast cancer tumor model promoted immune cell infiltration and Treg
cells were forced to participate in glycolysis in the presence of glucose, enhancing glucose
uptake and IFN-γ production, leading to a loss of Treg cell stability. Blocking CTLA-4 is
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more suitable for treating cancers with low levels of glycolysis, while for cancers with high
levels of glycolysis, the combination of anti-CTLA-4 antibodies with glycolysis inhibitors
increases the availability of glucose in the TME, which maximizes Treg cell instability and
enhances anticancer immunity [306]. Of note, diclofenac reduced lactate secretion and
enhanced the killing ability of infiltrating T cells in in vitro experiments [307]. Diclofenac
has previously been shown to be an MCT1/4 inhibitor, and studies support the concept of
combining glycolytic inhibitors and immune checkpoint inhibitors in clinical trials for the
treatment of highly glycolytic cancers. Ho et al. [308] found that tumor-infiltrating T cells
compete with cancer cells for metabolism in the TME. Reducing the glucose level in the
TME can inhibit the response of infiltrating T cells against cancer cells. In addition, T cells
express PD-1 on their surface, while cancer cells express the PD-L1 on their surface, which
can escape T-cell immune surveillance. A recent study [290] found that the combination
of MCT inhibitors and PD-1 monoclonal antibodies reduced the growth of transplanted
tumors and increased the infiltration of CD8+ T cells in murine hepatocellular carcinoma
and was able to significantly enhance the anticancer effects of anti-PD-1 antibodies. The
above studies indicate a bright future for the combination of immune checkpoint inhibitors
and glycolysis inhibitors.

4. Limitations of Drugs Targeting Glucose Metabolism Enzymes

Although preclinical studies have demonstrated the effectiveness of glucose metabolism
enzyme-targeted anticancer drugs, their clinical translation has remained limited to date
(Table 1). Overall, there are three main limitations in developing glucose metabolism
enzyme-targeted therapies. Firstly, a key challenge in developing small-molecule inhibitors
is that most of the key enzymes of glucose metabolism exist in multiple isoforms, and
the structures of the different isoforms are highly similar. The low selectivity of targeted
drugs leads to the occurrence of adverse effects. In addition, targeted drugs may cause
compensatory activation of other isoforms in the tumor, thus reducing the efficacy of
the agents. Although several small-molecule targeted drugs have been demonstrated
effective or even entered clinical trials [298], the poor targeting will produce toxic side
effects, making it difficult to meet cancer treatment requirements [116–118]. Therefore,
the development of highly selective inhibitors targeting glucose metabolism enzymes
remains a challenging endeavor. To date, most gene sequences and protein structures of
glucose metabolism enzymes have been annotated. Therefore, it is possible to design small-
molecule inhibitors based on the crystal structure of glucose metabolism enzymes using
computer-assisted drug design. The analysis of the binding sites in the crystal structure of
glucose metabolism enzymes and their interactions with substrates, the clarification of the
relevant properties of the binding sites, and the identification of key binding residues and
possible binding regions will facilitate the research of structure-based small-molecule drug
design or structure modification. We hope that researchers will combine crystal structure
docking studies for targeted small-molecule drug design of glucose metabolism enzymes.
Additionally, chemical structure optimization guided by pharmacophore modeling and
traditional medicinal chemistry design ideas will eventually lead to the construction of a
new class of active small-molecule compounds for cancer treatment.

Hypoxia is a prominent feature of the TME, but there is significant heterogeneity in
metabolic patterns across different cancer cells. Cancer cells close to blood vessels are
mainly metabolized by OXPHOS. It has been found that cancer cells close to blood vessels
can take up lactate via MCT1 and use it for tricarboxylic acid cycle energy supply [309].
In contrast, cancer cells distant from blood vessels take up glucose for glycolytic energy
supply and release lactate. Such cancer cells with different metabolic patterns exhibit a
phenomenon known as metabolic symbiosis, which makes cancer cells more adaptable to
the harsh TME [23]. Therefore, a single glycolytic targeting drug cannot destroy cancer
cells with metabolic heterogeneity. Instead, the metabolic stress induced by targeted drugs
may promote the metabolic reprogramming of cancer cells, such as a greater reliance on
glutamine metabolism, thus causing drug resistance. One potentially effective strategy is
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to treat the metabolic patterns of different cellular subpopulations in the TME to render
them relatively homogeneous and then target this relatively homogeneous metabolic popu-
lation to achieve disruption. For example, antiangiogenic drugs are given before glucose
metabolism enzyme-targeted drugs to make the cancer more dependent on glycolysis and
thus achieve better therapeutic results. Chaturvedi B et al. [310] treated melanoma by in-
hibiting the mitochondrial respiration of cells with metformin, making the cells dependent
on glycolysis before using LDH inhibitors and achieving better therapeutic results.

Table 1. Main targets and drugs of glucose metabolism of cancer cells.

