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ABSTRACT

More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence 
of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum 
biomarkers, and developed models for HCC diagnosis and differentiation from LC 
patients. Serum levels of α-fetoprotein (AFP), AFP-L3, des-γ-carboxy prothrombin 
(DCP), and Golgi protein 73 (GP73) were analyzed in 114 advanced HCC patients, 
81 early stage HCC patients, and 152 LC patients. Multilayer perceptron (MLP) and 
radial basis function (RBF) neural networks were used to construct the diagnostic 
models. Using all stages, HCC diagnostic models had a higher sensitivity (>70%) than 
the individual serum biomarkers, whereas only early stage HCC diagnostic models 
had a higher specificity (>80%). The early stage HCC diagnostic models could not be 
used as HCC screening tools due to their low sensitivity (about 40%). These results 
suggest that a combination of the two models might be used as a screening tool to 
distinguish early stage HCC patients from LC patients, thus improving prevention and 
treatment of HCC.

INTRODUCTION

Liver cancer is the sixth most common cancer 
throughout the world, but it is the third leading cause 
of cancer-related death due to its very poor prognosis. 
Hepatocellular carcinoma (HCC) is the major histological 
subtype of liver cancer. The major risk factors of HCC 
are infections with the hepatitis B and C viruses, which 
increase the risk of liver cancer by about 20-fold [1]. More 
than 90% of HCC cases develop as a consequence of 
underlying liver diseases, and liver cirrhosis (LC) occurs 
in 80% of HCC cases [2–4]. More than 60% of patients 
are diagnosed with late-stage disease after metastasis 
has occurred [5], resulting in an overall 5-year survival 

rate of < 16% [6]. However, if appropriate treatments 
are performed in early stages, the 5-year survival rates 
of HCC patients exceed 75%, highlighting the need to 
diagnose HCC at early stages in order to achieve the 
greatest possibility of curative treatment [7]. According to 
the American Association for the Study of Liver Diseases 
(AASLD) practice guidelines, curative treatment can be 
performed in the early stage of HCC (BCLC 0-A), while 
in the advanced stages (BCLC B-D), only palliative or 
symptomatic treatments are available [8].

The AASLD guidelines also recommend that 
α-fetoprotein (AFP) and ultrasound examination be used 
for HCC surveillance in hepatic cirrhosis population, but 
early stage HCC can be hardly differentiated from cirrhotic 
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nodules because they have similar features on imaging 
[9–11]. AFP has been used as an HCC serum biomarker 
for many years, but its sensitivity is only about 39%-65% 
[12]. Several other tumor markers have been reported as 
good complements to AFP and have been used in clinical 
diagnosis, including lens culinaris agglutinin reactive 
AFP (AFP-L3) , des-γ-carboxy prothrombin (DCP) and 
Golgi protein 73 (GP73) [13–18], but they do not meet the 
clinical requirements for early stage HCC diagnosis.

Artificial neural network (ANN) is a mathematical 
model that simulates the structure of biological neural 
networks. It possesses the characteristics of parallel 
information processing, distributed information storage, 
high non-linearity, good fault-tolerance and strong self-
learning, self-organizing, and adaptive ability [19]. ANN 
has been widely applied in the fields of disease diagnosis 
and prediction [20–24]. The aim of this study was to 
develop effective HCC diagnostic models using ANN 
and four serum tumor biomarkers (AFP, AFP-L3, GP73, 
and DCP). These models can be used as a preliminary 
screening tool to distinguish early stage HCC patients 
from LC patients, thus improving prevention and treatment 
of HCC.

RESULTS

Serum levels of AFP, AFP-L3, GP73, and DCP as 
HCC diagnostic markers

347 HCC and LC patients were recruited and 
divided into three groups: 114 advanced HCC patients, 
81 early stage HCC patients, and 152 LC patients. 
The demographic data of the patients are shown in 
Table 1. There were no significant differences in age, 
HBV infection rate, history of infection, and liver function 

indexes (bilirubin and alanine transaminase) among the 
three groups. However, there were significant differences 
in gender, serum albumin levels, and prothrombin time 
(p<0.05). The data indicated that male patients were at a 
higher risk to develop HCC, and LC patients had a worse 
liver synthesis function compared with HCC patients.

