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Abstract

Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection
approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such
methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ
mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics.
These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show
that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless
of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as
well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed
B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-
uncharacterized STPG2 and CCDC169–SOHLH2, both of which are related to gamete functions. We further applied B2 on a
bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such
as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be
extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named
BalLeRMix for future applications by the scientific community.
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Introduction
Balancing selection maintains polymorphism at selected ge-
netic loci and can operate through a variety of mechanisms
(Charlesworth 2006). In addition to overdominance
(Charlesworth B and Charlesworth D 2010), other processes
such as sexual selection (Cho et al. 2006), periodical environ-
mental shifts (Bergland et al. 2014), pleiotropy (Andr�es 2001;
Mitchell-Olds et al. 2007), meiotic drive (Ubeda and Haig
2004; Charlesworth B and Charlesworth D 2010), and negative
frequency-dependent selection (Charlesworth B and
Charlesworth D 2010) can also maintain diversity at under-
lying loci. Due to the increasing availability of population-level
genomic data, in which allele frequencies and genomic den-
sity of polymorphisms can be assessed in detail, there is an
expanding interest in studying balancing selection and
detecting its genomic footprints (Andr�es et al. 2009; Leffler
et al. 2013; DeGiorgio et al. 2014; Gao et al. 2015; Hunter-Zinck
and Clark 2015; Sheehan and Song 2016; Lonn et al. 2017;
Sweeney et al. 2017; Guirao-Rico et al. 2017; Siewert and

Voight 2017, 2020; Bitarello et al. 2018; Ye et al. 2018;
Cheng and DeGiorgio 2019). However, despite multiple
efforts to design statistics for identifying balanced loci
(DeGiorgio et al. 2014; Siewert and Voight 2017, 2020;
Bitarello et al. 2018; Cheng and DeGiorgio 2019), perform-
ances of existing methods still leave room for improvement.

Early methods applied to this problem evaluated depar-
tures from neutral expectations of genetic diversity at a par-
ticular genomic region. For example, the Hudson–Kreitman–
Aguad�e (HKA) test (Hudson et al. 1987) uses a chi-square
statistic to assess whether genomic regions have higher den-
sity of polymorphic sites when compared with a putative
neutral genomic background. In contrast, Tajima’s D
(Tajima 1989) measures the distortion of allele frequencies
from the neutral site frequency spectrum (SFS) under a model
with constant population size. However, these early
approaches were not tailored for balancing selection and
have limited power. Recently, novel and more powerful sum-
mary statistics (Siewert and Voight 2017, 2020; Bitarello et al.
2018) and model-based approaches (DeGiorgio et al. 2014;
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Cheng and DeGiorgio 2019) have been developed to spe-
cifically target regions under balancing selection. In gen-
eral, the summary statistics capture deviations of allele
frequencies from a putative equilibrium frequency of a
balanced polymorphism. In particular, the noncentral de-
viation statistic (Bitarello et al. 2018) adopts an assigned
value as this putative equilibrium frequency, whereas the
b and bð2Þ statistics of Siewert and Voight (2017, 2020) use
the frequency of the central polymorphic site instead. On
the other hand, the T statistics of DeGiorgio et al. (2014)
and Cheng and DeGiorgio (2019) compare the composite
likelihood of the data under an explicit coalescent model
of long-term balancing selection (Hudson et al. 1987;
Hudson and Kaplan, 1988) with the composite likelihood
under the genome-wide distribution of variation, which is
taken as neutral.

Nevertheless, all extant approaches are limited by their
sensitivity to the size of the region that the statistics are
computed on (hereafter referred to as the “window size”).
Because the footprints of long-term balancing selection are
typically narrow (Hudson and Kaplan 1988; Charlesworth
2006), small windows with fixed sizes comparable to that of
the theoretical footprint based on a genome-wide recombi-
nation rate estimate are commonly used in practice, espe-
cially for summary statistics. However, such small fixed
window sizes not only lead to increased noise in the estima-
tion of each statistic but also render the statistic incapable of
adapting to varying footprint sizes across the genome due to
factors such as the uneven recombination landscape
(Smukowski and Noor 2011). Though adopting a larger win-
dow may reduce noise, true signals will likely be overwhelmed

by the surrounding neutral regions, diminishing method
power as shown by Cheng and DeGiorgio (2019). Available
model-based approaches (DeGiorgio et al. 2014; Cheng and
DeGiorgio 2019) could have been made robust to window
sizes if they instead adopted the SFS expected under a neu-
trally evolving population of constant size as the null hypoth-
esis, because their model of balancing selection for the
alternative hypothesis converges to this constant-size neutral
model for large recombination rates. However, this neutral
model does not account for demographic factors that can
impact the genome-wide distribution of allele frequencies,
such as population size changes. To guard against such de-
mographic influences, the model-based T1 and T2 statistics
(DeGiorgio et al. 2014; Cheng and DeGiorgio 2019) employ
the genome-wide SFS instead, compromising the robustness
against large windows. Moreover, Cheng and DeGiorgio
(2019) showed that although the power of the T2 statistic
decays much slower than other approaches as window size
increases, the loss of power is still substantial.

In this article, we describe a set of composite likelihood
ratio test statistics that are based on a mixture model (fig. 1A
and B) that integrates both the genome-wide level of varia-
tion and the enrichment of sites with allele frequencies close
to the equilibrium allele frequency of long-term balancing
selection. Note that the latter has been successfully captured
by the summary statistics b (Siewert and Voight 2017, 2020)
and non-central deviation (NCD) (Bitarello et al. 2018). Our
framework of nested models allows for robust and flexible
detection of balancing selection that can augment the size of
genomic regions considered in each test to best fit the data.
Dependent on the types of data available, we propose a set of

FIG. 1. Schematic of the mixture model underlying the B statistics. (A) The model for the alternative hypothesis is a mixture of the distribution of
allele frequencies under balancing selection at proportion aAðdÞ, modeled by a binomial distribution, and the distribution under neutrality at
proportion 1� aAðdÞ, modeled by the genome-wide SFS. Here, aAðdÞ decays as a function of recombination distance d, and so sites close to (i.e.,
small d) the putative selected site will be modeled mostly by the distribution expected under balancing selection, whereas sites far from (i.e., large
d) the selected site will be modeled mostly by the distribution expected under neutrality. (B) Distributions of allele frequencies at neutral sites
(black dots) under the mixture model at varying distances d from the putative selected site (yellow star). (C) Distributions of allele frequencies from
the center 10 kb (0.01 cM) of the simulated sequences when balancing selection maintains the equilibrium frequency of x¼ 0.2, 0.3, 0.4, or 0.5.
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five likelihood ratio test statistics termed B2, B2;MAF , B1, B0, and
B0;MAF , which, respectively, accommodate data with substitu-
tions and derived (B2) or minor (B2;MAF) allele frequency poly-
morphisms, with substitutions and polymorphisms with
unknown allele frequency (B1), and with derived (B0) or minor
(B0;MAF) allele frequency polymorphisms only. We compre-
hensively evaluated their performances under an array of di-
verse simulated scenarios, including their powers for
balancing selection with varying ages, distinct strengths and
equilibrium frequencies, robustness against window sizes, and
robustness against confounding factors such as demographic
history, recombination rate variation, and mutation rate var-
iation. We also compared and discussed their performances
with other leading approaches—namely HKA, b, b�; bð2Þ,
NCD, T1, and T2. To gauge the performance of B statistics
on empirical data, we reexamined contemporary human
populations in the 1000 Genomes Project data set (1000
Genomes Project Consortium 2015) to uncover previously
hypothesized candidates. Furthermore, we performed an ex-
ploratory whole-genome scan with B2 on bonobo genomic
data (Prado-Martinez et al. 2013) to probe for long-term
balancing selection in the other close relative of humans.
We further extended our framework to consider multiallelic
balancing selection and examined the performances of extant
methods on cases of multilocus balancing selection. Lastly, we
developed the software BalLeRMix (balancing selection like-
lihood ratio mixture models) to implement these novel tests
for the convenience of the scientific community.

