
Information–integration category learning and the human
uncertainty response

Erick J. Paul & Joseph Boomer & J. David Smith &

F. Gregory Ashby

Published online: 20 November 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The human response to uncertainty has been
well studied in tasks requiring attention and declarative
memory systems. However, uncertainty monitoring and
control have not been studied in multi-dimensional,
information-integration categorization tasks that rely on
non-declarative procedural memory. Three experiments are
described that investigated the human uncertainty response
in such tasks. Experiment 1 showed that following
standard categorization training, uncertainty responding
was similar in information-integration tasks and rule-based
tasks requiring declarative memory. In Experiment 2,
however, uncertainty responding in untrained information-
integration tasks impaired the ability of many participants to
master those tasks. Finally, Experiment 3 showed that the
deficit observed in Experiment 2 was not because of the
uncertainty response option per se, but rather because the
uncertainty response provided participants a mechanism via
which to eliminate stimuli that were inconsistent with a
simple declarative response strategy. These results are
considered in the light of recent models of category learning
and metacognition.
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Introduction

Humans have feelings of confidence and doubt, of (not)
knowing, and of (not) remembering. They respond appro-

priately to these feelings by deferring to respond and
rethinking their situation. These responses form the basis
of the literature on uncertainty monitoring and metacog-
nition (Benjamin, Bjork, & Schwartz, 1998; Dunlosky &
Bjork, 2008; Flavell, 1979; Koriat, 1993; Koriat &
Goldsmith, 1996; Metcalfe & Shimamura, 1994; Nelson,
1992; Scheck & Nelson, 2005; Schwartz, 1994; Serra &
Dunlosky, 2005). Metacognition refers to the monitoring
and control of primary cognitive processes (Nelson, 1996,
Nelson & Narens, 1990, 1994) and indicates important
aspects of mind, including hierarchical cognitive control
(Nelson & Narens, 1990), self-awareness (Gallup, 1982),
and consciousness (Koriat, 2007; Nelson, 1996). It is
acknowledged to be a sophisticated cognitive capacity that
is critical to humans’ cognitive self-regulation in many
situations.

In tasks requiring attention and declarative memory
systems, it has been well established that humans are able
to monitor the status of ongoing cognitive processing
within those systems accurately and adaptively. In contrast,
uncertainty monitoring has not been well studied in tasks
that rely on non-declarative procedural memory. In fact, it
has occasionally been documented, though mostly infor-
mally, that performance in more implicit, procedural tasks
is hidden from the normal sources of conscious monitoring
and from the participant’s own evaluation of his or her
performance. This was reported informally in early research
on artificial-grammar learning (Brooks, 1978; Reber, 1967)
and was also observed in early research on the so-called
weather prediction task, an influential task within cognitive
neuroscience (Knowlton, Mangels, & Squire, 1996). In
both lines of research, it was clear that participants
progressively improved in performance, while still self-
reporting a lack of task knowledge and a failure of
proficient performance. More recently, Bechara, Damasio,
Tranel, and Damasio (1997) and Persaud, McLeod, and
Cowey (2007) illustrated the same dissociation more
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metacognitively. Their participants made high- or low-
confidence wagers about their performance in the Iowa
gambling task. Even as their levels of correct responding
strongly improved, participants persisted in making low-
confidence wagers about their task answers because their
own metacognitive assessments were still non-confident
and non-optimistic. In all these cases, there was a failure of
metacognition and uncertainty monitoring facing ongoing
processing within procedural, implicit cognition.

In this article, we describe three experiments in which we
have compared uncertainty monitoring and control in carefully
matched categorization tasks that primarily differ only in
whether they recruit explicit, declarative memory systems or
implicit, procedural memory. Experiment 1 compares uncer-
tainty monitoring in these two tasks. The results of this
experiment make two primary contributions. First, they extend
the literature on metacognition and uncertainty monitoring to
category learning and categorization, an area in which almost
no data exist. Second, they provide among the first careful
comparisons of uncertainty monitoring in declarative- and
procedural-memory tasks. Experiments 2 and 3 focus on
metacognitive control during perceptual categorization. The
results of these experiments show that an option to respond
“uncertain” can change the qualitative nature of a task that
depends on implicit, procedural memory, but not of a matched
control task that depends on declarative memory.

Two category-learning tasks

The multiple-systems perspective that has been influential
recently in the categorization literature often contrasts two
different types of category-learning tasks. Rule-based (RB)
category-learning tasks are those in which the category
structures can be learned via some explicit reasoning
process. The rule that maximizes accuracy (i.e., the optimal
rule) is frequently easy to describe verbally (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998). In the most
common applications, only one stimulus dimension is
relevant, and the observer’s task is to discover this relevant
dimension and then to map the different dimensional values
to the relevant categories. The key requirement in RB tasks is
that the optimal strategy can be discovered by logical
reasoning that is easy for humans to describe verbally. Many
previous perceptual uncertainty-monitoring experiments
have used RB tasks with only a single relevant dimension.

In contrast, information-integration (II) category-
learning tasks are those in which accuracy is maximized
only if information from two or more stimulus components
(or dimensions) is integrated at some pre-decisional stage
(Ashby & Gott, 1988). Perceptual integration could take
many forms – from treating the stimulus as a Gestalt to

computing a weighted linear combination of the dimen-
sional values. Typically, the optimal strategy in II tasks is
difficult or impossible to describe verbally (Ashby et al.,
1998). RB-based strategies can be (and frequently are)
applied in II tasks, but they produce sub-optimal accuracy.

RB and II category structures similar to those used in the
Experiment 1 reported here are illustrated in Fig. 1. As in
this figure, each stimulus in our Experiment 1 was a circular
sine-wave grating, and all stimuli were of identical size,
shape and contrast. On each trial, one randomly selected
disk was presented, and on categorization trials (i.e., when
no uncertainty response was allowed) the participant’s task
was to assign this disk to category A or B by pressing the
appropriate response key. The disks varied across trials only
in bar width (i.e., spatial frequency) and orientation.
Participants received feedback about the accuracy of their
response on each trial. The categories used in Experiment 1
were similar to those shown in Fig. 1, except that in
Experiment 1 each category included many more disks and
in some conditions perfect accuracy was impossible because
of category overlap. The optimal decision bound in each
condition is denoted by the solid line. Note that in the RB

Fig. 1 Example stimuli and their relative distributions in information-
integration and rule-based categories. Information-integration catego-
ries utilize both dimensions simultaneously to divide stimuli into “A”
and “B” categories, whereas these rule-based categories require
information about only one dimension (in this figure, spatial frequency)
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condition, the optimal strategy for separating the disks into
the two categories is easily verbalized (“disks with thick bars
are in category A; whereas disks with thin bars are in
category B”). In contrast, the optimal strategy in the
information-integration condition has no verbal description.1