To evaluate the diagnostic value of the four serum 
tumor markers (AFP, AFP-L3, GP73, and DCP) in the 
progression of HCC, we measured their concentrations 
in serum of all patients. The serum levels of all four 
markers differed (p<0.05) between early stage HCC 
patients and LC patients. AFP, AFP-L3, and DCP also 
showed significant changes between advanced HCC 
patients and LC patients (p<0.05; Table 2). The serum 
levels of AFP, AFP-L3, and DCP gradually increased 
during the progression of cirrhosis to HCC. However, the 
serum GP73 levels in LC patients were higher than in 
advanced and early stages HCC patients; the early stage 
HCC patients had the lowest serum levels of GP73. In 
addition, there was no significant difference between 
advanced HCC patients and LC patients (p=0.112; 
Figure 1). In order to determine whether GP73 could be 
used in the diagnosis of HCC, we compared serum GP73 
levels in LC patients and patients with all stages of HCC. 
The levels of GP73 differed (p<0.001, Z=-3.728) between 
all stages HCC patients and LC patients.

Serum levels of AFP, AFP-L3, GP73, and DCP as 
HCC diagnostic markers in cirrhotic patients

ROC analysis was used to determine whether 
the serum AFP, AFP-L3, GP73, and DCP levels are 
powerful to diagnose HCC in the cirrhotic population, 
as measured by the AUROC. The optimal cut-off values 
were determined with the maximum sum of sensitivity and 

Figure 1: The difference in AFP (A), GP73 (B), AFP-L3 (C), and DCP (D) levels between advanced HCC, early stage HCC, 
and LC patients.
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Table 1: The demographic data of the patients
Advanced HCC Early HCC LC P value

Male/ Female 97/17 65/16 101/51 0.001

Age (yr) 53(21-74) 56(36-81) 51(23-83) 0.154

HBV infection/others 90/14 69/12 138/14 0.377

History of infection (yr) 10.9±7.5 14.1±6.5 14.7±8.2 0.183

Albumin (g/L) 33.4±6.0 33.8±6.8 30.7±6.3 0.001

Bilirubin (μmol/L) 25.4(4.6-520.6) 20.8(6.0-141.0) 24.9(4.8-423.3) 0.209

Prothrombin time(s) 13.3(10.7-22.2) 13.1(10.6-21.9) 13.9(10.2-23.2) 0.001

Alanine 
transaminase(IU/L) 44(9-1194) 39(7-263) 42(10-1260) 0.120

Table 2: The statistical analysis of the levels of serum markers between three groups

Markers Advanced HCC 
Group

Early HCC 
Group

LC Group Advanced HCC 
vs LC

Early HCC vs LC

Z Value P Value Z Value P Value

AFP(ng/mL) 224 .0(0.5-16488.0) 29.5(1.0-1574.0) 8.4(0.5-2659.0) -7.190 <0.001 -3.773 <0.001

GP73(ng/mL) 202.2 (35.4-427.4) 168.5 (13.1-337.5) 214.0(1.6-434.5) -1.591 0.112 -5.103 <0.001

AFP-L3(ng/mL) 26.96(0.03-1981.00) 3.25(0.05-518.00) 0.42(0.03-204.4) -7.566 <0.001 -4.330 <0.001

DCP(mAU/mL) 995.5(0.6-64091.0) 16.3(0.2-33210.0) 10.8(0.2-3778.4) -10.426 <0.001 -2.736 0.006

Figure 2: The ROC curves of AFP, GP73, AFP-L3, and DCP for diagnosis of all stages HCC and early stage HCC from 
the cirrhotic patients. Figures A-D demonstrate AFP, GP73, AFP-L3 and DCP diagnostic performance in all stages HCC, while Figures 
E-H are in early stage HCC.