Model Description
A classical footprint of balancing selection is the increase in
the proportion of sites with moderate allele frequencies that
are close to the equilibrium frequency at the balanced locus
(Kaplan et al. 1988; Siewert and Voight 2017). Previous model-
ing attempts (Kaplan et al. 1988; Song and Steinrücken 2012;
DeGiorgio et al. 2014; Cheng and DeGiorgio 2019) primarily
focused on delineating the underlying population-genetic
processes, such as through coalescent or diffusion theory.
Though these models are able to capture the distortion in
the SFS resulting from balancing selection, their intricate
mathematical formulations bring challenges to further model
extensions to more complicated scenarios as well as the as-
sociated computations. As an alternative, it may be appealing
to model the effect of balancing selection through statistical
approximations of the expected features in the data.

Based on this idea, for a locus under balancing selection
that is maintaining a pair of allelic classes, we can approximate
the process of observing k0 copies of the selected allele bal-
anced at equilibrium frequency x 2 ð0; 1Þ in n samples, as
following a binomial sampling process with n trials and a
success rate x. For a biallelic neutral site that is linked to
this selected locus, we assume that the k derived alleles ob-
served from the n samples at this neutral site are all on the
same haplotype with the k0 selected alleles balanced at fre-
quency x. That is, we assume k ¼ k0 and consider the k
derived alleles on the neutral site as surrogates for the bal-
anced alleles of the allelic class with which they are fixed.
Therefore, when these two sites are in complete linkage, k

can also be considered as binomially distributed with n trials
and a success rate x. Meanwhile, for a neutral site not linked
to this selected locus, we assume that k follows the distribu-
tion expected by the genome-wide SFS. Taken together, the
probability PnðkÞ of observing k derived alleles out of n sam-
pled alleles at a neutral site can be written as

PnðkÞ ¼ P½Completely linked to the selected locus�
�P½k ¼ k0 out of n binomially sampled with rate x�
þP½Not completely linked to the selected locus �
�P½k out of n observed in the genome �:

Alternatively, this integration of two conditional probabil-
ities can also be viewed as a mixture model, in which the two
mixing components represent probabilities under balancing
selection and neutrality (based on the genome-wide empirical
distribution), with their respective mixing proportions a and
1� a representing the probabilities of being completely
linked to the selected locus or not, respectively. To approxi-
mate a, we chose to consider the exponential decay function,
which has been adopted as a proxy for linkage disequilibrium
(Nielsen et al. 2005; Moorjani et al. 2011; Loh et al. 2013). To
accommodate the varying rates of linkage decay, we intro-
duce a free parameter A> 0 for the statistic to optimize over,
which essentially determines the size of the footprint of bal-
ancing selection, with smaller values of A having wider foot-
prints than larger values. Hence, for a neutral site d
recombination units away from the selected locus, the prob-
ability that is linked to the selected locus can be approxi-
mated by

P½Completely linked to the selected locus� ¼ aAðdÞ¼ e�Ad:

Therefore, for a neutral site d recombination units away from
the selected locus, we approximate the probability mass func-
tion for sampling k derived alleles out of n sampled alleles as

fn;x;Aðk; dÞ ¼ aAðdÞ � hn;xðkÞ þ ½1� aAðdÞ� � gnðkÞ;

where hn;xðkÞ denotes the normalized binomial probability of
sampling k successes out of n trials with success rate x, and
gnðkÞ is the normalized genome-wide SFS denoting the pro-
portion of sites with k derived alleles observed out of n sam-
pled alleles. This formulation also applies when k represents
the number of minor allele copies, for situations in which the
ancestral allele cannot be polarized with an outgroup. See
subsequent subsection for precise definitions of normalized
hn;xðkÞ and gnðkÞ.

Note that although we constructed this mixture model
framework by combining conditional probabilities of the de-
rived alleles at a neutral site to be on the same haplotype with
one of the two balanced allele classes, the interpretation of
the mixing weight aAðdÞ is in effect not constrained to linkage
and recombination. Other factors that can affect the local SFS,
such as the accumulation of low-frequency mutations, can be
accounted for by incorporating the genome-wide SFS as well.
Although these factors can also vary by recombination dis-
tance, we formulate aAðdÞ based on the properties of linkage
decay alone to simplify our model.
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In the following subsections, we describe a set of compos-
ite likelihood ratio statistics (B2, B2;MAF, B1, B0, and B0;MAF)
constructed based on this mixture model approach for identi-
fying loci undergoing biallelic balancing selection. We also ex-
tended this framework to consider multiallelic balancing
selection and describe these models in supplementary note 1,
Supplementary Material online. Note that all the composite
likelihood ratio statistics considered here assume that balancing
selection is acting on a single locus. This set of composite like-
lihood ratio statistics has been implemented in the open-source
software package BalLeRMix, which is available at https://github.
com/bioXiaoheng/BalLeRMix/tree/master/software.

Probability Distributions Given Derived Allele
Polymorphisms and Substitutions
For n sampled alleles at an informative site (i.e., polymor-
phism or substitution), when the ancestral state to each
site can be confidently assigned, denote the number of de-
rived alleles as k, k ¼ 1; 2; . . . ; n. Let nnðkÞ be the total num-
ber of informative sites across the whole genome with k
derived alleles observed out of n sampled alleles. The proba-
bility of observing such a site is therefore

gð2Þn ðkÞ ¼
nnðkÞPn

j¼1

nnðjÞ
:

When balancing selection maintains an equilibrium fre-
quency of x on the site under selection, the outcomes of
observing derived alleles on this site (out of n lineages) can
be approximated by a binomial distribution of n trials with a
success probability of x. Following this binomial model, the
probability of observing the selected site with k observed
derived alleles is

hð2Þn;xðkÞ ¼
Binðk; n; xÞPn

j¼1

Binðj; n; xÞ
:

Note the values of gnðkÞ and hn;xðkÞ are conditional on the
number of sampled alleles n, and therefore our model
requires that the sample size is made explicit at each infor-
mative site. Permitting the sample size to differ across sites is
important, as missing genotype calls are often common in
empirical studies, with sample sizes naturally varying across
the genome.

For an informative site d recombination units away from
the presumed site under selection, it can either be linked to
the derived (with equilibrium frequency x) or ancestral (with
equilibrium frequency 1� x) haplotype under balancing se-
lection, resulting in a bimodal distribution (fig. 1C). Therefore,
the probability of observing k derived alleles out of n sampled
alleles is

f
ð2Þ
n;x;Aðk; dÞ ¼ aAðdÞ

1

2
hð2Þn;xðkÞ þ

1

2
h
ð2Þ
n;1�xðkÞ

� �
þ ½1� aAðdÞ�gð2Þn ðkÞ;

where aAðdÞ ¼ expð�AdÞ and where A is a model pa-
rameter that determines the size of the genomic foot-
print of balancing selection. When allele frequency
information is unavailable at polymorphic sites, the
probability of observing a polymorphic site (k 6¼ n) or
substitution (k¼ n) would be

f
ð1Þ
n;x;Aðk; dÞ ¼ f

ð2Þ
n;x;Aðn; dÞ1fk¼ng þ ½1� f

ð2Þ
n;x;Aðn; dÞ�1fk6¼ng;

where 1fEg is a dummy variable that takes the value 1 if the
expression E is true, and 0 otherwise.