There is now overwhelming evidence that learning in
RB and II tasks is mediated by functionally separate
systems (Ashby et al., 1998; Ashby & O'Brien, 2005;
Ashby & Maddox, 2005). This evidence suggests that RB
category learning depends most heavily on declarative
memory systems (e.g., working memory), whereas II
learning is mediated primarily by procedural memory
(Ashby & O’Brien, 2005). First, a dual task requiring
working memory and executive attention significantly
impairs RB but not II learning (Filoteo, Lauritzen, &
Maddox, 2010; Waldron & Ashby, 2001; Zeithamova &
Maddox, 2006). Second, feedback processing requires
attention and effort in RB but not II categorization
(Maddox, Ashby, Ing, & Pickering, 2004a). Third, II but
not RB learning is impaired by feedback delays as short as
2.5 seconds (Maddox, Ashby, & Bohil, 2003; Maddox &
Ing, 2005). Fourth, observational training impairs II but not
RB learning, relative to feedback training (Ashby, Maddox,
& Bohil, 2002). Fifth, unsupervised learning is possible
with RB categories, but there is no evidence of any
unsupervised learning with II categories (Ashby, Queller,
& Berretty, 1999). Sixth, as in traditional procedural-
memory tasks (Willingham, Wells, Farrell, & Stemwedel,
2000), II categorization is impaired if the response buttons
are switched, but not if the hands are switched on the same
buttons. In contrast, RB categorization is unaffected by
either type of switch (Ashby, Ell, & Waldron, 2003a;
Maddox, Bohil, & Ing, 2004b; Maddox, Glass, O’Brien,
Filoteo, & Ashby, 2010; Spiering & Ashby, 2008b). In
addition to these dissociations, many other qualitative
differences have been reported that are consistent with the
hypothesis that RB learning recruits declarative memory
systems and II learning recruits procedural memory (e.g.,
Ashby, Noble, Filoteo, Waldron, & Ell, 2003b; Ashby &
O’Brien, 2007; Ell & Ashby, 2006; Maddox, Filoteo, Hejl,
& Ing, 2004; Maddox, Filoteo, Lauritzen, Connally, & Hejl,
2005; Nomura et al., 2007; Spiering & Ashby, 2008a).

It is important to note that these dissociations are not the
result of task difficulty differences. First, in a number of
cases, the experimental manipulation impaired an easy RB

task more than a difficult II task (Ashby et al., 2003b;
Filoteo et al., 2010; Maddox et al., 2004a; Waldron &
Ashby, 2001; Zeithamova & Maddox, 2006). If the
dissociations between RB and II categorization are due to
differences in difficulty, then any manipulation that impairs
performance (e.g., adding a dual task) should interfere more
strongly with the difficult II task than with the simple RB
task. Instead, the opposite result often occurs. Second,
although the RB task shown in Fig. 1 is easier for healthy
young adults to learn than the II task, there are several ways
to equate the difficulty of the RB and II tasks (e.g., use a
more difficult explicit rule). Many of the studies cited in the
previous paragraph included conditions that equated diffi-
culty using one of these methods, and in every such case,
the reported dissociation was still observed.

In sharp contrast to all of the knowledge that has been
gained about the roles of declarative and procedural
memory systems in RB and II category learning, very little
is known about how much access metacognitive and
uncertainty-monitoring processes have to the functional
workings and response outputs of these systems. Yet many
real-world skills, such as medical diagnostic imaging,
airport security screening, and military drone/satellite
surveillance, depend critically on the success of metacog-
nition in monitoring and sustaining the consistency,
reliability, stability, and quality of responses emerging from
these different systems of differentiation and categorization.
For these reasons, we have evaluated the access of
uncertainty-monitoring processes to both systems.

To do so, we incorporated a simple, uncertainty-
monitoring paradigm that has been used extensively in
recent comparative studies of human and animal metacog-
nition (Beran, Smith, Coutinho, Couchman, & Boomer,
2009; Smith, 2009; Smith, Beran, & Couchman, 2010;
Smith, Beran, Redford, & Washburn, 2006; Smith, Redford,
Beran, & Washburn, 2010; Smith et al., 1995; Smith,
Shields, Schull, & Washburn, 1997; Son & Kornell, 2005;
Washburn, Gulledge, Beran, & Smith, 2010). More
specifically, many of the uncertainty-monitoring studies
performed to date have used simple A–B discrimination
tasks in which the participant makes one of two primary
responses based on the class membership of the to-be-
categorized stimulus. In addition, participants are given an
uncertainty response with which they can decline to
complete any trials of their choosing. In fact, humans and
some nonhuman species (dolphins, macaques), but not
other nonhuman species (capuchin monkeys, pigeons), use
this uncertainty response proactively and adaptively to
decline the most difficult trials that are nearest the
discrimination breakpoint or decision boundary between
the two discriminative classes. Humans also universally
attribute their use of the uncertainty response to their
conscious uncertainty about the status of the trial. This

1 Note that the rule “Respond A if the bars are thin and steep, and B if
the bars are thick and shallow” is a conjunction rule that does not
match the optimal bound. Conjunction rules describe rectangular
response regions, not diagonal regions. Many previous studies have
reported that conjunction rules provide poor accounts of human
responding in II tasks (Ashby & O’Brien, 2007; Maddox, Bohil, &
Ing, 2004; Maddox, Filoteo, Hejl, & Ing, 2004; Maddox & Ing, 2005;
Smith, Beran, Crossley, Boomer, & Ashby, 2010).
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uncertainty-response methodology was ideally suited to the
A–B categorization tasks used in all of these experiments.
The value added in our experiments was that we included
this uncertainty response in two carefully matched and
controlled discrimination tasks that are known to tap
different category-learning utilities and even different
structural systems in the brain.

Although most research on metacognition has focused
on more standard memory tasks (e.g., Dunlosky & Bjork
2008), it seems intuitive that humans should be able to
monitor uncertainty effectively in RB categorization tasks,
since these tasks rely on explicit cognitive processes. By
definition, the declarative memory systems central to RB
categorization are accessible to conscious awareness (e.g.,
Eichenbaum, 1997). Thus, we expected that uncertainty
responses would be used optimally and adaptively in the
RB tasks. In contrast, II tasks require procedural memory
that is nondeclarative (Rolls, 2000; Squire & Schacter,
2002). Thus, participants in II tasks do not have conscious
access to the memory traces they are encoding and
consolidating throughout the learning process and, there-
fore, they might also lack conscious access to their ongoing
states of uncertainty and confidence as they perform the
trials in the II task. In fact, it is documented that participants
performing related implicit/procedural tasks do express a
pervasive disbelief that they can perform correctly – and
even a lack of confidence regarding the correct responses
they make in such tasks (Brooks, 1978; Reber, 1967). Thus,
we considered it a clear possibility that uncertainty
responses would be used inappropriately to manage
difficulty and uncertainty within the II task context. This
would be an important finding because it would mean that
one of humans’ basic categorization systems is hidden from
the evaluative/monitoring light of metacognitive oversight.

Experiment 1

Experiment 1 used a 2×2 design in which two types of
category structure (i.e., RB vs. II) were crossed with two
levels of category overlap (i.e., 0% or 5% overlap). In the
5% overlap condition, optimal accuracy was 95% correct
because the two category-exemplar distributions slightly
intermingled and overlapped one another. In other words, a
participant who perfectly used the optimal decision strategy
in these conditions would sometimes receive negative
feedback because some A-correct stimuli were on the B
side of the optimal decision bound. In contrast, perfect
accuracy was possible in the 0% overlap condition. For
each type of category structure (RB vs. II), the 0% and 5%
overlap conditions used exactly the same stimuli. The only
difference was that in the 5% condition, feedback was
based on category membership, whereas in the 0%

condition, feedback was based on the response of the ideal
observer. For example, in the 0% II condition, all stimuli
above the optimal II bound were assigned to Category A,
and all stimuli below the optimal bound were assigned to
Category B. Similarly, in the 0% RB condition, all stimuli
to the left of the optimal RB bound were assigned to
Category A, and all stimuli to the right were assigned to
Category B. Thus, perfect accuracy was theoretically
possible in both 0% overlap conditions.