Oncotarget80524www.impactjournals.com/oncotarget

Table 3: The diagnostic performance of four markers and ANN models for all stages HCC and early stage HCC cases 
in cirrhotic patients
Markers HCC vs LC Early HCC vs LC

AUC p Value Cut-off Sensitivity Specificity AUC p Value Cut-off Sensitivity Specificity

AFP(ng/mL) 0.713(0.659-0.767) <0.001  49.4 0.564 0.822 0.650(0.575-0.725) <0.001  43.7 0.469 0.809

GP73(ng/mL) 0.618(0.559-0.677) <0.001 148.6 0.921 0.344 0.703(0.630-0.776) <0.001 181.4 0.770 0.593

AFP-L3(ng/mL) 0.730(0.678-0.782) <0.001 8.028 0.523 0.895 0.672(0.597-0.748) <0.001       3.813 0.494 0.842

DCP(mAU/mL) 0.764(0.714-0.814) <0.001  28.1 0.621 0.855 0.609(0.527-0.690) 0.006  13.7 0.605 0.645

MLP-Models 0.753(0.701-0.806) <0.001   0.5 0.697 0.809 0.692(0.616-0.768) <0.001   0.5 0.469 0.914

RBF-Models 0.742(0.688-0.795) <0.001   0.5 0.733 0.750 0.659(0.582-0.735) <0.001   0.5 0.481 0.836

Table 4: Diagnostic results of two models for all stages HCC and LC patients

Group Diagnosis MLP Model RBF Model

LC HCC Accuracy LC HCC Accuracy

Traning set

LC 82 17 82.8% 76 29 72.4%

HCC 43 94 68.6% 39 106 73.1%

Total percentage 53.0% 47.0% 74.6% 46.0% 54.0% 72.8%

Test set

LC 25 10 71.4% 23 6 79.3%

HCC 11 26 70.3% 6 28 82.4%

Total percentage 50.0% 50.0% 70.8% 46.0% 54.0% 81.0%

Holdout set

LC 16 2 88.9% 15 3 83.3%

HCC 5 16 76.2% 7 9 56.3%

Total percentage 53.8% 46.2% 82.1% 64.7% 35.3% 70.6%

Figure 3: Architecture of neural network models. (A) MLP model for differentiating all stages HCC from LC patients; (B) RBF 
model for differentiating all stages HCC from LC patients; (C) MLP model for differentiating early stage HCC from LC patients; (D) RBF 
model for differentiating early stage HCC from LC patients. The blue lines represent synaptic weight>1, the grey lines represent synaptic 
weight<1.
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specificity. As shown in Figures 2A-2D, which illustrate 
diagnostic performance of the four serum markers to 
differentiate all stages of HCC patients (including early 
and advanced HCC) from LC patients, DCP levels 
achieved a better diagnostic performance than the levels 
of the other three markers; AUROC for DCP was 0.764. 

However, for the diagnosis of early stage HCC, GP73 
levels demonstrated a better performance (AUC=0.703; 
Figures 2E-2H), indicating that GP73 has a superior early 
diagnostic ability than the other markers. As expected, 
AFP, AFP-L3, and DCP had a relatively better diagnostic 
performance for HCC than for early stage HCC. Table 3  

Figure 4: The relative importance of the four markers to the diagnostic models. (A) MLP model importance histogram for 
LC vs all stages HCC; (B) RBF model importance histogram for LC vs all stages HCC; (C) MLP model importance histogram for LC vs 
early stage HCC; (D) RBF model importance histogram for LC vs early stage HCC.

Figure 5: Prediction probability histograms and ROC curves for neural network models. (A) LC vs all stages HCC; (B) 
LC vs early stage HCC. The upload, MLP models; the download, RBF models. Green columns represent diagnosed HCC samples; blue 
columns represent diagnosed LC samples.
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shows that AFP-L3 has the best specificity and GP73 has 
the best sensitivity in early stage HCC, as well as in all 
stages of HCC.