Similarly, when substitutions are not considered or are
missing in the data (i.e., only observe derived allele counts
k ¼ 1; 2; . . . ; n� 1), the two mixing components can be
normalized as

gð0Þn ðkÞ ¼
nnðkÞPn�1

j¼1

nnðjÞ
;

and

hð0Þn;xðkÞ ¼
Binðk; n; xÞPn�1

j¼1

Binðj; n; xÞ
:

The probability of observing a polymorphic site with k
derived alleles out of n sampled alleles is then

f
ð0Þ
n;x;Aðk; dÞ ¼ aAðdÞ

1

2
hð0Þn;xðkÞ þ

1

2
h
ð0Þ
n;1�xðkÞ

� �
þ ½1� aAðdÞ�gð0Þn ðkÞ:

Probability Distributions Given Minor Allele
Polymorphisms and Substitutions
When alleles cannot be confidently polarized, minor allele
frequencies are often used instead. For informative sites
with n sampled alleles, denote the minor allele count as k,
k ¼ 0; 1; . . . ; bn=2c, and the total number of such sites in
the genome as gnðkÞ. Substitutions are assigned to gnð0Þ, as
the minor allele count is zero. The probability of observing a
site with k minor alleles out of n sampled alleles in the ge-
nome is

gð2;MAFÞ
n ðkÞ ¼ gnðkÞPbn=2c

j¼0

gnðjÞ
:

Assume the equilibrium minor allele frequency at the locus
undergoing long-term balancing selection is x 2 ð0; 0:5�. The
probability of observing k minor alleles out of n sampled
alleles is then
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hð2;MAFÞ
n;x kð Þ ¼

Binðk; n; xÞ þ Binðn� k; n; xÞ1fk6¼n=2gPn
j¼1

Binðj; n; xÞ
:

Hence, for an informative site d recombination units away
from the presumed site under selection, the probability of
observing k minor alleles out of n sampled alleles is

f
ð2;MAFÞ
n;x;A ðk; dÞ ¼ aAðdÞhð2;MAFÞ

n;x ðkÞ
þ ½1� aAðdÞ� gð2;MAFÞ

n ðkÞ:

Similarly, when substitutions are not considered or are
missing in the data (i.e., only observed minor alleles counts
k ¼ 1; 2; . . . ; bn=2c), the two mixing components can be
normalized as

gð0;MAFÞ
n ðkÞ ¼ gnðkÞPbn=2c

j¼1

gnðjÞ

and

hð0;MAFÞ
n;x kð Þ ¼

Binðk; n; xÞ þ Binðn� k; n; xÞ1fk6¼n=2gPn�1

j¼1

Binðj; n; xÞ
:

The probability of observing a polymorphic site with k
minor alleles out of n sampled alleles is then

f
ð0;MAFÞ
n;x;A ðk; dÞ ¼ aAðdÞhð0;MAFÞ

n;x ðkÞ
þ ½1� aAðdÞ� gð0;MAFÞ

n ðkÞ:

Composite Likelihood Ratio Tests Based on the
Mixture Models
In the preceding subsection, we have provided the marginal
probability distributions for the number of observed copies of
either a derived or a minor allele at an informative site that is
a certain distance from a locus undergoing biallelic balancing
selection. Because we cannot obtain the full likelihood that
accounts for the joint distribution of allele frequencies across
all informative sites that are in high linkage disequilibrium, we
instead make the simplifying assumption that neighboring
informative sites are independent. This assumption, albeit
invalid, allows us to gain insight from the composite likeli-
hood, which is computed by multiplying the marginal prob-
ability distributions for all informative sites. By maximizing the
resulting composite likelihood from the full model across our
parameter space, we can also obtain estimates of the optimal
parameter values (i.e., bx and bA), which confer information
about the features of the footprints consistent with balancing
selection.

Based on the probability distributions described for the five
models, for each model X 2f“2”, “2,MAF”, “1”, “0”, “0,MAF”g,
the composite likelihood of a genomic region with L infor-
mative sites under the null hypothesis of neutrality is

LðXÞ0 ðn; kÞ ¼
YL

i¼1

gðXÞni
ðkiÞ;

where n ¼ ½n1; n2; . . . ; nL� and k ¼ ½k1; k2; . . . ; kL� are the
vectors of sample sizes and derived or minor allele counts,
respectively, at the L informative sites in the genomic region.
Recall that the probabilities of sampling a certain number of
derived or minor alleles under our model depend on the
sample sizes at informative sites, and because sample sizes
often vary across the genome due to missing data in empirical
studies, we make explicit the sample sizes across all informa-
tive sites in the vector n. Similarly, the composite likelihood
under the alternative hypothesis of model X would be

LðXÞa ðx;A; n; k; dÞ ¼
YL

i¼1

f
ðXÞ
ni;x;A
ðki; diÞ;

where d ¼ ½d1; d2; . . . ; dL� is the vector of recombination
distances between the test site and each of the L informative
sites. This likelihood is maximized at

ðbx; bAÞ ¼ arg max

ðx;AÞ
LðXÞa ðx;A; n; k; dÞ:

Hence, under model X 2f“2”, “2,MAF”, “1”, “0”, “0,MAF”g,
the log composite likelihood ratio test statistic for the test site
is

BX ¼ 2½lnLðXÞa ðbx; bA; n; k; dÞ � lnLðXÞ0 ðn; kÞ�:

Note that although log-likelihood ratio test statistics can
be considered as following v2 distributions (of which the de-
gree of freedom is the number of free parameters, e.g., two in
the full models described above), B statistics are a set of
composite log-likelihood ratio (CLR) statistics, which do not
follow regular v2 distributions (Pace et al. 2011; Varin et al.
2011). In order for a CLR statistic to approximately follow an
asymptotic v2 distribution, it needs to undergo adjustment
(Pace et al. 2011) that also yields the effective degree of free-
dom of the asymptotic distribution the adjusted CLR statistic
conforms to. This adjustment process is based on the set of
observations used to compute the CLR, which is different for
every test site. Because for B statistics, the size of the genomic
region considered by each test varies across the genome and
because the informative sites included in the region are highly
correlated, the effective degree of freedom also varies across
test sites. Therefore, we cannot infer significance from the
values of B statistic alone by referencing the v2 distribution.

Moreover, and probably even more importantly, because
the model under the null hypothesis only accounts for mean
demographic effects based on the genome-wide SFS and not
its higher moments (e.g., variance), the resulting P-value
obtained from a v2 distribution after the statistical adjust-
ment would still deviate from what is commonly expected
when the test rejects neutrality (i.e., neutral evolution under
an explicit demographic model). We therefore would recom-
mend mass simulation under an appropriate demographic
model to generate the “null” distribution of B statistics in
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order to accurately infer the significance of each test, with the
caveat that such an endeavor would require extensive com-
putational resources due to the millions of simulations
needed, the lengths of the simulated segments, and the op-
timization of the B statistics on each of these simulated seg-
ments. Lastly, in order to infer genome-wide significance, P-
values need to be corrected for multiple testing, for example,
through Bonferroni correction, Simes method (Simes 1986),
or Benjamini–Hochberg procedures (Benjamini and
Hochberg 1995).

Interpretation of Estimated a and x Parameters
The likelihood for the alternative model is maximized over
the parameters A and x, where, in our formulation for biallelic
balancing selection in the previous subsections, x represents
the presumed equilibrium minor allele frequency, and A
decides the rate of exponential decay for the probability of
two sites being linked, which essentially describes the influ-
ence of balancing selection on neutral sites of varying distance
away from the test site. After optimizing over this parameter
space, the parameter values under the optimal likelihood, bA
and bx, provide information on the nature of detected geno-
mic footprints. The value of bx should reflect the enriched
minor allele frequency across the region. Note that not all
mechanisms for balancing selection will maintain the bal-
anced alleles at fixed frequencies (Asmussen and Basnayake
1990; Bergland et al. 2014), so bx rather represents the value
around which our model presumes the allele frequencies
across the region are enriched. Therefore, we advise that cau-
tion be used when interpretingbx as the equilibrium frequen-
cies without further information about the potential
mechanisms that may have acted to maintain the
polymorphisms.