All conditions began with 300 training trials in which
participants responded by assigning each stimulus to Category
A or B and then received feedback about the accuracy of this
response. Uncertainty responses were not allowed during the
training period. The training blocks were followed by 300
transfer trials in which participants were now allowed to
respond “A”, “B”, or “uncertain”. To encourage uncertainty
responses, participants were told that their goal during the
transfer phase was to maximize the number of points they
received. They were told they would receive +1 point for
every correct response, –5 points for every error, and 0 points
if they responded “uncertain”. The asymmetric payoffs were
chosen because many humans are generally reluctant to give
an uncertainty response. In fact, many participants are actually
often overconfident and interpret an expression of doubt as a
sign of weakness in a task. For these reasons, without a
substantial penalty for errors, it can be difficult to elicit
uncertainty responses from participants.

Method

Participants

There were 31 and 23 participants in the 5% overlap II and
RB conditions, respectively, and 49 and 38 participants in
the 0% overlap II and RB conditions, respectively. All 5%
overlap participants were from the University of California
Santa Barbara community, and all 0% overlap participants
were from the State University of New York at Buffalo
community. All participants reported normal or corrected-
to-normal vision and received partial course credit in
exchange for participation. Each participant completed an
approximately 60-minute session.

Stimuli and apparatus

The stimuli were circular sine-wave gratings that continuously
varied on two dimensions (spatial frequency and orientation;
see Fig. 1). Each stimulus subtended approximately 5 degrees
of visual angle at a distance of 76 cm from the monitor. The
coordinates of each stimulus, (x1, x2), were transformed into
physical spatial frequency ( f ) and orientation (o) values
according to f = (1/30)x1+(1/4) and o = (π/200)x2+(π/9).
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These transformations were chosen to approximately equate
salience between the two dimensions. The stimuli were
presented on a gray background using Matlab and functions
from Brainard’s (1997) Psychophysics Toolbox. Responses
were made with keys labeled on a keyboard.

A total of 600 stimuli were generated for the training and
transfer conditions of the experiment. For the II condition,
different stimuli were used in the two phases. During the
first 150 training trials, the stimuli (75 from each category)
were sampled from rows that were near and parallel to the
category bound (as in the first block of the hard-to-easy
condition of Spiering & Ashby, 2008a). These stimuli had
the same optimal boundary as in Fig. 1, but Spiering and
Ashby (2008a) found that beginning with difficult-to-
categorize stimuli improved II learning. The stimuli in the
last 150 training trials in the 5% overlap condition were
sampled randomly from two bivariate normal distributions
(75 from each category; parameters are included in Table 1).
For the 300 transfer trials in the II condition, an additional
300 stimuli (150 from each category) were sampled
randomly from the two category distributions.

The stimuli for the 5% overlap RB condition were
composed in much the same way, except that the stimuli
were rotated 45 degrees counter-clockwise in spatial frequen-
cy–orientation space so that the relevant dimension was
spatial frequency. It was unnecessary to facilitate training with
extra difficult trials because participants find RB tasks
intrinsically easier to master. Therefore, an additional sample
of 75 stimuli from each category distribution was used for the
RB condition instead of the initial 150 training-row trials,
yielding a total of 300 training and 300 transfer trials.

As mentioned above, the stimuli for the 0% overlap
condition were identical to those in the 5% overlap
condition except that they were strictly divided at the
optimal category boundary. This reassignment of category
membership created A and B categories that were slightly
unequal in size because of the random sampling procedure
that was used to select stimuli in the 5% overlap condition.
To correct this, an iterative procedure was used in which the
heavy category (i.e., the category with n too many stimuli)

had n stimuli randomly excised, and the light category (the
category with n too few stimuli) was augmented with a new
sample of n stimuli from the corresponding source bivariate
normal distribution until both categories had exactly 300
stimuli. The RB categories were simple 45-degree counter-
clockwise rotations of these new non-overlapped II stimuli.
As in the 5% overlap RB condition, the 0% overlap RB
condition did not include training-row stimuli and simply
re-sampled the training stimuli from phase two.

Procedure

All participants completed the experimental session in a
dimly lit room seated in front of a monitor and keyboard.
Instructions and informed consent were administered prior
to the beginning of the experiment. Participants were told
that the first half of the experiment would only allow
category assignment responses (i.e., A or B on the
keyboard) and were asked to maximize accuracy. The
feedback during this portion of the experiment was a sine-
wave (i.e., pure) tone for correct responses and a sawtooth
(harsh) tone for incorrect responses. A beep tone was also
included for “too slow” responses and “incorrect key”
presses along with the corresponding descriptive text to
signal the source of the error to the participant. For the
second half of the experiment, participants were told that an
uncertainty response option (i.e., the ? key on the keyboard)
would be allowed and that the nature of the feedback would
change. The feedback was now presented visually in the
form of points (green, +1 for correct responses; red, –5 for
incorrect responses, late responses, or wrong-key
responses; black, +0 for uncertainty responses). In all
cases, the participant’s current total score was also shown
on each trial. For this portion of the experiment, partic-
ipants were asked to maximize their scores and try their
best to beat a target score of 100 points. For all trials,
participants were asked to make a response within 2
seconds of the stimulus onset.

To familiarize participants with the training and exper-
imental portions of the experiment, a 20-trial practice
session preceded the training and experimental trials, which
was broken up into two blocks of ten trials each. The
practice stimuli were randomly sampled from the A and B
training row stimuli. The first ten trials mimicked the first
half (training) portion of the experiment where only
category-assignment responses were allowed and feedback
was administered aurally through headphones. The second
ten trials mimicked the experimental portion, which
included an uncertainty response option and feedback
administered visually in the form of points and a total score.

After the practice trials, participants completed 600 trials
divided into eight blocks with 75 trials each. The first four
blocks were training, and the last four were transfer. On

Table 1 Category mean, variance, and covariance parameters

Category Structure μA μB σ2o σ2f covo,f

II 40, 60 60, 40 175 175 103

RB 35.9, 50 65.1, 50 72 278 0

Mean, variance, and covariance parameters of the bivariate normal
distributions used to generate stimuli for the II and RB categories; o
denotes orientation and f denotes spatial frequency. Means are (o, f )
coordinate pairs; variances and covariances are equal for the A and B
categories in both category structures. All values reported are prior to
orientation and spatial frequency transformations.
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every trial, a fixation cross appeared for 1,500 ms followed
by a response-terminated stimulus with feedback proceed-
ing immediately after the response (1,000 ms duration of
audio feedback, 2,000 ms for visual), at which point the
fixation–stimulus–response–feedback sequence would re-
peat. As a reminder, the participants were given on-screen
instructions about the uncertainty response and the score
feedback prior to Block 5.

Results

In the 5% overlap condition, two participants failed to
achieve a 65% correct rate during the last 150 trials, and
one participant responded “Uncertain” on more than 70%
of trials. In the 0% overlap condition, 11 participants failed
to reach the accuracy criterion of 65% correct, two
participants indiscriminately responded “uncertain,” and
one participant never responded “B”. These participants
were excluded from further analysis.

Model-based analyses

Before the category and uncertainty responses can be
analyzed, it is important to determine whether participants
learned to use an optimal strategy. This is especially
important in the II conditions. More specifically, before
deciding how participants monitor uncertainty in II tasks, it
is important to verify that they were using a nondeclarative
decision strategy. To answer this question, we fit a variety of
different decision-bound models (Ashby, 1992; Maddox &
Ashby, 1993) to the final 150 responses of each participant.
This allowed us to assess each participant’s steady-state
response strategy. These models assumed (1) an II strategy,
(2) an RB strategy, or (3) a random-guessing strategy. Some
details of these models are given in the Appendix.

