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Cone-beam CTs (CBCTs) installed on a linear accelerator can be used to provide fast 
and accurate automatic six degrees of freedom (6DoF) vector displacement informa-
tion of the patient position just prior to radiotherapy. These displacement corrections 
can be made with 6DoF couches, which are primarily used for patient setup correction 
during stereotactic treatments. When position corrections are performed daily prior 
to treatment, the correction is deemed “online”. However, the interface between the 
first generation 6DoF couches and the imaging software is suboptimal. The system 
requires the user to select manually the patient and type the match result by hand. The 
introduction of 6DoF setup correction for treatments, other than stereotactic radio-
therapy, is hindered by both the high workload associated with the online protocol 
and the interface issues. For these reasons, we developed software that fully integrates 
the 6DoF couch with the linear accelerator. To further reduce both the workload 
and imaging dose, three off-line 6DoF correction protocols were analyzed. While 
the protocols require significantly less imaging, the analysis assessed their ability 
to reduce the systematic rotation setup correction.  CBCT scans were acquired for 
19 patients with intracranial meningioma. The total number of CBCT scans was 856, 
acquired before and after radiotherapy treatment fractions. The patient positions were 
corrected online using a 6DoF robotic couch. The effects on the residual rotational 
setup error for three off-line protocols were simulated. The three protocols used were 
two known off-line protocols, the no action level (NAL) and the extended no action 
level (eNAL), and one new off-line protocol (eNAL++). The residual setup errors 
were compared using the systematic and random components of the total setup error. 
The reduction of the rotational setup error of these protocols was optimized with 
respect to the required workload (i.e., number of CBCTs required). Rotational errors 
up to 3.2° were found after initial patient setup. The eNAL++ protocol achieved a 
reduction of the systematic rotational setup error similar to that of the online protocol 
(pitch from 0.8° to 0.3°), while requiring 70% fewer CBCTs. With a 6DoF robotic 
couch, translation, and rotation patient position corrections can be performed off-line 
to reduce the systematic setup error, workload, and patient scan dose.

PACS numbers: 87.56.Fc, 87.56.Da, 87.57.-s
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I. INTRODUCTION

Image-guided radiotherapy (IGRT) using cone-beam CT (CBCT) for position verification 
has become widely available. It provides fast and accurate automatic vector displacement 
information of the patient position just prior to treatment with six degrees of freedom (6DoF, 

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015

177   177

mailto:k.pasma@radiotherapiegroep.nl
mailto:k.pasma@radiotherapiegroep.nl


178  Martens et al.: Setup protocols for rotations 178

Journal of Applied Clinical Medical Physics, Vol. 16, No. 6, 2015

three translations and three rotations). As a consequence of this CBCT imaging, it has become 
apparent that sometimes significant corrections for rotations are required.(1-6)

Since most treatment couches only allow translational corrections, it is still clinical practice 
to correct the patient position using only translations; in some cases partial rotation informa-
tion is incorporated in the calculated correction. The full rotational information available from 
CBCT imaging is not used. 

Neglecting a typical rotational setup error of 2° may cause up to 1.7 mm deviation at a 
distance of 50 mm from the isocenter. This can occur when the planning target volume (PTV) 
or an organ at risk (OAR) is located off-axis, or if the PTV is not shaped spherically. In the 
patient group investigated in this study, rotational errors up to 3.2° were observed, in spite of 
the mask fixation. 

These deviations can be relevant, especially when treatments include use of the latest gen-
eration multileaf collimators (MLCs) that allow interdigitation. With these MLCs, multiple 
lesions can be irradiated with a single beam segment using one centrally located isocenter. 
The dose distribution delivered can significantly deviate from the planned dose distribution 
if a rotation occurs.(1-4) The deviation can only be avoided or reduced by using one isocenter 
per lesion. This treatment is time-consuming if there are more than  two to three lesions. A 
study by Teng et al.(7) focused on the effect of rotational setup errors in intracranial stereotac-
tic radiotherapy. They performed a gamma analysis using 3% and 3 mm as dose difference 
and distance-to-agreement criteria, and calculated the passing ratio ≥ 95%. The study showed 
that translational errors of 1.5 mm and rotational errors of 1° resulted in a passing ratio of  
62.2%.(7) Furthermore, underdosage due to rotations has been found in cases of spinal radio-
surgery.(5) For a case where an OAR was located off-axis, namely the spinal cord, a rotational 
error of 3° to 5° resulted in an increase in maximum spinal cord dose of 3.1% to 6.4%.(6)