Meanwhile, bA describes the rate of the exponential decay
of the probability aAðdÞ ¼ expð�AdÞ of the two loci being
linked and should intuitively be informative of the impact of
balancing selection on nearby neutral sites. The smaller the bA,
the wider the footprint would be, and likely the younger the
balanced polymorphism. However, multilocus balancing se-
lection can also give rise to wide footprints (Barton and
Navarro 2002; Navarro and Barton 2002; Tennessen 2018),
which could induce small bA values. Furthermore, a large A
reduces the number of informative sites that yield meaningful
likelihood ratios and can thus also occur when data in the
examined area fit the alternative model poorly. Therefore, we
advise only comparing the bA values among regions with rea-
sonably high composite likelihood ratios, and that caution is
used when making inferences from these values as they do
not map to an explicit evolutionary model.

Results

Performances on Simulated Data
We simulated 50-kilobase (kb)-long sequences using SLiM3.2
(Haller and Messer 2019), under the three-species demo-
graphic model (supplementary fig. S1, Supplementary
Material online) inspired by the demographic history of great
apes (see Materials and Methods), and extensively evaluated

the performances of all five B statistic variants. We also com-
pared the B statistics to the summary statistics b, b�, HKA,
NCD2, and bð2Þ, which are, respectively, analogs to B0, B0;MAF ,
B1, B2;MAF , and B2, and to the likelihood statistics T1 and T2,
which are, respectively, analogues to B1 and B2.

Robust High Power under Varying Window Sizes
We first examined the robustness of the B statistics to overly
large window sizes, under a scenario of strong heterozygote
advantage (selective coefficient s¼ 0.01 with dominance co-
efficient h¼ 20) acting on a mutation that arose 7:5� 104

generations prior to sampling, with all sites flanking the se-
lected locus evolving neutrally. Because BetaScan (Siewert
and Voight 2017, 2020) (which implements the standardized
and nonstandardized b, b�, and bð2Þ statistics, among which
we only consider the standardized) operates on windows of
fixed physical length, we adopted window sizes of 1, 1.5, 2.5, 3,
5, 10, 15, 20, and 25 kb for all summary statistics and B sta-
tistics. The T statistics were applied on windows with match-
ing expected numbers of informative sites. Supplementary
note 2, Supplementary Material online, details the calculation
for matching the number of informative sites to physical
length of a genomic region.

To reduce potential stochastic fluctuations in the number
of true positives when the false positive rate is controlled at a
low level, we examined the area under a partial curve with no
greater than a 5% false positive rate (hereafter referred to as
“partial AUC”). As shown in figure 2A (see split views for
separate groups of statistics in supplementary fig. S2,
Supplementary Material online), under optimal window sizes
for most other statistics, all variants of B statistics display
substantial partial AUCs comparable to that of the respective
T statistic variant, which has outperformed other equivalent
summary statistics in most previous simulation studies
(DeGiorgio et al. 2014; Siewert and Voight 2017, 2020;
Bitarello et al. 2018; Cheng and DeGiorgio 2019). Most re-
markably, as the window size increases, while all other statis-
tics exhibit drastic decays in power, the powers of all variants
of the B statistic only show minor decreases. In fact, when
comparing the powers under 25-kb windows against those
under optimal window sizes for each statistic, the powers of
all statistics drop more than twice as much as B1 and B2

(fig. 2B). In comparison with each method’s optimal perfor-
mance, most statistics (except all B statistics and T2, the
model-based analog of B2) lose more than 80% of their opti-
mal power under the largest window size examined (fig. 2C).
Although T2 still retains considerably higher partial AUC com-
pared with all other extant methods, it still decreases to a
value substantially lower than that of B2. Such robustness of B
statistics to large windows is reasonable and expected, be-
cause the probability distribution of allele frequencies at sites
far enough from the test site will match the genome-wide SFS,
thereby contributing little to the overall likelihood ratio.

Among all statistics evaluated, we found that those con-
sidering polymorphism data only (i.e., B0 variants and b var-
iants) demonstrated relatively poor robustness to increases in
window size. This result indicates that the detectable foot-
print of balancing selection in polymorphism data by itself
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may decay faster than other types of information, and that
incorporating substitution data may help improve robustness
to large windows.

Considering that the powers of all B statistics stabilize at a
fixed level as the window size increases (fig. 2), we permit the
B statistics to employ all informative sites on a chromosome.
However, to reduce computational load, we only consider
sites with mixing proportion aAðdÞ � 10�8 for each value
of A considered during optimization, which does not create
discernible differences in performance from when all data are
considered (supplementary fig. S3, Supplementary Material
online). However, to ensure that other methods still display
considerable power for their comparisons, we applied the
summary statistics with their optimal window sizes of 1 kb,

and T statistics with numbers of informative sites expected in
a 1-kb window (see Materials and Methods), unless otherwise
stated.

High Power for Detecting Balancing Selection of
Varying Age and Selective Strength
Next, we explored the powers of B statistics when the selec-
tive strength s, equilibrium frequency (controlled by the dom-
inance parameter h), and the age of balancing selection vary.
Specifically, we examined scenarios where the selective coef-
ficients were moderate (s¼ 0.01, fig. 3A and C–E) or weak
(s ¼ 10�3, fig. 3B), and when the equilibrium frequency of the
minor allele is�0.5 (h¼ 20, fig. 3A and B), 0.4 (h¼ 3, fig. 3C),
0.3 (h¼ 1.75, fig. 3D), or 0.2 (h¼ 1.33, fig. 3E). Across all sce-
narios considered, T2 and b� show the highest power for old
balancing selection. The best-performing B variants, B2 and
B2;MAF, display high power as well, and are often comparable
to that of the bð2Þ statistic. The power of B1 is also similar to
HKA, which is its summary statistic analog. Furthermore, we
noticed that B statistics exhibit superior power for younger
balanced alleles, particularly when balancing selection is more
recent than 2� 105 generations, and when the equilibrium
frequency does not equal to 0.5 (supplementary fig. S4,
Supplementary Material online). For older selected polymor-
phisms, although several statistics outperform B statistics, it is
important to point out that all previous methods were pro-
vided optimal window sizes, whereas B statistics were set to
use all sites with considerable aAðdÞ, under which they show
lower power than when window sizes are optimized (fig. 2A
and supplementary fig. S2C, Supplementary Material online).
This difference in performance between previous methods
applied with their optimal window sizes and B statistics can
also explain the seemingly inferior performance of the two B0

variants when compared with the analogous b statistics, as
the B0 variants lose more power than other B variants when
computed on extended windows. When applied with the
same window size, however, B0 outperforms b by a large
margin (fig. 2A and supplementary fig. S2C, Supplementary
Material online). Nevertheless, these results give us confi-
dence that B statistics have generally high power to detect
young and old balancing selection, even when adopting large
windows.

Robustness to Recombination Rate Variation and
Elevated Mutation Rates
Despite their flexibility in window size and high power for
detecting balancing selection, model-based methods, such as
the T and B statistics, incorporate recombination distances in
their inference framework, and can therefore be especially
susceptible to potential inaccuracies in input recombination
maps. Additionally, because many approaches for detecting
balancing selection aim to identify genomic regions with in-
creased genetic diversity, the elevation of mutation rates is
also a common and potent confounding factor for detecting
balancing selection (Charlesworth 2006; Cheng and
DeGiorgio 2019; Siewert and Voight 2020).

To test their robustness to inaccurate recombination rates,
we applied B and T statistics on simulated sequences with

FIG. 2. (A) Partial AUC conditioned on false positive rates (FPRs)	5%
(defined such that the maximal value is 1) as a function of window
size measured in kilobases (kb) for B statistics (varying shades of blue),
b statistics (dotted line with varying shades of blue), T2 (orange), T1

(green), HKA (purple), and NCD2 (0.5) (pink), under a scenario in
which a mutation undergoing ancient balancing selection (selective
coefficient s¼ 0.01 and dominance coefficient h¼ 20) arose 15 Ma
(assuming a generation time of 20 years). Statistics that consider the
same input type share the same point shape. The dark red-dashed line
marks the level of partial AUC expected at the y¼ x line, or the
baseline of randomly choosing between balancing selection and neu-
trality. (B) The amount of partial AUC lost, and (C) the proportion of
the AUC loss as compared with the optimal value for each statistic
when the window size increased from the optimum to 25 kb (e.g.,
largest evaluated).
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uneven recombination maps (102-fold fluctuations in recom-
bination rates; see Materials and Methods). When the
sequences evolve neutrally, neither approach is misled (sup-
plementary figs. S5 and S6, Supplementary Material online).
When the fluctuation in recombination rate is even more
drastic (e.g., 104-fold instead of 102), all methods tend to re-
port fewer false signals than they would under a uniform map
(supplementary figs. S7 and S8, Supplementary Material on-
line). This result suggests that the misleading effects of inac-
curate recombination maps are limited.