In the II conditions, the responses of 27 of the 29
participants in the 5% overlap condition were best fit by a
model that assumed an II strategy; the remaining two
participants were best fit by an RB model. Similarly, the
responses of 22 of the 26 participants in the 0% overlap II
condition were best fit by an II model, with the remaining
four participants being best fit by an RB model. In the RB
conditions, the responses of 21 of the 23 participants in the
5% overlap condition and 33 of 38 participants in the 0%
overlap condition were best fit by an RB model (of the
optimal type); the responses of all other participants were
best fit by an II model. Figures 2 and 3 show the best-fitting
bound for every participant in the 5% and 0% overlap
condition, respectively, plotted with a sample of 300
stimuli. Note that the few best-fitting II bounds in both
RB conditions were nearly vertical and closely matched the
optimal RB boundary. These participants were included in

all analyses using their individual best-fitting bounds when
applicable.

Accuracy- and uncertainty-based analyses

For each participant, we analyzed the accuracy and the
frequency of uncertainty responses during the final 150
trials. This provided a sufficient number of trials to analyze
for each response-type and to assess performance at a point
when learning had stabilized and participants had adopted
their mature task strategies within the scope of the
experiment. The difference in the number of uncertainty
responses between participants in the II and RB conditions
was not significant in either the 5% [II: M = 23.3, standard

Fig. 2 Best-fitting bounds for participants’ final 150 trials plotted
with 300 stimuli for illustrative purposes in (a) the II and (b) RB
conditions of the 5% overlapped categories in Experiment 1
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deviation (SD) = 17.9; RB:M = 14.4, SD = 16.1; t(50) = 1.86,
p = 0.069] or the 0% overlap condition [II: M = 13.2, SD =
18.3; RB: M = 9.0, SD = 9.45; t(62) = 1.20, p = 0.23].

It is possible that the lack of difference in the number of
uncertainty responses in the II and RB conditions is related
to how well participants were trained in those tasks. In the
5% overlap condition, accuracy during the last 150 trials of
training was lower for the II condition (M = 73.2%, SD =
8.95%) than the RB condition (M = 87.1%, SD = 4.98%);
similarly, in the 0% overlap condition, accuracy was also
lower in the II condition (M = 72.3%, SD = 8.06%) than in
the RB condition (M = 89.9%, SD = 7.74%). To investigate
the possibility that uncertainty responses are related to

participants’ task competency (as measured by training
accuracy), we computed correlations between average
accuracy in the last 150 trials of training (i.e., before
uncertainty responses were allowed) and the proportion of
uncertainty responses during the last 150 trials of the
experiment. This correlation was not significantly different
from zero for any group [5% overlap condition – II group:
r(27) = 0.012, p = 0.95, RB group: r(21) = –0.22, p = 0.31;
0% overlap condition – II group: r(24) = 0.002, p = 0.99,
RB group: r(36) = 0.15, p = 0.31]. Thus, the RB versus II
difficulty difference did not affect the participants’ use of
the uncertainty response.

The model-based analyses provided a best-fitting bound
for each participant, which was used to divide that
participant’s response space into A and B response regions.
This partition was used to investigate how accuracy and
uncertainty responding changed as the distance between the
stimulus and the decision bound increased. For each
response (i.e., all A, B, and “uncertain” responses), we
calculated the Euclidian distance from the stimulus coor-
dinates to the best-fitting bound. Next, these distances were
binned equally into 36 intervals so that there were 18
intervals on each side of the bound. Within each
interval, the proportion of correct categorization
responses (excluding trials that produced uncertainty
responses) was computed, along with the proportion of
all trials that produced uncertainty responses. Figures 4
and 5 (open squares and circles) show the accuracy and
uncertainty results for the 5% and 0% overlap conditions,
respectively. The solid line curves are described below.
Note that the abscissa in both figures is binned distance,
not metric Euclidean distance. In all cases, accuracy
decreased and uncertainty responding increased as stimuli
moved closer to the decision bound. This same result has
previously been reported in one-dimensional uncertainty
experiments.

Figures 4 and 5 suggest that uncertainty responding was
strongly driven by distance-to-bound in both the RB and II
conditions. To confirm this, we constructed a model which
assumed that for any one stimulus, the only factors determin-
ing whether the participant responded “uncertain” were
distance-to-bound and noise (i.e., perceptual and criterial).

Let X denote the signed distance between the presented
stimulus and the decision bound (in stimulus units) – that
is, X is a positive distance for all stimuli on the A side of
the bound and a negative distance for all stimuli on the B
side. The model assumes that each participant uses a
decision strategy of the following type:

Respond A if X > qþ (; Respond B if X � �qþ (;

Respond “uncertain” if -θ + ε < X < θ + ε,

Fig. 3 Best-fitting bounds for participants’ final 150 trials plotted
with 300 stimuli for illustrative purposes in (a) the II and (b) RB
conditions of the 0% overlapped categories in Experiment 1
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Fig. 4 Average accuracy and uncertainty responses in the 5% overlap
conditions of Experiment 1 for: (a) 27 II-responders in the II
condition; (b) 2 rule-responders in the II condition; (c) 23 responders
in the rule-based condition. The abscissa is binned distance from
category bound and the ordinate is accuracy/response proportion

Fig. 5 Average accuracy and uncertainty responses in the 0% overlap
condition of Experiment 1 for: (a) 22 II-responders in the II condition;
(b) 4 rule-responders in the II condition; (c) 38 rule-responders in the
rule-based condition. The abscissa is binned distance from category
bound and the ordinate is accuracy/response proportion
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where ε is a normally distributed random variable with
mean 0 and variance σ2 that models the effects of
perceptual and criterial noise, and 2θ is the mean width of
the uncertainty region. Given this decision rule, the
probability of responding “uncertain” is

P uncertain Xjð Þ ¼ P �qþ ( < X � qþ (ð Þ
¼ P X� q < ( � Xþ qð Þ
¼ P X�q

s < Z � Xþq
s

� �
;

ð1Þ

where Z has a standard normal distribution.
This model was fit to the mean uncertainty response

proportions for each group of participants who used the
same type of decision strategy in each condition. The
parameters θ and σ were estimated using the method of
weighted least squares (i.e., where each error is weighted
by sample size). The best fits of this model are denoted by
the solid line curves in Figs. 4 and 5. Numerical estimates
of θ and σ, as well as the weighted sum of squared errors
(SSEs), are listed in Table 2 for each condition of
Experiment 1 and for each response strategy used within
that condition. Note that, in general, the model provides
accurate fits, and there is no real difference in the quality of
these fits between the RB and II conditions. The only poor
fits are to the responses from participants who used an RB
strategy in an II condition (i.e., middle panels of Figs. 4 and 5).
In these cases, the model makes no systematic errors, but the
data are highly variable, so some of the mispredictions are
large. These poor fits should be interpreted cautiously,
however, since they are based on extremely small sample
sizes (i.e., 2 and 4 participants in the 5% and 0% overlap
conditions, respectively). Overall, however, the good fits of

this simple model suggest that participants in all conditions
used similar strategies when deciding whether to respond
“uncertain”, and that the only variable they evaluated was the
distance to the decision bound. The model was also fit to
individual participant response data. These data were highly
variable because of the relatively small sample sizes but, in
general, the model fit well in the sense that no systematic
errors in the individual fits were observed across participants
for any experiment.