In the last decade, robotic table tops have become available that allow 6DoF corrections. These 
6DoF couches are primarily used for patient setup correction during stereotactic treatments. 
Daily imaging is required for these treatments and the resulting position correction is performed 
prior to treatment (online). However, the interface between the first generation 6DoF couches 
and the IGRT software is suboptimal. During clinical practice, the patient ID number must be 
manually selected and the 6DoF vector resulting from the match in the IGRT software must be 
manually entered. This lack of integration requires additional CBCTs to verify the result of the 
online repositioning, to prevent mispositioning due to manual data entry (e.g., typing) errors.

The high workload associated with the online protocol, and the interface issues, hinder the 
introduction of 6DoF setup corrections for treatments other than stereotactic radiotherapy. 
Therefore, we developed software that fully integrates a 6DoF couch with a linear accelerator. 
To further reduce the workload, three off-line 6DoF correction protocols were analyzed. They 
require 70%–90% fewer CBCT scans per patient, since they do not require daily imaging. 
Off-line correction protocols are widely used to correct for the systematic translation setup 
errors. Examples of well-known off-line correction protocols are “no action level” (NAL),(8) 
“shrinking action level” (SAL),(9) and “extended no action level” (eNAL).(10) Despite drasti-
cally reducing the number of CBCTs required, these correction protocols still manage to reduce 
the systematic setup error. The systematic error has the biggest impact on the margin that is 
needed for accurate dose coverage of the tumor.(11) Hence, these off-line protocols provide a 
valid alternative to an online protocol, and have the benefit of reducing the workload associ-
ated with patient positioning. Furthermore, fewer CBCTs reduce the dose to the patient from 
imaging. For head-and-neck protocols, this imaging dose is ~ 1 mGy/fraction. For chest and 
pelvis protocols, the imaging dose per fraction is ~ 17 and ~ 24 mGy/fraction, respectively.(12) 
Limiting the number of CBCTs is therefore relevant for fractionated treatments. 

In this report we present a new method for off-line rotational corrections. Off-line protocols 
for translational setup errors have been well investigated.(9,10,13) Furthermore, the effect of 
rotational setup errors on the planned dose distribution is also well known for various treatment 
sites.(1-6) Consequently, the focus of this report was off-line correction protocols for rotational 
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setup errors. The protocols were tested using a clinical patient database, in which all patients 
were treated with a 6DoF robotic couch. 

 
II. MATERIALS AND METHODS

The rotational setup error was measured for a group of clinical patients. The resulting database 
was used to determine the ability of the off-line protocols to reduce this measured rotational 
setup error, compared to the online procedure. Pitch, roll, and yaw are used in this report for 
describing rotations around the x-axis, y-axis, and z-axis, respectively, as defined in the IEC 
61217 standard.(14)

A.  Hardware
All data were acquired at the Institute for Radiation Oncology, Arnhem, The Netherlands. 
Patients were treated using two Elekta linear accelerators (Elekta Oncology Systems Ltd, 
Crawley, UK), both equipped with the Synergy X-ray Volume Imaging (XVI) system to acquire 
and process the CBCT scans. Using the XVI software (v4.5), an automatic grey value mask 
registration was performed, resulting in a 6DoF correction vector.

The 6DoF correction was performed using the HexaPOD treatment table from Medical 
Intelligence (Schwabmünchen, Germany) with the iGUIDE v1.0 software on one linear accel-
erator and the Protura 6D couch (CIVCO Medical Solutions, Coralville, IA) with software 
version 1.2 on the other linear accelerator. According to the manufacture’s specifications, they 
both have a positioning accuracy smaller than 0.2 mm for translations and 0.2° for rotations. 
They can perform yaw, pitch, and roll corrections of up to 3°.