To examine their robustness against unexpected mutation
rate variation, we next simulated a 10-kb mutational hotspot
at the center of the 50-kb sequence with a mutation rate five
times higher than original and surrounding rate l and applied
each statistic with parameters derived from the original neu-
tral replicates with constant mutation rate l across the entire
sequence. All methods exhibit considerable robustness
against this regional increase of mutation rate (supplemen-
tary figs. S9 and S10, Supplementary Material online).

We further considered an elevated mutation rate of 5l
across the entire 50-kb sequence and reexamined the robust-
ness of each method. As expected, most statistics display
substantially inflated proportions of false signals (i.e., reported
signals of balancing selection from sequences neutrally evolv-
ing with 5l mutation rate; supplementary figs. S11A, S11D,
and S12, Supplementary Material online). Among them, the
B2 statistic reports the least proportion of false signals,

followed by the B1 statistic. Meanwhile, at low false positive
rates, B2 and B2;MAF statistics report higher proportions of
false signals than T2, their coalescence model-based analog,
whereas B1 outperformed T1. Additionally, all statistics that
consider only polymorphism data, namely the B0, B0;MAF, b,
and b� statistics, are substantially misled. The bð2Þ statistic,
albeit taking substitutions into account, also displays surpris-
ingly high proportions of false signals.

We next explored how the regional mutation rate eleva-
tion in the genome could affect the detection of balancing
selection. To this end, we mixed neutral sequences evolving
with 5l mutation rates with those with the original l muta-
tion rate at varying proportions (5%, 10%, 25%, or 50%) and
used these mixed pools of neutral sequences as the “whole
genome” to compute their SFSs, interspecies coalescent
times, and polymorphism-substitution ratios to inform T, B,
b, and HKA statistics of the neutral variation levels. We then
scanned these sequences with summary statistics adopting 1-
kb windows, T statistics adopting 12-site windows, and B
statistics using the whole sequence. We found that as the
proportion of fast-mutating neutral sequences increases,
most methods show substantially compromised powers
(supplementary fig. S13, Supplementary Material online).
Among them, however, T2 and NCD consistently exhibit con-
siderable power throughout all scenarios examined, followed
by T1, B2;MAF, B1, and B2, which still retain some power despite
substantial drops. Meanwhile, the methods that do not

FIG. 3. Ability to detect balancing selection for different heterozygote advantage scenarios. (A) Demographic model relating the ingroup (P) and
outgroup (O2) populations, with one sample from O2 used as the outgroup sequence. (B–F) Powers at a 1% false positive rate (FPR) for each
statistic as a function of age of the allele undergoing balancing selection for different selection (s) and dominance (h) coefficients. The scenarios
considered are (B) s¼ 0.01 with h¼ 20, (C) s¼ 0.001 with h¼ 20, (D) s¼ 0.01 with h¼ 3, (E) s¼ 0.01 with h¼ 1.75, and (F) s¼ 0.01 with h¼ 1.33.
Note that the equilibrium frequencies for panels (D), (E), and (F) are 0.4, 0.3, and 0.2, respectively.
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effectively utilize substitutions, that is, B0, B0;MAF, and b sta-
tistics, almost lose all the power. This is consistent with pre-
vious results, suggesting that the absence of substitution
renders methods for detecting balancing selection susceptible
to the confounding effects of unexpected mutation rates.

With knowledge of their robustness against unexpected
mutation rate elevation, we further examined the powers of
each method to detect balancing selection within sequences
evolving with high mutation rates when they are correctly
informed. That is, T and b statistics are provided the correct
population-scaled mutation rate and interspecies coalescent
time, and all except for B statistics adopt their optimal win-
dow sizes of 1 kb (60 informative sites for T statistics). We
simulated sequences undergoing balancing selection that ini-
tiated 250,000 generations ago with a neutral mutation rate
of 5l across the simulated segment and applied summary
and T statistics on the sequences mutating at a rate of 5l,
with their optimal window sizes under the correct mutation
rate. Supplementary figure S14, Supplementary Material on-
line, demonstrates that the powers of all methods are sub-
stantially higher than for the identical scenario with
sequences evolving under the original neutral mutation rate
l (compared with fig. 3C and supplementary fig. S4C,
Supplementary Material online). This improved detection
ability likely results from the roughly 5-fold increase in the
number of informative sites included within each window.
The T statistics display lower areas under their receiver oper-
ating characteristic curves than their equivalent B statistics
(supplementary fig. S14A, Supplementary Material online),
and the B0;MAF and B2;MAF statistics perform substantially
worse than their respective derived allele frequency counter-
parts B0 and B2. Moreover, as with other simulated scenarios,
we find that the power of B0;MAF is lower than others (sup-
plementary fig. S14B, Supplementary Material online).
However, when the window size for all summary statistics
is expanded from the optimal 1 kb to a suboptimal 5 kb, their
powers substantially decrease to levels similar to B0;MAF.

Robust Power under Realistic Demographic Models
The influence of demographic history was the major motiva-
tion for T statistics to adopt the genome-wide SFS instead of
the coalescence-based constant-size neutral model as the null
hypothesis, despite that the latter being nested under the
alternative model for balancing selection used by the T sta-
tistics. This trade-off has endowed T statistics with consider-
able robustness to population size changes (DeGiorgio et al.
2014; Cheng and DeGiorgio 2019) but has also potentially
compromised their robustness to large windows, as shown
in “Robust High Power under Varying Window Sizes” subsec-
tion of the Results. For B statistics, however, because their null
models both reflect the genome-wide SFS and are nested
under the alternative models, they should exhibit consider-
able robustness to both oversized windows and demographic
changes.

To evaluate their performances under recent population
expansions and bottlenecks, we considered the demographic
histories of contemporary European humans (Terhorst et al.
2017, CEU; supplementary fig. S15A, Supplementary Material

online) and bonobos (Prado-Martinez et al. 2013, supplemen-
tary fig. S16A, Supplementary Material online; see details in
Materials and Methods), respectively. The former have been
extensively characterized (Lohmueller et al. 2009; Gravel et al.
2011; Terhorst et al. 2017) and therefore can reliably reflect
the performance of each method under realistic scenarios. On
the other hand, because we intend to apply the B statistics on
bonobo genomic data, we are also interested in evaluating
their performance under an inferred bonobo demographic
model.

As previously described, we applied the B statistics with
unlimited window sizes, whereas the other statistics were
provided with smaller window sizes matching the theoretical
size for a footprint of long-term balancing selection (see sup-
plementary note 2, Supplementary Material online). Despite
being provided disadvantageous window sizes, B statistics still
demonstrate comparable to, and often higher power than,
current summary statistic approaches, both under the hu-
man (supplementary fig. S15, Supplementary Material online)
and the bonobo (supplementary fig. S16, Supplementary
Material online) demographic models. Although T2 has
higher power than the B statistics, we note that the T statistics
were operating with optimal window sizes, whereas the win-
dow sizes for B statistics are identified across a parameter
range. When B1 and B2 are applied with identical window
sizes as T1 and T2 (supplementary figs. S17 and S18,
Supplementary Material online), the margins between their
performances are no longer substantial. Additionally, we no-
ticed that most statistics tend to have higher power for
sequences evolving under the bonobo demographic history
than under that of the Europeans (notice that the y-axes in
supplementary figs. S15 and S16, Supplementary Material on-
line, have different scales).