Previous uncertainty studies reported large individual
differences in the use of the uncertainty response. For
example, Smith et al. (2006) found both reluctant and
generous uncertainty responders who used the uncertainty
response option rarely and frequently, respectively. This
phenomenon was also observed in our data despite the high
cost of errors and despite quite similar accuracy levels
across participants. For example, several participants never
responded “uncertain”, and one responded “uncertain” on
70% of all trials.

Discussion

Our results from Experiment 1 make two unique contribu-
tions to the literature on uncertainty monitoring. First, the RB
results show that variation along an irrelevant dimension did
not disrupt the ability of participants to monitor uncertainty.
Second – and more importantly – the II results show that
participants can effectively monitor uncertainty even in a
task that depends primarily on a nondeclarative memory
system. While one might assume uncertainty monitoring is
inversely related to task fluency, our participants’ use of the

Table 2 Summary of uncertainty model fits from Experiments 1 and 2

Condition Response Strategy Experiment 1 (5% overlap) Experiment 1 (0% overlap) Experiment 2 (all trials)

II II SSE 0.770 0.093 0.299

r2 0.616 0.906 0.818

θ 5.759 3.376 3.851

σ 13.9 10.115 10.991

II RB SSE 6.014* 2.574 1.998†

r2 0.723 0.227 0.890

θ 9.467 6.509 14.346

σ 9.042 13.47 12.359

RB II, RB SSE 0.175 0.019

r2 0.953 0.989

θ 4.112 3.198

σ 7.361 6.248

The first row describes results for participants in the II conditions who used an II response strategy. The second row shows results for participants
in the II conditions who used an RB strategy. Row three includes fits for all participants in the RB conditions of Experiment 1.

* Excluded 3 bins in right tail with no data (bins 36, 34, 32)
† Excluded 1 bin in right tail with no data (bin 35)
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uncertainty response was notably unrelated to their raw
training accuracy after 300 training trials in any condition,
indicating that differences in II and RB training accuracy
alone do not predict uncertainty, at least for accuracies above
70%. Our results also suggest that uncertainty monitoring is
not strongly affected by whether the categories overlap. With
overlapping categories, even optimal responding causes
errors. Even so, participants appeared to use the same
strategy of responding “uncertain” to stimuli that were near
the category boundary, regardless of whether the categories
overlapped, and in all cases the frequency of an uncertainty
response decreased at roughly the same rate as the stimulus
moved away from that boundary. This was true for both RB
and II category structures.

Experiment 2

In Experiment 1, participants received extensive training
with the II categories before they were allowed to ever
respond “uncertain”. The reasoning underlying this training
is closely linked to our primary aim of determining whether
humans can monitor uncertainty in tasks that depend on
nondeclarative memory. Thus, we provided participants
with preliminary training in order to maximize the
probability that they would adopt a nondeclarative (i.e.,
II) strategy. However, a second key goal in human
metacognition research is to understand how metacognitive
judgments – in this case about uncertainty – are used to
control future decisions (Nelson & Narens, 1990). Koriat,
Ma’ayan, and Nussinson (2006) reported results suggesting
that metacognitive monitoring and control are interacting
processes that mutually inform each other. Experiment 1
was a poor design for studying this interactive process
because participants were not allowed to act on their
uncertainty until learning was mostly complete. In Exper-
iment 2, participants were given the option of responding
“uncertain” from the first trial.

To the best of our knowledge, metacognitive control has
not been studied in any procedural-learning tasks.2 Even so,
there are results from the categorization literature which
suggest that allowing participants to act on their feelings of
uncertainty from the first trial might reduce the likelihood
that they ever adopt a nondeclarative strategy. In particular,
Spiering and Ashby (2008a) showed that II category
learning is impaired if participants are initially trained only
on exemplars that are easy to categorize (i.e., far from the
category bound). Not only was accuracy lower for this

group than for a group that began with the most difficult
items, but participants who began with easy items were also
less likely to adopt II strategies. An “uncertain” response
allows a participant to avoid responding to a stimulus. The
results of Experiment 1 show that participants are more
likely to choose this option for stimuli near the category
bound. Thus, providing the opportunity to respond “uncer-
tain” from trial 1 potentially allows participants to avoid
ever responding to difficult stimuli. The Spiering and
Ashby (2008a) results suggest that participants who choose
this option might be less likely to adopt II strategies.
Experiment 2 tests this hypothesis.

Experiment 2 was identical to the 5% overlap II
condition in Experiment 1 except that the initial training
trials were removed. Instead, participants were given the
option of responding “uncertain” on all 600 trials of the
experiment. Since all participants adopted an RB strategy
or a strategy closely resembling an RB strategy (i.e.,
Figs. 2b and 4b) in the RB conditions of Experiment 1, we
did not have any reason to assume that an "uncertain"
option on all trials would affect participants' ability to
adopt an optimal strategy. In addition, many participants
begin with RB response strategies in II conditions. For
these reasons, we did not run an RB condition in
Experiment 2.

Method

Participants

There were 31 participants in the experiment, and all were
from the University of California at Santa Barbara
community. All participants reported normal or corrected-
to-normal vision. Each participant completed one session of
approximately 60 minutes in duration and was given partial
course credit for volunteering.

Stimuli and apparatus

A new sample of 600 stimuli (300 in the A category and
300 in the B category) was randomly selected from the
overlapped II distributions used in Experiment 1. All other
aspects of stimulus generation and presentation were
identical to those in Experiment 1. Note that this experi-
ment did not use the training rows procedure that was used
in Experiment 1.

Procedure

The procedures were identical to those of Phase 2 of
Experiment 1 (i.e., when participants were given the option
of responding “uncertain”).

2 Although we do know of at least one study that examined
metacognitive control in a categorization task that recruits the
nondeclarative perceptual representation memory system (Redford,
2010).
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Results

Each participant’s data were screened for accuracy and
uncertainty response frequency as before, but the exclusion
criterion for uncertainty response frequency was increased
to 80% (slightly more liberal than in Experiment 1). One
participant exceeded the uncertainty response frequency
criterion, and four participants failed to reach the criterion
on accuracy of 65% correct. These participants were
therefore excluded from further analyses.

Model-based analyses

The same three types of decision-bound models used in
Experiment 1 were fit to the responses of each successive
150-trial block, separately for every participant. In the crucial
last block, the responses of 17 of the 26 participants were
best fit by a model that assumed an II response strategy, and
the responses of the remaining nine participants were best fit
by a model that assumed an RB strategy. Figure 6 shows
these best-fitting bounds plotted with a sample of 300
stimuli.

Accuracy and uncertainty-based analyses

Accuracy and uncertainty statistics were computed for the
last 150 trials of the experiment. Participants who used an II
strategy and those who used an RB strategy both appeared
to produce uncertainty curves similar in shape to those of
the participants in Experiment 1, but there was clearly a
strong relation between categorization strategy (RB vs. II)

and the frequency of uncertainty responding (Fig. 7). Fits of
the Equation 1 uncertainty model revealed that the
participants in Experiment 2 who used a sub-optimal RB
strategy had the most liberal criterion for responding
uncertain (i.e., the largest θ parameter estimates) of any
group of participants in either experiment (see Table 2). It
should also be noted that this same trend was seen in
Experiment 1 – that is, the group of Experiment 1
participants with the most liberal criterion for responding
uncertain were the RB responders in the II condition.