Enzyme Target Agents Tumor Type Study Phase

GLUT

GLUT1
STF-31 RCC Preclinical

WZB115, WZB117 BC, LC Preclinical
Fasentin PC, Lymphoma Preclinical

GLUT1/2 Phloretin HCC, BC, PC, LC, CC, etc. Preclinical
GLUT4 Ritonavir Multiple myeloma, BC, CLL, etc. Phase I/II clinical trial
GLUT5 2,5-AM Acute myeloid leukemia Preclinical

HK
HK1/2 Lonidamine HCC, BC, LC, Melanoma, OC, etc. Phase I/II clinical trial

HK2
2-DG PC Phase I/II clinical trial

3-BrPA HCC, BC, Pancreatic cancer, etc. Phase I/II clinical trial

PFK PFKB3
3PO LC, Pancreatic cancer, etc. Phase I clinical trial

PFK15 RCC, HCC, CC, Gastric Cancer, etc. Phase I clinical trial
PFK158 LC, OC, etc. Phase I clinical trial

PK PKM2
Shikonin BC, Skin cancer, Bladder cancer Preclinical
Orlistat OC Preclinical

LDH LDHA
AT-101 Chronic lymphoblastic leukemia Phase I/II clinical trial

Glloflavin BC Preclinical
Polyphenon E BC, Colon cancer Phase I/II clinical trial

Abbreviations: 2,5-AM, 2,5-anhydro-d-mannitol; 2-DG, 2-deoxy-d-glucose; 3-BrPA, 3-bromopyruvate; BC, breast
cancer; CC, colorectal cancer; GLUT, glucose transferase; HCC, hepatocellular carcinoma; HK, hexokinase; LC,
lung cancer; LDH, lactate dehydrogenase; OC, ovarian cancers; PC, Prostate cancer; PFK, phosphofructokinase;
PK, pyruvate kinase; RCC, renal cell carcinoma.

Another challenge for glucose metabolism enzyme-targeted therapies is the immune
system’s response to the drug. Several anticancer immune cells are dependent on glycolysis
for their function. For example, cytotoxic T lymphocytes require an adequate supply
of glucose to produce gamma interferon for their anticancer effects; NK cells’ activation
depends on glycolysis, and restriction of glycolysis causes the depletion of NK cells; DCs
depend on glycolysis for IL-12 production and promotion of T-cell proliferation; Th1
and Th17 cells require glycolysis for differentiation; and macrophage secretion of tumor
necrosis factor (TNF) is glycolysis dependent. In addition, M1 polarization of macrophages
also depends on glycolysis [311–313]. Overall, targeted inhibition of glucose metabolism
enzymes can inhibit the growth of cancer cells but also suppress the anticancer immune
response. The regulation pattern of cancer cell metabolism is significantly different from
that of other cells, and if the differences in metabolic regulation in cancer cells and immune
cells can be identified, targeted therapies addressing these differences have the potential to
solve the above problems.

5. Conclusions

Numerous studies have demonstrated that tumorigenesis and metastasis develop-
ment are closely related to the metabolic reprogramming of cancer cells. Small-molecule
inhibitors acting on key enzymes of glucose metabolism can regulate cancer metabolic
reprogramming to inhibit cancer cell growth. Studies on some glucose metabolism modu-
lators, such as 3-BrPA, LN, and 2-DG, have been conducted for decades and have shown
significant inhibition in various cancers. However, due to side effects, most drugs have
failed to enter the clinic. Metformin, VK, and other drugs have been widely used in other
fields, and their safety and efficacy are guaranteed. However, further research and clinical
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trials of their use in anticancer therapy are needed. Other small-molecule inhibitors of key
enzymes, such as oxalate and salicylate sulfonamides, are still in their infancy, yet they
have shown great potential for cancer treatment. In addition, some natural products have
been identified to inhibit cancer cell growth by regulating key aerobic glycolysis enzymes,
providing new ideas and strategies for developing anticancer drugs targeting glycolytic
enzymes. However, the specific mechanisms of effect and targets are still unclear and need
further investigation. Overall, developing anticancer drugs targeting glucose metabolism
enzymes remains a significant challenge.

Most cancer cells have abnormal glucose metabolism, and the Warburg effect brings
a new perspective to cancer treatment strategies. In this review, we have outlined the
regulatory mode of glycolysis in cancer cells and presented the regulatory mechanism
of GLUT, HK, PFK, PK, LDH, and other transporters or metabolic enzymes as targets in
cancers and developed target drugs. Due to the unique metabolic features of cancer cells, the
development and clinical translation of targeted therapeutic agents should be strengthened.
Targeted glucose metabolizing enzyme drugs have been shown to have efficient anticancer
effects in a variety of tumor models. Although no single glucose metabolism modulator
is currently used in first-line clinical cancer treatment, combining glucose metabolism
modulators with conventional anticancer drugs may become a promising cancer treatment
strategy. Therefore, subsequent studies can not only explore the prognostic effects of
glycolytic enzyme inhibitors on cancer patients but also accelerate the exploration of
the combined application of glucose metabolism enzyme inhibitors and other anticancer
drugs and translate the results into clinical treatment. With the development of new
technologies such as high-throughput multi-omics and spatial omics, the heterogeneity of
cancer cells and immune cells will be further elucidated, and therapeutic drugs targeting
the glucose metabolism of malignant tumors will become an essential complement to
existing treatments, thus changing the current state of cancer therapy.
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