Robust Power under Varying Mutation Rates across
Target and Outgroup Species
In addition to temporally varying population sizes, differing
mutation rates between closely related species may also affect
the performance of the coalescence-based T statistics, as they
assume a uniform neutral mutation rate along the genealogy
relating the lineages from the ingroup and outgroup species.
Among great apes, for example, accumulating evidence sug-
gests that humans have substantially lower mutation rates
than other great apes (as reviewed by Scally and Durbin 2012).

To examine the behavior of each method when mutation
rates of the target and outgroup species differ, we simulated a
two-species demographic history, with the target and out-
group species, respectively, evolving at neutral rates l ¼ 1:2
�10�8 and l ¼ 2:5� 10�8 mutations per site per genera-
tion (see Materials and Methods for details). We introduced
an adaptive mutation evolving under balancing selection at
varying time points prior to sampling along this demographic
history and examined the power of each statistic to detect
balancing selection across a diverse array of selection param-
eters (supplementary fig. S19, Supplementary Material
online).

Across all six combinations of selection parameters con-
sidered, we observe similar trends for each statistic when
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compared with simulations under the constant population
size (fig. 3) and CEU (supplementary fig. S15, Supplementary
Material online) demographic histories evolving with a con-
stant neutral mutation rate. The T2 statistic performs the best
when s¼ 0.01 with h¼ 20 (supplementary fig. S19A,
Supplementary Material online), under which the equilibrium
frequency is closest to 0.5 and when heterozygotes are most
advantageous. As the selective advantage hs and equilibrium
frequency decrease, the margin between the powers of T2 and
B2 shrinks and even reverses for all scenarios with small dom-
inance h (supplementary fig. S19C–F, Supplementary Material
online). Furthermore, methods based solely on polymor-
phism and substitution calls (i.e., T1, B1, and HKA) show
improvements in power as the equilibrium frequency
decreases, and some even outperform most of the other sta-
tistics (supplementary fig. S19D and E, Supplementary
Material online). Statistics that ignore substitutions (i.e., B0,
B0;MAF, b, and b�), on the other hand, perform especially well
for recent balancing selection with high heterozygote advan-
tage (large hs; supplementary fig. S19A and B, Supplementary
Material online). As the balanced alleles reach their equilib-
rium frequencies sooner when the selective advantage of
heterozygotes (i.e., hs) is high, sequences with mutations of
higher hs would have older footprints than those with muta-
tions introduced at the same time but with lower hs. In this
respect, it is understandable that B0 and b variants outper-
form others only for selection with large hs that are intro-
duced within 150,000 generations prior to sampling.

Based on this two-species model with diverging mutation
rates, we further integrated changes in population size of the
target species in accordance with the demographic history of
the CEU (Terhorst et al. 2017, supplementary fig. S20,
Supplementary Material online). From the four sets of selec-
tion parameters tested, we found that most methods exhibit
lower power compared with those under constant popula-
tion sizes (supplementary fig. S19, Supplementary Material
online). This result is consistent with the lower powers under
simulations with a constant mutation rate when the target
population size evolves under the CEU demographic history
(supplementary fig. S15, Supplementary Material online)
compared with the setting in which the target evolves with
constant size (fig. 3). Despite their lower powers in general, we
still observe similar relative performances across statistics,
with T1 and B1 exhibiting higher powers when the heterozy-
gote advantage hs is small. Moreover, we found that B2;MAF

shows superior power to B2.

Reexamining Long-Term Balancing Selection in
Human Populations
We applied B2 on contemporary European (Europeans in
Utah; CEU, supplementary fig. S22, Supplementary Material
online) and west African (Yoruban; YRI, supplementary fig.
S21, Supplementary Material online) human populations
from the 1000 Genomes Project data set (1000 Genomes
Project Consortium 2015) (see Materials and Methods) to
reexamine the footprints of long-term balancing selection,
which previous studies (DeGiorgio et al. 2014; Siewert and
Voight 2017) have provided cases for reference. The most

outstanding candidates in both scans localize in the HLA-D
region (human leukocyte antigen, also known as major his-
tocompatibility [MHC] class II region) (supplementary figs.
S23 and S24), agreeing with previous findings (Sanchez-Mazas
2007; Leffler et al. 2013; DeGiorgio et al. 2014; Teixeira et al.
2015; Siewert and Voight 2017; Meyer et al. 2018; Bitarello
et al. 2018). Within the HLA-D region, the B2 scores computed
for both populations show extraordinary peaks around HLA-
DQ and HLA-DP gene clusters, although CEU (supplementary
fig. S23, Supplementary Material online) scores remarkably
higher on HLA-DP genes than YRI (supplementary fig. S24,
Supplementary Material online). Echoing the critical roles of
HLA-D genes in adaptive immunity, the gene ERAP2 exhibits
extraordinary scores in both populations (supplementary figs.
S25 and S26, Supplementary Material online). This gene has
been reported in past studies of balancing selection in
humans (Andr�es et al. 2009, 2010; Bitarello et al. 2018), and
Andr�es et al. (2010) demonstrated that its splicing variants
can alter the level of MHC-I presentation on B cells.
Additionally, we also observed high B2 scores on CADM2
(supplementary figs. S27 and S28, Supplementary Material
online) and WFS1 (supplementary figs. S29 and S30,
Supplementary Material online), on which Siewert and
Voight (2017) characterized potential nonsynonymous muta-
tions segregating in both populations.

In addition to these previously characterized candidates,
both scans display extreme B2 scores on another two top-
ranking regions in the T2 scans by DeGiorgio et al. (2014): the
STPG2 gene (formerly named C4orf37; supplementary figs.
S31 and S32, Supplementary Material online) and the
CCDC169–SOHLH2 (formerly named C13orf38-SOHLH2; sup-
plementary figs. S33 and S34, Supplementary Material online)
region, with STPG2 particularly more outstanding in the scan
of YRI than in CEU. Intriguingly, both these genes are associ-
ated with gametes. The STPG2 gene encodes sperm-tail PG-
rich repeat-containing protein 2, which, despite the paucity of
literature that describes its function, is found in sperm (Uhl�en
et al. 2015). The high-scoring region on this gene harbors a
number of tissue-specific expression quantitative trait loci
(eQTLs) for its expression, especially in brain and reproductive
tissues (GTEx Consortium 2017). The SOHLH2 gene, on the
other hand, encodes the transcription factor
“spermatogenesis- and oogenesis-specific basic helix–loop–
helix-containing protein 2,” which plays important roles in
both spermatogenesis and oogenesis (Toyoda et al. 2009;
Suzuki et al. 2012). We observed drastically elevated B2 scores
(supplementary fig. S33, Supplementary Material online)
across an extended region upstream of SOHLH2 that covers
the naturally occurring CCDC169–SOHLH2 read-through
transcript (as introduced in RefSeq database; O’Leary et al.
2016). Similar to STPG2, this region also features numerous
eQTLs for the expression of SOHLH2, especially in endocrine
glands, brain, and reproductive tissues (GTEx Consortium
2017).

Other regions with outstanding peaks shared by both
scans include the genes CPE (supplementary figs. S35 and
S36, Supplementary Material online) and MYOM2 (supple-
mentary figs. S37 and S38). CPE encodes carboxypeptidase E, a
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key enzyme for synthesizing peptide hormones such as insulin
and oxytocin, and its mutant mice strain (Cpefat) exhibits
endocrinic disorders such as obesity and infertility (Naggert
et al. 1995). MYOM2 encodes endosacromeric cytoskeleton
M-protein 2, which serves as a structural component of mus-
cle tissues (van der Ven et al. 1999). Both genes harbor eQTLs
reported by GTEx Consortium (2017) around the high-
scoring regions.