The iGUIDE v1.0 software used in this study requires the user to manually enter the required 
6DoF vector. iGUIDE v2.0 features automatic transfer of the 6DoF vector. The Protura v1.2 
software was developed in cooperation with the manufacturer to allow safe and fast 6DoF 
corrections by integrating the various systems. Patient selection is automatically performed 
by interfacing with the MOSAIQ Record and Verify system. The 6DoF vector from the Elekta 
XVI database is automatically imported and the linear accelerator operation is interlocked if 
irradiation is attempted before the 6DoF correction is completed. All treatments were delivered 
using the Elekta Beam Modulator MLC with a leaf width of 4 mm.

B.  Patient treatments
A total of 19 patients with intracranial meningioma were treated in 28 or 30 fractions of 2 Gy. 
For this patient group, a clinical target volume (CTV) to PTV margin of 2 mm was used. The 
patients were immobilized using a hybrid three-point head mask without a nose hole (33740/
NH) by Orfit (Orfit Industries, Antwerp, Belgium). Initially the patients were aligned using 
room lasers. For all fractions, a CBCT was acquired after initial setup (“post-setup”) and the 
6DoF correction was applied using the 6DoF robotic couch. Furthermore, for an average of 
8 treatment fractions of each patient, second and third CBCTs were obtained. The second was 
acquired after the setup correction was performed, prior to the treatment (“post-correction”), 
and the third was acquired after the treatment (“post-treatment”). A schematic overview of the 
patient workflow is depicted in Fig. 1. The post-correction CBCTs were used to assess any 
residual positional error after a patient position (due to potential counter movement(15) of the 
patient) is corrected in 6DoF. The dataset for all patients consisted of 856 CBCTs. 
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C.  Terminology
The terminology for describing rotational setup errors in this study is adapted from the commonly 
used terminology for describing translational setup errors,(13) that is to say that a distinction 
between systematic and random setup errors is made. The population systematic setup error 
for rotations (μrot) is the mean of the systematic setup errors of all patients. The rotational sys-
tematic setup error (Srot) of a patient is defined as the averaged rotational setup error over all 
fractions of that patient. When a group of patients is considered, these systematic setup errors 
yield a variance that is characterized by its standard deviation (Σrot). Interfraction variation 
causes a variance in the rotational setup position of a patient. This variance is characterized by 
the standard deviation over the setup position (σrot). The standard deviation is known as the 
rotational random setup error.

D.  Protocols
Three off-line correction protocols were tested for their ability to reduce the systematic and 
random rotational errors — μrot, Σrot, and σrot. These protocols were the NAL, the eNAL, and 
a new protocol: eNAL++. 

The NAL protocol calculates the mean displacement over the first 3 treatment fractions and 
corrects all subsequent fractions using this mean displacement.(8) For eNAL, the initial setup 
correction is the same, but additional weekly follow-up measurements are performed.(10) After 
a follow-up measurement, a new setup correction is determined that is used for the subsequent 
treatment fractions. The setup correction, Ck(fk), which is calculated after every measured 
fraction (fk = 8,13,18,…), is determined by 

 Ck(fk) = – (Sk + ak(fk)) (1)

The constants Sk and ak in this formula are derived from a linear least squares fit of data from 
the measured fractions. In this way, the estimation of the systematic setup error is updated 
after each measurement. This correction is used for the subsequent treatment fractions until a 
new correction, Ck(fk), based on a new measured fraction, is determined. For a treatment of 
30 fractions, eight CBCTs are required for this protocol.

A newly proposed protocol, eNAL++, is almost equivalent to the eNAL protocol. The dif-
ference is that on days when a CBCT is acquired, an online correction is applied instead of 
the off-line correction (which resulted from previously measured fractions). For a treatment 
delivered in 30 fractions, the eNAL++ protocol results in eight online corrections and 22 off-
line eNAL corrections. For the first 3 fractions, an online correction is applied instead of no 
correction. This slightly reduces the systematic setup error, as well as the random setup error. 
This addition requires no extra workload since the 6DoF correction vector is automatically gener-
ated just after acquiring the CBCT and has to be determined for the off-line procedure anyway.