Development of neural network models to 
differentiate LC and HCC patients

We used multilayer perceptron (MLP) and radial 
basis function (RBF) neural networks to construct 
the diagnostic models. Figure 3A and 3B show the 
architecture of two models; both of them included four 
input layers neurons and two output layers neurons. For 
the MLP model, 74.6% training samples, 70.8% testing 
samples, and 82.1% holdout samples were correctly 
diagnosed (Table 4). Analysis of the importance of the 
four serum markers showed that AFP-L3 was the most 
important variable in MLP model (100 %); the following 
variables were DCP (97.4%), AFP (86.8%), and GP73 
(47.7%) (Figure 4A). For the RBF model, 72.8% training 
samples, 81.0% testing samples, and 70.6% holdout 
samples were correctly diagnosed (Table 4). GP73 was 
the most important variable, followed by AFP-L3 (97.4%), 
AFP (71.8%), and DCP (69.7%) (Figure 4B). Prediction 
probability histograms (Figure 5A) showed that the MLP 
model could accurately recognize LC patients. In contrast, 
the RBF model had a better recognition ability for HCC 
patients. The AUROCs of MLP and RBF models were 
0.753 and 0.742 in HCC diagnosis, respectively. These 
two models had a better diagnostic performance than the 
serum levels of AFP, AFP-L3, and GP73. Table 3  shows 
that the two models achieved a higher sensitivity than the 
individual serum biomarkers, even though their specificity 
was somewhat decreased.

Development of neural network models to 
differentiate LC and early stage HCC patients

Since prediction or early HCC diagnosis is more 
important than prediction of late-stage diagnosis, the 
main purpose of this study was to establish sensitive 
and accurate early stage HCC diagnostic models. We 
used MLP and RBF neural networks to construct the 
diagnostic models, using the early stage HCC and LC 
as the two model output layers neurons. As shown in 
Table 5 , the accuracies of the MLP model for training 
set, test set, and holdout set were 75.8%, 81.3%, and 
66.7%, respectively. The order of importance was AFP-L3 
(100%), GP73 (39.6%), DCP (30.5%), and AFP (19.4%) 
(Figure 4C). For the RBF model, the accuracies for the 
three sets were 71.1%, 70.0%, and 75.0%, respectively. 
The order of importance was DCP (100%), GP73 
(67.0%), AFP (37.8%), and AFP-L3 (36.8%) (Figure 4D). 
Figure 5 illustrates that the two models could accurately 
identify LC patients, but could not identify early stage 
HCC patients. Their AUROCs were 0.692 and 0.659, 
respectively. However, in spite of the high specificities of 

both models, they had a lower sensitivity compared to the 
individual biomarkers (Table 3), indicating that they may 
increase the risk of missed HCC diagnosis.

DISCUSSION

In recent years, many promising candidate 
biomarkers for HCC have been identified, but most of them 
have not been applied in the clinical diagnosis due to their 
limited practicability and high cost [25–29]. Currently, 
AFP and imaging technology, such as ultrasound or 
computed tomography, are the two methods mainly used 
to diagnose HCC in hospitals. AFP has been used as an 
HCC serum biomarker for many years, but its sensitivity 
is only about 40%-65% [30]. AFP-L3, which is the main 
glycoform of AFP in the serum of HCC patients, has been 
proven to be an excellent biomarker with sensitivity of 
75% to 97%. High levels of AFP-L3 have been associated 
with poor differentiation, worse liver function, and 
larger tumor mass. Some studies have suggested that the 
AFP-L3/AFP ratio might be more helpful in diagnosis 
and prognosis of HCC than the AFP-L3 values [31, 32]. 
However, Miura and his coworkers have shown that the 
AFP-L3 levels cannot provide an entirely satisfactory 
solution to detect HCC at the early stage [33]. Our 
results show that the serum AFP-L3 levels gradually 
increase during the progression of cirrhosis to HCC. The 
AUROCs of AFP-L3 for HCC and early stage HCC were 
0.730 and 0.672, respectively. The serum AFP-L3 levels 
in early stage HCC patients (median=3.25 ng/mL) were 
higher than in LC patients (median=0.42 ng/mL, p<0.05), 
suggesting that AFP-L3 may have a clinical value for the 
diagnosis of early HCC.