During the last 150 trials of the experiment, participants
best fit by an RB model responded “uncertain” more
frequently (M = 63.2, SD = 35.2) than those best fit by an II
model (M = 12.8, SD = 15.2), and this difference was highly
significant [t(24) = 5.13, p < .001]. Since this experiment
allowed uncertainty responses beginning with the first trial,

Fig. 7 Average accuracy and uncertainty responses in Experiment 2
for: (a) 17 II-responders in the last 150 trials; (b) 9 rule-responders in
the last 150 trials. The abscissa is binned distance from category
bound and the ordinate is accuracy/response proportion

Fig. 6 Best-fitting bounds for the final 150 trials in both the
information integration responding and the rule-based responding
participants plotted with 300 stimuli from Experiment 2
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we also investigated how uncertainty responding evolved
over time and training for the two response strategy groups.
Figure 8 shows the mean categorization-response accuracy
and the mean proportion of uncertainty responding during each
100-trial block of the experiment separately for the RB and II
responders. The figure clearly demonstrates the relatively
constant use of uncertainty responses throughout the experi-
ment for the II responders and a clear increase in uncertainty
responding for the RB responders. In addition, the RB
responders used the uncertainty response more frequently than
the II responders on every block. Figure 8 also shows that the
accuracy of the RB responders was generally higher than that
of the II responders, although only by a couple of percentage
points. These conclusions were tested more rigorously with a
mixed-effects analysis of variance (ANOVA) in which
strategy (II or RB) was crossed with block (1–6). The results
revealed main effects of strategy [F(1,24) = 29.75, p < .001]
and block [F(5,120) = 7.756, p < .001] as well as a significant
interaction [F(5,120) = 6.39, p < .001]. Separate one-way
ANOVAs also revealed that uncertainty response use differed
across blocks for RB responders [F(5,40) = 6.20, p < .001],
but not for II responders [F(5,80) = 2.02, p = .085].

In order to further assess the relationship between
accuracy and uncertainty responding, we calculated corre-
lations between accuracy and uncertainty responses during
the final 150 trials of the experiment. For both groups of
participants, this correlation was significantly positive
[RB: r(7) = 0.89, p = .002; II r(15) = .58, p = .016].

Because of the increased use of the uncertainty response,
RB responders received corrective feedback on fewer trials
than II responders. In fact, the RB responders received
feedback on an average of only 408 trials of the
experiment, whereas II responders received feedback on

an average of 565 trials. This raises the possibility that II
responders adopted an II strategy only because they
received more overall feedback than RB users. To test this
hypothesis, we fit the decision-bound models to the first
408 feedback trials for the 17 participants identified as II
responders above. Thus, in this analysis, all participants
received the same average number of feedback trials. The
models were fit to blocks of 136 trials. During the last
block, 15 of the 17 II-responders were still best fit by a
model that assumed an II response strategy. The RB model
fit best for only two of these participants. Thus, participants
who adopted an II decision strategy did not do so because
of an overall greater number of feedback trials.

Discussion

Allowing participants to respond “uncertain” from the first
trial had important effects both on the use of the uncertainty
response and on the nature of category learning. Most
importantly, the success that participants had in learning to
use a strategy of the optimal type depended on the
frequency with which they responded “uncertain”. Partic-
ipants who frequently responded “uncertain” mostly used
simple one-dimensional RB rules that ignored one of the
two relevant dimensions. In contrast, participants who rarely
used the uncertainty response mostly adopted a strategy of
the optimal type. The most plausible explanation of this
coordination between uncertainty responding and categori-
zation strategy is that participants who frequently used the
uncertainty response avoided difficult-to-categorize stimuli
near the category bound, which allowed them to maintain an
acceptably high level of accuracy with a suboptimal RB
decision strategy. For example, if a one-dimensional RB
strategy were to be used on every trial with the Experiment 2
categories, then the highest accuracy that would be
theoretically possible is 75.6% correct. Figure 8 shows that
during blocks 4–6, the mean accuracy of RB responders
was above 80%. Thus, RB responders were clearly using
the uncertainty response to avoid many of the most difficult
stimuli as a way to improve accuracy with an inferior
response strategy.

Figure 8 also shows that the RB responders used the
uncertainty response with increasing frequency throughout
the experimental session. This is interesting because the
best-fitting RB model provided ever-improving fits to the
responses of these participants. In other words, as the
experiment progressed, the response strategy of the RB
responders became more and more rule-based. This result
supports the conclusion of Koriat et al. (2006) that
metacognitive monitoring and control processes continu-
ously interact and also illustrates a downward spiral that
can accompany increasing use of the uncertainty response.

Fig. 8 Mean uncertainty response proportion and accuracy of the
information-integration (II) and rule-based (RB) responders across six
100-trial blocks of Experiment 2
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As participants avoid more and more difficult stimuli, a
simple, but suboptimal strategy begins working better and
better, which encourages participants to avoid still more of
the difficult stimuli. According to an influential model of
metacognition (Nelson & Narens, 1990), metacognitive
monitoring is used to build a mental model of the task at
hand. Therefore, one interpretation of our results is that the
ability to respond “uncertain” allowed participants to
construct an incorrect model of the categories that assumed
only one stimulus dimension was relevant.

Evidence can also be found in Experiment 1 that
participants strategically adopted the uncertainty response
as a way to maintain high accuracy. In three of the four
conditions of that experiment, the frequency of uncertainty
responses was positively correlated with accuracy during
the final 150 trials (all p < 0.01); this correlation was
nonsignificant only in the II condition when overlap was
0% (p = 0.214). Experiment 2 revealed an identical trend.
Although the II and RB responders were similarly using the
uncertainty response to improve accuracy, by the end of
Experiment 2, the RB responders were doing so more
fervently, supporting the idea that the RB responders were
increasingly using the uncertainty response to maintain
high accuracy with a suboptimal response strategy through-
out the duration of the experiment.

In summary, the results of Experiment 2 suggest that
many participants used the uncertainty response to change
the qualitative character of the II task into an RB task. This
is a remarkable result because to the best of our knowledge,
this is the first instance in which participants have used a
metacognitive-monitoring response to change the underly-
ing affordances of their primary task so that it fits their
overall cognitive system more comfortably.

Experiment 3

The results of Experiment 2 suggest that granting partic-
ipants the uncertainty-response option allowed them to
change the qualitative nature of the task. This hypothesis
leads to two strong predictions. First, changing the
qualitative nature of the task should be more likely with II
than RB categories, basically because humans are dimen-
sionally analytical and rule preferring, and there is,
therefore, no reason for participants to change the nature
of an RB task. Second, we hypothesized that many
Experiment 2 participants changed the II task into an RB task
by using the uncertainty response to remove the most difficult
stimuli from the experiment. If so, then the qualitative change
was not because the availability of an uncertainty response
option activated an uncertainty monitoringmodule, which then
somehow caused the qualitative change, but rather that the
uncertainty response simply provided participants a mecha-

nism via which to eliminate stimuli that were inconsistent with
a simple RB response strategy.

The aim of Experiment 3 was to test these predictions
using the same II and RB categories as in Experiment 1.
There was no uncertainty response option. However,
feedback was withheld for the same (relative) stimuli on
which the RB responders of Experiment 2 responded
uncertain. Thus, in the II condition of Experiment 3,
participants made categorization responses to the same
stimuli that elicited categorization responses in Experiment
2, and they received no feedback during all trials in which
the stimulus elicited an uncertainty response from the
participants of Experiment 2. Thus, if our interpretation of
the Experiment 2 results is correct, then participants in the
RB condition of Experiment 3 should respond optimally,
whereas participants in the II condition should respond
similarly to the II participants of Experiment 2.

Method

Participants

There were 15 participants in the RB condition and 26
participants in the II condition, all from the University of
California at Santa Barbara community. All participants
reported normal or corrected-to-normal vision. Each partici-
pant completed one session of approximately 60 minutes in
duration and was given partial course credit for volunteering.