Actual data from the three off-line protocols for the first 14 fractions of an individual patient 
treatment course are shown in Fig. 2. All the protocols result in a reduction of the systematic 
error (dotted line). 

Fig. 1. Overview of the CBCTs acquired for each treatment fraction of the 19 patients.
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E.  Comparing the protocols 
The different residual errors of the four setup protocols were investigated. The residual error 
of an off-line fraction was estimated by the 6DoF match result of the postsetup CBCT (see 
Fig. 1), combined with the 6DoF correction as calculated by the off-line protocol. The data 
were available for all 28 or 30 fractions. For the online protocol and the online fractions of the 
eNAL++ protocol, the residual error is defined as the match result of the post-treatment CBCT 
(see Fig. 1) (i.e., after the online correction). The data are available for an average of 8 of the 
28 or 30 fractions.

 
III. RESULTS 

After the initial setup of the 19 patients using the in-room lasers, rotational errors up to 3.2° were 
observed and the systematic setup error ranged from -1.7° to +1.4°. The results of the match 
between the subsequent CBCTs and the corresponding planning CT are shown in Table 1. On 
average, the time between the initial postsetup CBCT and the postcorrection and post-treatment 
CBCTs was 4 and 15 min, respectively.

In Figs. 3(a) and 3(b), the simulated effect of the off-line protocols on the systematic and 
random rotational setup errors is shown. As a reference, both the uncorrected and online data 
are also shown. The number of required CBCTs is used as a measure for the workload. In Fig. 4, 
the reduction of the systematic setup error compared to the increase in workload is presented.

Of the three off-line protocols, the NAL had the least effect on the reduction of the systematic 
error. The NAL also had the least workload (Fig. 3(a) and Fig. 4). The eNAL and eNAL++ 
protocols were similar to each other in the reduction of the systematic error. Their effect was 

Fig. 2. The results of NAL, eNAL, and eNAL++ protocols for the pitch rotation on the first 14 of 30 fractions of a typical 
patient. The open circles (○) represent the initial patient position before correction, a filled symbol (● or ■) represents 
a measurement of a patient position that is used as input for the considered protocol, the open squares (□) represent the 
patient position after correction by the protocol. An asterisk (*) indicates the correction determined by the protocol. The 
residual systematic pitch setup error after 14 fractions for this patient is depicted with the dotted line.
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almost equivalent to that of the online protocol, with less than a third of the workload. The small 
increase of the random setup error for the NAL and eNAL protocols has also been observed for 
translations using simulated populations.(10) The eNAL++ protocol slightly reduces the random 
setup error, since in 8 out of the 30 fractions an online correction is applied. The workload for 
the eNAL++ and eNAL protocol is equal. 

 

Table 1. Overview of the match results of the CBCTs with the planning CT for the 19 meningioma patients after 
initial setup, after correction via online imaging, and after treatment.

 Postsetup Postcorrection Post-treatment
 (28 or 30 fractions) (8 fractions) (8 fractions)
  Pitch Roll Yaw Pitch Roll Yaw Pitch Roll Yaw

	μrot  (°) -0.1 -0.3 -0.2 0.0 0.0 0.0 0.1 -0.1 0.0
	Σrot (°) 0.9 0.8 0.8  0.2 0.3 0.2  0.4 0.1 0.2

Fig. 3. Comparison of the standard deviation (SD) of (a) systematic rotation errors (Σrot) and (b) random rotation errors 
(σrot) for the various correction protocols.

Fig. 4. Comparison of the efficacy of the various correction protocols. The reduction in systematic error for all three rota-
tions vs. the required workload is depicted. The patients were first positioned using a three-point hybrid mask and aligned 
using the treatment room lasers. The SD of the systematic rotational error is shown for the three rotations.
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IV. DISCUSSION