Probing for Footprints of Balancing Selection in
Bonobo Genomes
We further applied the B2 statistic on the variant calls of 13
bonobos (Prado-Martinez et al. 2013) lifted over to human
genome assembly GRCh38/hg38. Only biallelic single nucleo-
tide polymorphisms (SNPs) were considered, and substitu-
tions were called using bonobo panPan2 reference sequence
(Prüfer et al. 2012), with the human sequence as the ancestral
state. Stringent filters were applied to remove repetitive
regions and regions with poor mappability (see Materials
and Methods). We observed many genomic regions with
outstanding B2 scores (fig. 4), which include both the MHC-
DQ and MHC-DP genes and a few novel candidates.

Among the outstanding peaks, the top two cover the
MHC-DQA1, MHC-DQB1, MHC-DPA1, MHC-DPB1, and
MHC-DPB2 genes, which harbor all the top 0.01% B2 scores
(fig. 5A). Such high scores can be explained by both the ele-
vated proportion of polymorphic sites, 0.299 as compared
with the genome-wide proportion of 0.237 (fig. 5B; note
that genes are labeled based on human hg38 genome anno-
tations), as well as the enrichment of polymorphic sites with
moderate minor allele frequencies (fig. 5C). Furthermore, the
region exhibits a multimodal SFS, which may correlate to the
multiple B2 peaks observed in the region.

In addition to the MHC-DQ and MHC-DP genes, KLRD1
also presents prominent B2 scores (supplementary fig. S39,
Supplementary Material online) on its first intron. This gene
expresses a natural killer (NK) cell-surface antigen, also known

as CD94, and plays a pivotal role in viral defense. Unlike the
region covering MHC-DQ genes, the minor allele frequencies
at polymorphic sites around the KLRD1 region are clearly
enriched near a frequency of 0.45, instead of the multimodal
distribution observed around the MHC-DQ genes. We also
found other high-scoring regions associated with innate im-
munity, such as the gene GPNMB (supplementary fig. S40,
Supplementary Material online), gene LY86 (supplementary
fig. S41, Supplementary Material online), and the intergenic
region between BPIFB4 and BPIFA2 (supplementary fig. S42,
Supplementary Material online).

Another interesting candidate is the pain perception gene
SCN9A (supplementary fig. S43, Supplementary Material on-
line), on which the highest scores overlap with the transcript
of its antisense RNA gene that regulates its expression. Instead
of enriching toward a single value, the minor allele frequencies
at the polymorphic sites across the region are dispersed, with
at least two modes (approximate minor allele frequencies of
0.25 and 0.40). This finding may correlate with the multiple
peaks identified around this region, which may be sensible
given the large number of exons covered. Similarly, the anti-
sense RNA gene ARHGEF26-AS1 (supplementary fig. S44,
Supplementary Material online) harbors high B2 scores,
with allele frequencies enriched around 0.15 and 0.45.
Other notable candidates include PDE1A (supplementary
fig. S45, Supplementary Material online), which encodes a
pivotal enzyme in cellular Ca2þ- and cyclic nucleotide signal-
ing (Michibata et al. 2001). This gene has multiple splicing
variants and plays roles in both neurodevelopment (Pekcec
et al. 2018) and sperm functionality (Lefièvre et al. 2012). A
few other genes scoring in the top 0.05% are also involved in
spermatogenesis or gamete functionality while serving other
important functions, such as a Ca2þ/calmodulin-dependent
protein kinase gene CAMK4 (supplementary fig. S46,
Supplementary Material online; Sikela et al. 1990) and a oth-
erwise cancer-related gene SUSD2 (supplementary fig. S47,

FIG. 4. Manhattan plot displaying B2 scores across the 22 human autosomes for which the bonobo genomic data were mapped, with the candidates
scoring in the top 0.05% annotated. RNA genes are annotated with smaller fonts. Horizontal dotted lines represent cutoff scores for the top 0.1%,
0.05%, and 0.01% across the genome. Peaks higher than 0.05% cutoff but without annotations do not have neighboring protein-coding regions
within a 250-kb radius.
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Supplementary Material online; Harichandan et al. 2013;
Watson et al. 2013).

Discussion
In this study, we introduced a novel set of composite likeli-
hood ratio statistics—B2, B2;MAF, B1, B0, and B0;MAF —to ro-
bustly detect footprints of balancing selection with high
power and flexibility. The B statistics are based on a mixture
model creating a proper nested likelihood ratio test, which
helps them overcome the common susceptibility to oversized
windows held by current methods. We have extensively eval-
uated their performances on simulated data compared with
current state-of-the-art methods and have demonstrated the
superior properties of the B statistics under various scenarios.
We reexamined balancing selection in human populations
(1000 Genomes Project Consortium 2015) and recovered
well-established candidates, including the HLA-D genes and
ERAP2. We further applied B2 onto the genomic data of bo-
nobos (Prado-Martinez et al. 2013) and uncovered not only
the MHC-DQ and MHC-DP gene cluster but also intriguing
candidates that are involved in innate immunity, neurosen-
sory development, and gamete functionality.

Evaluating the Performance of B Statistics through
Simulations
In our simulation study, the B statistics showed remarkable
robustness to large window sizes, with only minor decays in

power under oversized windows, whereas other methods
exhibited large declines in power. Moreover, even when con-
sidering all data available as input (i.e., the most disadvanta-
geous window size) all variants of B statistics still exhibit
comparable power to extant methods and displayed satisfac-
tory performance across varying types and strengths of bal-
ancing selection. Under scenarios with confounding factors,
such as high mutation rate and nonequilibrium demographic
history, the B statistics demonstrated satisfactory robustness
as well.

The robustness against varying window sizes is of particular
interest in this study, not only because it ensures high power
under large windows, but it also allows the statistics to aug-
ment the size of genomic regions from which they make
meaningful inferences. This flexibility grants a key advantage
over previous methods that require the window size to be
fixed throughout the scan in order to yield comparable results
across the genome. In particular, because many factors (such
as recombination rates) can influence the footprint size of
balancing selection, it is not ideal to adopt a fixed window size
for a whole-genome scan based on a uniform population-
scaled recombination rate, and B statistics naturally accom-
modate such variability across the genome.

Admittedly, in practice, as the genomic region considered
in the tests expands, nonneutral sites will inevitably be in-
cluded. This indeed violates our assumption that the test
locus is surrounded by neutral sites only. Nonetheless,

FIG. 5. Evidence for balancing selection on MHC-DQ and MHC-DP genes in bonobos. Note that the plotted gene names are based on the
annotations of human hg38 reference genome. (A) B2 scores across the genomic region on chromosome 6 surrounding the MHC-DQ and
MHC-DP genes. The gray bars directly under the B2 scores represent the masked regions, as well as the features in these regions. The darker
the shade, the greater number of types of repetitive sequences (e.g., RepeatMasker mask, segmental duplication, simple repeats, or interrupted
repeats) overlapping the region. Vertical gray bars below display the estimated equilibrium minor allele frequencybx for each maximum likelihood
ratio B2, and the black line traces the value for the respective inferred footprint size log10ðbAÞ (B) Proportion of informative sites that are
polymorphic in the 800-kb region centered on the peak compared with the whole-genome average. (C) Minor allele frequency distribution in
the 500-kb region centered on the peak compared with the whole-genome average.
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because both positive and purifying selection reduce the pre-
sentation of sites with intermediate frequencies (Tajima 1989;
Braverman et al. 1995; Fay and Wu 2000; Bamshad and
Wooding 2003), their effect on the SFS is in general opposite
to the features expected from balancing selection. This sug-
gests that including such sites in the window is unlikely to
hamper the power to detect balancing selection. Meanwhile,
when multiple sites in the considered region undergo balanc-
ing selection, the pattern of polymorphisms across the region
will indeed differ from that in regions with a single selected
locus. We will discuss the effects of such multilocus balancing
selection in the subsequent subsection Performance of Single-
Locus Methods on Multilocus Balancing Selection.