Stimuli and apparatus

A sample of 600 overlapped RB stimuli was created for the
RB condition by rotating the II stimuli used in Experiment 2
by 45 degrees counter-clockwise so that the optimal bound
was on the spatial frequency dimension. The II condition
re-used the exact set of stimuli from Experiment 2. The
remaining aspects of stimulus generation and presentation
were identical to Experiment 2.

Procedure

Participants were instructed that they would receive feedback
only after some responses. On every trial during the RB
condition, the distance between the stimulus and the optimal
bound was computed, and the stimulus was assigned to a bin
using a procedure identical to the binning procedure used in
the previous analyses. We used the modeled uncertainty curve
from the RB responders in Experiment 2 to determine the
probability of withholding feedback in each distance bin.
Specifically, the probability of withholding feedback on a
particular trial was proportional to the height of the modeled
uncertainty curve at the distance bin containing the stimulus.
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In the II condition, the stimuli in Experiments 2 and 3
were identical. For this reason, the probability of withhold-
ing feedback in the II condition for each stimulus was set
equal to the proportion of times the nine RB responders in
Experiment 2 responded uncertain given that same stimulus.
None of these probabilities exceeded 0.889 (i.e., every
stimulus had a non-zero probability of receiving feedback)
though many probabilities were zero, and feedback was
guaranteed. For each participant in the II condition, a feedback
schedule was generated before the experiment to determine
exactly which stimuli would receive feedback. This was to
ensure that no participant received either fewer or more
feedback trials than any RB responder from Experiment 2.

Stimuli were response-terminated. When feedback was
given, it was presented visually for 2,000 ms as “Correct” in
green text to correct responses and “Incorrect” in red text to
incorrect responses. When feedback was withheld, no text
appeared after the response for a period of 2,000 milli-
seconds. Otherwise, all aspects of timing and presentation
were identical to those in the previous two experiments.

Results

Model-based analyses

For the RB condition, no participant failed to meet the
minimum accuracy criterion of 65%; thus, all participants
were included in subsequent analyses. The same three types
of decision-bound models used in Experiments 1 and 2
were fit to the last 150 responses of each participant. Every
participant was best fit by a model that assumed an RB
response strategy on the spatial frequency dimension.

For the II condition, four participants failed to meet the
minimum accuracy criterion and were excluded from
further analyses. As above, decision-bound models were
fit to the last 150 responses of each participant. Of the
remaining 22 participants, ten were best fit by a model
assuming an RB strategy, and 12 were best fit by a model
assuming an II strategy.

Accuracy-based analyses

Recall that maximum possible accuracy was 95% for the
overlapped categories. Overall accuracy for each participant
in the RB condition was 84.6% during the final 150 trials,
with two participants in the 65–74% accuracy range, two in
the 75–84% range, and 11 in the 85% + range. On average,
RB participants received feedback on 410 of 600 trials,
which closely matches the 408 trials of feedback for the RB
responders in Experiment 2.

In the II condition, the RB responders had an overall
accuracy of 74.3% in the last 150 trials, while the II

responders had a higher overall accuracy of 80.4%. The
accuracy of RB and II responders on feedback trials was
79.2% and 83%, respectively. The maximum possible
accuracy with no-feedback trials is 82.4% if using an RB
strategy and 94.8% if using an II strategy. In order to compare
the distribution of RB and II responders in this experiment
with the responders from Experiments 1 and 2, we computed
a chi-square test for homogeneity and found that the
distribution of RB and II responders was significantly
different in the II condition of Experiment 3 than in that of
Experiment 1 [χ2(1, N = 51) = 10.34, p = 0.001] but not
different than in that of Experiment 2 [χ2(1, N = 48) = .59,
p = 0.44]. Finally, participants in the II condition received an
average of 410 trials of feedback, which again closely matches
the 408 trials for the RB responders in Experiment 2.

Discussion

Reducing the number of feedback trials in an RB
categorization task to match the distribution of corrective
feedback observed by RB responders in Experiment 2
apparently caused no detrimental learning effects. With-
holding feedback increased the difficulty of the task,
especially since feedback was most often withheld for
stimuli near the category bound. Despite this increased
difficulty, however, participants learned the optimal re-
sponse strategy, and their accuracy during the last 150 trials
was within about 10% of the maximum possible accuracy.

On the other hand, reducing the number of feedback trials
in an II categorization task to match the distribution of
feedback observed by the RB responders in Experiment 2
clearly affected participants’ ability to learn the optimal
response strategy. With II categories, the percentage of RB
users was significantly higher in Experiment 3 than in
Experiment 1 and not different from that in Experiment 2.
Even so, some Experiment 3 II participants were able to
learn the optimal response strategy. Because an II strategy
yielded a higher maximum accuracy than an RB strategy,
many participants were still able to learn the optimal
strategy and improve their accuracy despite the reduction
in feedback.

It is important to note that simply withholding feedback
randomly in an II categorization task does not necessarily
impair learning: Vandist, De Schryver, and Rosseel (2009)
demonstrated intact II category learning during a single
session while providing feedback on only 50% of the trials,
and Ashby and O’Brien (2007) observed normal II category
learning across five sessions where participants received
feedback on only 25% of the trials per session. Nearly half
of our II participants failed to learn the optimal strategy while
receiving feedback on 68% of all trials. Hence, it was not
strictly the reduction in feedback that impaired learning; it was
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the landscape of feedback encountered by the participants that
induced them to persist with a suboptimal strategy.

Participants in the II conditions of Experiments 2 and 3
adopted similar response strategies, despite the fact that
Experiment 2 participants had the option of responding
uncertain, whereas Experiment 3 participants did not. Thus,
it was not the uncertainty response per se that caused the
RB responders in Experiment 2 to persist with a suboptimal
RB strategy but, rather, it was a strategic choice to use the
uncertainty response to eliminate many of the most
difficult-to-categorize stimuli.

The results of Experiment 3 also show that withholding
feedback on trials when the more difficult stimuli are
presented does not necessarily change the response strategy
of participants. A qualitative change in strategy occurred in
Experiments 2 and 3 with II categories but not in
Experiment 3 with RB categories that were created by
rotating the Experiment 2 categories by 45 degrees. This
supports the hypothesis that the Experiment 2 participants
were systematically leveraging increased uncertainty
responding toward a preferred RB construal of the II task.

General discussion

The results of our study make two important contributions.
First, they suggest that uncertainty monitoring in tasks that
depend on nondeclarative (i.e., procedural) memory is
similar to uncertainty monitoring in declarative-memory
tasks. Second, we found evidence that metacognitive
control processes can change the qualitative nature of the
task by selectively rejecting stimuli that do not conform to
an altered world view. In the language of Nelson and
Narens (1990), this result suggests that metacognitive
monitoring and control processes can build a severely
biased mental model by carefully avoiding aspects of the
environment that do not conform to this preferred model.

The results of Experiment 1 show that uncertainty
responding in trained II categorization closely resembles
uncertainty responding in trained and untrained RB categori-
zation. This is true for overlapping categories in which perfect
accuracy is impossible as well as non-overlapping categories
in which perfect accuracy is technically possible. These results
confirm that uncertainty-monitoring and metacognitive pro-
cesses do finally catch up with implicit, procedural learning
processes, somehow gaining veridical information about them
and about the sufficiency and efficiency of their task-solution
algorithms. One very adaptive aspect of human cognition is
that even the more implicit and procedural components of
category learning and discrimination are subject to the error
checking and quality controls of metacognition.