GP73 is a resident Golgi-specific membrane protein 
expressed by biliary epithelial cells in the liver. A meta-
analysis study has suggested that GP73 is a valuable serum 
marker that seems to be superior to AFP and can be useful 
in the diagnosis and screening of HCC [34]. However, 
our results indicate that GP73 is elevated not only in 
HCC, but also in LC; the concentration of GP73 in HCC 
(median=202.2 ng/mL) was lower than in LC patients 
(median=214.0 ng/mL, p<0.05). The results of Tian et al. 
[35] are in agreement with our study; the median serum 
levels of GP73 were 107.3 μg/L in the HCC group and 
141.2 μg/L in the LC group. Previous studies have shown 
that GP73 gene and protein levels gradually increase in 
chronic liver diseases; not only in hepatocytes, but also 
in activated hepatic stellate cells, which are the major cell 
type in liver cirrhosis [36–38]. Since we have observed 
maximal GP73 concentrations in liver cirrhosis rather than 
in HCC, these data suggest that GP73 might be regarded 
as a biomarker for liver cirrhosis rather than HCC. In 
addition, we have found that GP73 is the most sensitive 
biomarker to differentiate between early-stage HCC and 
LC patients; its sensitivity and AUROC are 0.770 and 
0.703, respectively. However, the low specificity of GP73 
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limits its potential as an HCC biomarker, even though its 
sensitivity is extremely high.

DCP is an abnormal prothrombin molecule, which 
is induced by vitamin K absence II (PIVKAII), and may 
play an important role in promoting malignant HCC 
proliferation. Previous studies have shown that the serum 
DCP levels in patients with benign and malignant liver 
diseases are higher than in healthy people, suggesting that 
DCP might have a higher diagnostic sensitivity compared 
to AFP [39–42]. Our results show that the DCP levels 
in LC and all stages HCC patients have sensitivity of 
62.1% and specificity of 85.5%. For early stage HCC, the 
sensitivity and specificity of DCP are 60.5% and 64.5%, 
respectively. DCP has been suggested as a biomarker for 
early stage HCC detection. Our results demonstrate that 
the DCP sensitivity is about 60% for HCC at an early 
stage. Although our study demonstrates that the sensitivity 
of DCP is higher than that of AFP in the diagnosis of early 
stage HCC, the DCP specificity is relatively low.

Artificial neural network (ANN) is ideal for 
diagnosis or prediction of disease in individuals, since 
it fits a nonlinear correlation between input and output 
variables [43–47]. There are various methods used for 
training of the network; MLP and RBF are the most 
common. Here, we have used these two networks to 
develop models for distinguishing early stage HCC from 
LC patients. Four serum biomarkers, AFP, AFP-L3, 
GP73, and DCP, have been used in the neural network 
modeling. The trained MLP and RBF models for 
recognition of all stages HCC and early stage HCC are 
presented in Tables 4 and 5. Single serum biomarkers 
are insufficiently precise for the diagnosis of HCC, but 
using their combinations greatly increases the accuracy. 
The HCC diagnostic models that we have developed have 
excellent diagnostic potential: their accuracy exceeded 

80%, and their sensitivity was improved compared 
to single biomarkers. However, the early-stage HCC 
diagnostic models have a relatively low sensitivity, which 
may lead to some missed diagnoses. Combination of 
both models should be a more reliable approach for the 
diagnosis of early-stage HCC. In the clinical practice, the 
HCC RBF model (sensitivity=73.3%) might be used as 
a screening tool for detection of early stage HCC and its 
differentiation from LC, while the early stage MLP HCC 
model (specificity=91.4%) might be applied to exclude 
false positives. This strategy should not only improve 
HCC detection rates, but also reduce false positives in 
early HCC stages.

In conclusion, we have evaluated the potential of 
AFP, AFP-L3, GP73, and DCP serum biomarkers for 
HCC diagnosis, and developed diagnostic models using 
these biomarkers and MLP and RBF neural networks to 
differentiate HCC and early stage HCC from LC patients. 
These models can differentiate HCC and early stage HCC 
from liver cirrhosis. Future studies will be necessary to 
test their potential for clinical benefit in HCC patients.