For translations, the systematic and random setup error is included in the total systematic and 
random uncertainty, which partly determines the necessary CTV to PTV margin.(11,15) The 
impact of systematic translational errors on the margin is approximately four times larger than 
that of the random translational errors. The effect of rotations is not included in these margin 
formulae. For rotation errors, a similar effect is expected. Assume that an isocenter is located 
outside the PTV. A random rotational error will blur the dose distribution in the PTV. A sys-
tematic rotational error can lead to a dose distribution that does not coincide with the PTV as 
intended. For example, a systematic rotational error of 2° causes a 1.7 mm translation at 50 mm 
from the isocenter. Correction of these rotational errors allows for the CTV to PTV margin of 
2 mm that was used for the patient group described here. The impact on the resulting actual 
dose distribution can be quantified using data from CBCT studies, as presented in this paper, 
combined with dose coverage simulations, which is outside the scope of this paper. However, 
other reports(2,4) have shown that rotational errors can have a significant effect on dose cover-
age. For prostate treatments, rotational corrections up to 5° are recommended when using a 
3 mm margin to ensure 98% CTV coverage in more than 98% of treatments.(16) When only 
using translational corrections, these constrains were not met. Previous research on the effect 
of setup errors on intracranial stereotactic radiotherapy showed that translations of 1.5 mm and 
rotations of 1° have a large effect on the dose distribution. Errors in such treatments should be 
kept below 0.7 mm and 0.5°.(8) Off-line setup protocols for rotations could reduce the residual 
setup errors to below this threshold, with the added advantage of a reduction in workload and 
imaging dose.

In this paper, we describe an effective method to minimize the rotational error, especially 
the most important systematic component, using a 6DoF robotic couch. Alternatively, pitch 
and roll errors can be minimized by adapting the collimator and gantry angles of the treatment 
plan during patient setup.(17) Such methods have the disadvantage of compromising the clear 
distinction between treatment plan setup and patient setup. In clinical practice, off-line correc-
tion protocols can be adjusted when irregular patient motion is detected. An eNAL++ protocol 
is easily extended by adding more than the prescribed weekly measurements. Decisions for 
extra measurements can be made in the time span between two fractions, thereby not hindering 
clinical workflow.

Previous research(18) showed that, by using the HexaPOD couch and XVI imaging, online 
repositioning of a phantom could result in residual setup errors similar to those of the patient 
data presented here. Furthermore, the residual errors shown in Table 1 are small. This confirms 
that, when implementing our setup workflow, the introduction of a 6DoF correction protocol 
is not hindered by patient movement induced by table rotations. As patient movement is a 
concern mentioned in earlier research,(19) this should be checked before implementing a cor-
rection protocol for rotations.

The next step in this research is to evaluate the eNAL++ protocol for various clinical sites, 
and to investigate the subsequent impact on patients’ dose distributions. Treatment plans that 
are sensitive to rotational errors are plans with large irregular shaped PTVs or PTVs located 
further from the isocenter, especially if there are critical organs close to such PTVs. These plans 
frequently occur in our clinic. For these plans, it is interesting to investigate if they benefit from 
a 6DoF correction and if we can further reduce the treatment margins.

An alternative to 3D CBCT scans is orthogonal kV imaging, using two 2D images. Since 
orthogonal pairs have a lower dose contribution compared to CBCT, this presents a workflow 
that is optimized for the lowest imaging dose. Orthogonal pairs are, however, less suited for 
soft-tissue imaging. Also, the same level of match accuracy cannot be expected in the presence 
of rotational setup errors.(20)
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V. CONCLUSIONS

Relatively large rotational setup errors were observed in meningioma patients, in spite of the 
mask fixation. The setup errors have been observed in all three rotational dimensions (pitch, 
roll, and yaw). Six DoF robotic couches can accurately correct these rotational setup errors. 
No counteracting patient motion induced by couch rotations was observed.

The off-line eNAL++ protocol presented in this paper was shown to be effective in reducing 
the systematic rotational errors. The reduction was comparable to that of the gold standard, the 
online protocol, while requiring 70% fewer CBCT scans and hence 70% less imaging dose. In 
contrast to other off-line protocols, the eNAL++ protocol also reduces the random rotation errors. 

For stereotactic treatments with one or a few fractions and a high planned dose, imaging 
dose and workload is not an issue. For those treatments, if rotational deviations for a specific 
plan are an issue, an online 6DoF correction is still recommended. However, most patients are 
planned with more than a few fractions, which makes minimizing workload and imaging dose 
relevant, and off-line 6DoF eNAL++ the recommended protocol.
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