Because much prior research has established that
learning in II tasks is nondeclarative (i.e., procedural), a

natural question arising from our results is how the
monitoring functions manage to contact and oversee
processes that in other respects are so hidden from
introspection, verbalization, consciousness, and declara-
tion. Much evidence implicates the basal ganglia as a
critical site of learning in II tasks (for a review, see for
example, Ashby & Ennis, 2006). The basal ganglia do not
project directly to the prefrontal cortex; thus, the Crick–
Koch hypothesis (Crick & Koch, 1998), for example,
predicts that people do not have conscious access to
activity in the basal ganglia. This prediction is supported
by evidence that many basal ganglia-mediated behaviors
are nondeclarative (Squire & Zola, 1996). As with other
procedural skills (Willingham et al., 2000), II category
learning includes a distinct motor component (Ashby et al.,
2003a; Maddox et al., 2004b; Spiering & Ashby, 2008b),
which has led to the proposal that the cortical target of the basal
ganglia-mediated procedural-learning system that dominates in
II tasks is in premotor cortex (Ashby, Ennis & Spiering 2007).
The premotor cortex does project directly to prefrontal cortex,
so the Crick–Koch hypothesis predicts that we should have
conscious awareness of activity in the premotor cortex.
During trials when a stimulus is near the category bound, it
seems plausible that the basal ganglia categorization system
might activate the premotor targets associated with the two
competing categorization responses almost equally. There-
fore, one possibility is that a cortical uncertainty-monitoring
network is activated any time there is significant response
competition in the premotor cortex. Such a system could
produce uncertainty data of the type seen in our experiments,
even if it had no access to the details of processing within the
(basal ganglia-mediated) procedural-learning system. Obvi-
ously, this account is highly speculative, and more work is
needed to understand the nature of uncertainty monitoring in
nondeclarative tasks. An important feature of this mechanism,
however, is that the metacognitive feeling is based on indirect
or secondary cues and contents – not on primary, privileged
access to the real discriminative processes ongoing in the
striatum. This indirect-access account has an intriguing
resonance with the work of Reder and her colleagues (e.g.,
Reder & Schunn, 1996) on implicit metacognitive monitoring
of feelings-of-knowing.

A second important conclusion that can be drawn
from our experiments is that allowing an uncertainty
response reduces the proportion of participants who
learn to use a strategy of the optimal type in II category-
learning tasks. In Experiment 2, participants who fre-
quently responded “uncertain” were much more likely to
use one-dimensional RB rules than participants who
seldom responded “uncertain”. This result is consistent
with a recent report that II category learning, but not RB
learning, is facilitated if participants begin training with
the most difficult category exemplars (Spiering & Ashby,
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2008a). The idea is that participants who begin with
exemplars that are easy to categorize tend to find simple
rules that succeed. When more difficult exemplars are
later introduced, many of these participants perseverate
with the simple rule, even when their error rates increase.
In contrast, participants who begin with the most difficult
exemplars quickly give up on simple rules because none
of these yield an acceptable level of accuracy.

Allowing participants the option of responding “un-
certain” allows them to avoid categorizing the most
difficult exemplars. As a result, they can choose to use a
simple rule, respond to stimuli that conform to that rule,
and respond “uncertain” on all other trials. In this way,
they can maintain reasonable accuracy with a preferred
strategy that fits well their underlying cognitive system
that emphasizes dimensional analysis and explicit cate-
gorization rules. The results of Experiment 2 suggest that
many participants took this approach. In a sense, there-
fore, one sees that the II task in Experiment 2 was subject
to a kind of Uncertainty Principle – that is, the very
presence of the uncertainty response during the learning of
the II task let participants qualitatively change the
population of stimuli they directly encountered and
therefore changed the reinforcement landscape they
directly experienced, so that in actuality, the explicit RB
task approach became perfectly feasible. Experiment 3
showed that a similar change in strategy did not occur
with RB tasks because the cognitive organization of that
task was already well suited to humans’ cognitive system.
This experiment also showed that the uncertainty response
played only an indirect role in this process – that is, the
change in strategy was not due to uncertainty monitoring per
se, but rather to the opportunity that the uncertainty response
provided to eliminate stimuli that were incompatible with an
RB strategy.

In conclusion, our results show that humans can
effectively monitor uncertainty in II tasks but that the
option of responding uncertain can shift the balance
between explicit and implicit category-learning systems.
Unfortunately, little is known about other factors that
can shift this balance (although see Ashby & Crossley,
2010). As a result, we stress the continuing need to study
the coordination between implicit and explicit category-
learning systems in the mind and brain, the competition
between them, and the tradeoffs between them at
different stages of category learning and for different
tasks.
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Appendix

Two different decision-bound models that assumed an RB
decision strategy were fit to each participant’s data. We also
fit one model that assumed an II strategy, and two different
models that assumed random guessing. For more details,
see Ashby (1992) or Maddox and Ashby (1993).

Rule-based models

The one-dimensional classifier This model assumes that
participants set a decision criterion on a single stimulus
dimension. For example, a participant might base his or her
categorization decision on the following rule: “Respond A
if the bar width is small, otherwise respond B”. Two
versions of the model were fit to the data. One version
assumed a decision based on bar width, and the other
version assumed a decision based on orientation. These
models have two parameters: a decision criterion along the
relevant perceptual dimension and the variance of percep-
tual and criterial noise.

Let xi denote the value of stimulus Si on the relevant
dimension. Then the one-dimensional classifier assumes
that the probability of responding B on a trial when
stimulus Si is presented equals

P B Sijð Þ ¼ P Z � xi � c

s

� �
;

where Z is a random variable with a standard z distribution
(i.e., normal with mean 0 and variance 1), c is the decision
criterion on the relevant stimulus dimension, and σ is the
variance of perceptual and criterial noise.

Information-integration models

The general linear classifier (GLC) The GLC assumes that
participants divide the stimulus space using a linear
decision bound. Categorization decisions are then based
upon which region each stimulus is perceived to fall in.
These decision bounds require linear integration of both
stimulus dimensions, thereby producing an II decision
strategy. The GLC has three parameters: the slope and
intercept of the linear decision bound and noise variance.

If stimulus Si has coordinates (xi, yi) on the two stimulus
dimensions, then the GLC predicts that the probability of
responding B on a trial when stimulus Si is presented equals

P B Sijð Þ ¼ P Z � a1xi þ a2yi þ b

s

� �
:

Only two of the three parameters a1, a2, and b are free since
only two parameters are required to specify a line.
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Random guessing models

Fixed random guessing model This model assumed that the
participant responded randomly, essentially flipping an
unbiased coin on each trial to determine the response.
Thus, the predicted probability of responding “A” (and
“B”) was 0.5 for each stimulus. This model has no free
parameters.

General random guessing model This model assumed that
the participant responded randomly, essentially flipping a
biased coin on each trial to determine the response. Thus, the
predicted probability of responding “A”was a free parameter
in the model that could take on any value between 0 and 1.
This model is useful for identifying participants who are
biased towards pressing one response key.

Goodness-of-fit measure

Model parameters were estimated using the method of
maximum likelihood, and the statistic used for model
selection was the Bayesian Information Criterion (BIC;
Schwarz, 1978), which is defined as:

BIC ¼ r lnN � 2 lnL;

where r is the number of free parameters, N is the sample
size, and L is the likelihood of the model given the data.
The BIC statistic penalizes models for extra free parame-
ters. To determine the best fitting model within a group of
competing models, the BIC statistic is computed for each
model, and the model with the smallest BIC value is the
winning model.
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