MATERIALS AND METHODS

Human subjects

347 subjects were recruited from outpatients and 
inpatients of the 302 Military Hospital of China (114 
advanced HCC patients, 81 early stage HCC patients, 
and 152 LC patients) from February 2013 to December 
2015. The diagnosis of HCC was made by liver 
histopathology or MRI based on the guidelines from the 
ministry of health of the People’s Republic of China [48]. 
The diagnosis of LC was based on clinical, laboratory 
and imaging evidence based on the guidelines from the 

Table 5: Diagnostic results of two models for early stage HCC and LC patients

Group Diagnosis MLP Model RBF Model

LC Early HCC Accuracy LC Early HCC Accuracy

Traning set

LC 98 6 94.2% 91 18 83.5%

Early HCC 33 24 42.1% 32 32 50.0%

Total 
percentage 81.4% 18.6% 75.8% 71.1% 28.9% 71.1%

Test set

LC 29 5 85.3% 23 5 82.1%

Early HCC 4 10 71.4% 7 5 41.7%

Total 
percentage 68.8% 31.3% 81.3% 75.0% 25.0% 70.0%

Holdout set

LC 12 2 85.7% 13 2 86.7%

Early HCC 6 4 40.0% 3 2 40.0%

Total 
percentage 75.0% 25.0% 66.7% 80.0% 20.0% 75.0%
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Chinese Society of Hepatology and the Chinese Society 
of Infectious Diseases [49, 50]. The stage of tumor was 
based on BCLC staging system; patients with BCLC 
0-A stages were denoted as the early stage HCC group, 
and those with BCLC B-D stages were denoted as the 
advanced HCC group [8]. Patients with the following 
conditions were excluded: Patients with other systemic 
diseases, such as diabetes or hypertension, and patients 
with severe complications, such as upper gastrointestinal 
bleeding or hepatic encephalopathy. The study procedures 
were approved by the ethics committee of the 302 military 
hospital of China and written informed consent was 
obtained from all subjects.

Laboratory tests

The serum samples were collected in 5 mL vacuum 
blood collection tubes without anticoagulant, then 
centrifuged for 5 min at 12,000g at room temperature. 
Serum concentrations of AFP and GP73 were measured 
using chemiluminescent immunoassay kits (Hotgen 
Biotech Co, China). For AFP-L3, the serum was first 
fractionated on lectin-affinity column, and Lens culinaris 
agglutinin selective elution was used to assay AFP-L3 
by chemiluminescent immunoassay. Serum DCP levels 
were measured by Architect i2000 immunoassay analyzer 
(ARCHTECT PIVKA-II, Abbott Co, USA). Clinical tests 
were performed by an AU5400 automatic biochemical 
analyzer (Beckman Co, USA).

Development of the neural network models

Two types of ANN models, MLP and RBF, were 
developed by SPSS 17.0 Neural Network module. MLP 
and RBF are two popular architectures used in ANN; they 
are three-layer neural networks with input layer, hidden 
layer, and output layer. MLP is always trained by a back-
propagation algorithm. When a neural group is provided 
with data through the input layer, the neurons in this first 
layer propagate the weighted data and randomly selected 
bias through the hidden layers. Once the net sum at a 
hidden node is determined, an output response is provided 
at the node using a transfer function. RBF neural network 
is a multilayer feed-forward network that can be used to 
identify nonlinear model effectively. The hidden layer 
transforms the data from the input space to the hidden 
space using a non-linear function. The output layer, which 
is linear, yields the response of the network [51].

In this study, four selected variables (AFP, 
GP73, AFP-L3, and DCP) were used as the input layer 
neurons, and two variables (LC and early stage HCC or 
all stages HCC) were used as the output layer neurons. 
All subjects were randomly divided into a training set, 
a test set and a holdout set at the ratio of 7:2:1. Training 
set is used to train the network, holdout set is used 
to assess model’s performance, and test set is used to 
validate the results.

Statistical analysis

All statistical analyses were performed using the 
software SPSS 17.0. To assess the role of four tumor 
markers as diagnostic markers for LC or HCC, receiver 
operating characteristic curves (ROC) were plotted, and 
the area under the curve (AUROC) was calculated. Data 
with normal distribution were analyzed with Student’s 
t tests or one-way analysis of variance; other data were 
analyzed by the Wilcoxon or Kruskal-Wallis tests.
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