One important consideration is that, so far our simulation
study (as well as previous ones by DeGiorgio et al. 2014;
Bitarello et al. 2018; Siewert and Voight 2020) only evaluates
the method performance in the context of single-locus het-
erozygote advantage. For many other balancing selection
mechanisms, such as negative frequency-dependent selection
(Asmussen and Basnayake 1990) and periodic environmental
fluctuations (Bergland et al. 2014), a stable equilibrium cannot
be guaranteed (Cockerham et al. 1972; Asmussen and
Feldman 1977; Ginzburg 1977). In nonoverdominance set-
tings for which particular equilibrium frequencies indeed ex-
ist, the balanced alleles are still maintained near these fixed
frequencies, thereby satisfying the general assumptions of the
statistical models underlying our B statistics. Moreover, when
such intrinsic equilibrium frequencies do not exist, allele fre-
quencies may still fluctuate around some mean values. Even if
such mean values are unattainable, there will still persist an
enrichment of sites with intermediate frequencies, thereby
presenting characteristic footprints of balancing selection.
We therefore believe that our mixture model framework
should still have high power to detect footprints of nonover-
dominance balancing selection, and that overall our results
have comprehensively characterized the promising perfor-
mance of the B statistics.

Confounding Effects of Mutation Rate or
Recombination Rate Variation
In our simulation study, sequences with a central 10-kb mu-
tational hotspot did not mislead methods as much as those
with the mutation rate elevated across the entire sequence
(supplementary fig. S9, Supplementary Material online). This
result may seem counterintuitive at first, as a smaller region of
increased mutation rate may better resemble the footprints
of long-term balancing selection. However, upon a closer ex-
amination of the site frequency spectra and proportions of
polymorphic sites (supplementary fig. S48, Supplementary
Material online), sequences with an extended region of high
mutation rate exhibit a greater departure in these features
under scenarios with no elevated mutation rate than for sce-
narios with a central mutational hotspot. Specifically, these
sequences have more sites with high derived allele frequencies
and a higher proportion of polymorphic sites overall (supple-
mentary fig. S48B, Supplementary Material online), likely
resulting from the recurrent mutation on sites that were
originally substitutions. The increase is also more profound

on sites with high derived allele frequency. For example, the
proportions of sites with derived allele frequency of 0.96 in-
creased by almost 2-fold from �0.00104 to 0.00190, and the
proportions of sites with derived allele frequency of 0.98 in-
creased by almost 3-fold from 0.00105 to 0.00273. By contrast,
the difference in scale between the proportions of polymor-
phisms (0.182 vs. 0.189) is minor. The larger fold-change in the
proportions of high-frequency polymorphisms (i.e., sites with
k ¼ n� 1; n� 2, and n� 3 derived alleles) relative to that
of substitutions (k¼ n derived alleles) could explain the more
profound inflation in power for the statistics relying only on
information at polymorphic sites. Similarly, after folding the
SFS, the large changes in the proportions of low-frequency
alleles were substantially mitigated, echoing the superior per-
formance of B2;MAF and b relative to their unfolded
counterparts.

Another unexpected result from the simulations of ele-
vated mutation rate is the drastic inflation of false signals
reported by b statistics (supplementary fig. S11,
Supplementary Material online), which can also be observed
in the nonstandardized b statistics (supplementary fig. S49,
Supplementary Material online). Although Siewert and
Voight (2020) tested their power to detect balancing selec-
tion under high mutation rate, it was unexplored whether
their b statistics would misclassify highly mutable neutral
sequences as those undergoing balancing selection, and our
results show that they could be easily misled. However, we
further found that the performances of the standardized b
statistics largely improve when provided with the correct
mutation rate and divergence time (supplementary fig.
S49B, Supplementary Material online). This result partly con-
firms the superiority of standardized b statistics over the
unstandardized ones. It also suggests that b statistics are con-
siderably susceptible to the confounding effect of mutation
rate elevation, and that their performance relies highly on the
accuracy of the provided mutation rate. Instead of using a
constant mutation rate for the entire scan, we propose that
providing locally inferred population-scaled mutation rates h
may help improve the robustness of b statistics. Indeed, when
we instead estimate h using the mean pairwise sequence
difference bhp (Tajima 1983) for each replicate and provided
BetaScan the respective inferred value as the h parameter, the
standardized statistics no longer report as many false signals
(supplementary fig. S49C, Supplementary Material online).
However, we also observed that providing a locally inferred
h estimate compromises the power of standardized b statis-
tics to detect balancing selection, both under normal (i.e., l)
and elevated (i.e., 5l) mutation rates (supplementary figs. S50
and S51, Supplementary Material online, respectively), espe-
cially for the unfolded b� and bð2Þ statistics. This result is
probably because, in addition to an elevation in mutation
rate, the locally inferred h can also be inflated by footprints
of balancing selection, thereby decreasing the b statistic’s
sensitivity.

In contrast to mutation rate variation, all statistics are ro-
bust to recombination rate variation, with B0 and B0;MAF

reporting substantially fewer false signals than the others
(supplementary fig. S5, Supplementary Material online).
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This robustness to recombination rate variation may be
explained by the high similarity in the SFS and proportion
of polymorphic sites to sequences evolving under a uniform
recombination rate (supplementary fig. S52, Supplementary
Material online).

Effect of Multiple Testing on Sequences with High
Mutation Rates
Because B, T, and b statistics are computed on every infor-
mative site, as suggested by Cheng and DeGiorgio (2019),
multiple testing can account for some inflation in their pow-
ers because sequences with a higher mutation rate will have a
greater number of informative sites. To evaluate the effect of
multiple testing for sequences with high mutation rates, we
downsampled the test sites (see Materials and Methods) such
that the number of test scores being computed approxi-
mately matches that under the original mutation rate l.
Although all statistics show varying levels of improvements
in performance (supplementary figs. S11B, C, E, and F,
Supplementary Material online), some still report high pro-
portions of false signals, especially all b statistics and B0;MAF.
That is, multiple testing cannot account for all the factors that
drive these statistics to misidentify features of elevated mu-
tation rates as footprints of balancing selection. This result
corresponds to the fact that both the SFS and the density of
polymorphic sites are altered under scenarios with extended
regions of elevated mutation rate (supplementary fig. S48,
Supplementary Material online), likely due to recurrent
mutation.

Furthermore, we observed that both before and after
downsampling, the T statistics report fewer false signals
than their respective B statistic analogs. One potential factor
behind their marginally superior performance may be that T
statistics perform tests on fixed numbers of informative sites,
instead of genomic regions measured by physical lengths (as
did B statistics and the summary statistics). For T statistics,
the size of the genomic region covered by the same number
of informative sites would be much narrower under rapidly
mutating sequences than in sequences with the original mu-
tation rate. This means that the resulting T scores in either
scenario are reflective of the levels of variation for sequences
with drastically different lengths. To account for this factor,
we provide B1 and B2 with informative site-based windows
identical to that of T statistics and reexamined their perform-
ances (supplementary figs. S53 and S54, Supplementary
Material online). After matching the windows, B1 and B2

variants in turn display higher robustness than T1 and T2 to
elevated mutation rates, suggesting that B statistics are at
least comparably robust to T statistics. Meanwhile, we also
matched the window size for B0 variants and b to gauge the
effect of adopting large windows on the proportions of false
signals from B0 variants. When B0 scans the sequences with 1-
kb windows, though there is an increase in the resulting
number of false signals (supplementary figs. S53A and S54C,
Supplementary Material online), at a 1% false positive rate the
proportions of false signals for the two B0 variants only in-
crease by <0.1 and are still substantially lower than that of b

and b� (supplementary figs. S53B and S54C and D,
Supplementary Material online).

Comparing the B Statistics with the T Statistics
Because the T statistics of DeGiorgio et al. (2014) have previ-
ously been the only model-based approach for the detection
of long-term balancing selection from polymorphism data in
a single species, the comparison between the model-based B
and T approaches is particularly intriguing for researchers
with empirical data suitable for the application of either.
The T statistics are based on an explicit coalescent model
(Hudson and Kaplan 1988; Kaplan et al. 1988) and have
been shown to have superior power to a number of other
methods in previous studies (DeGiorgio et al. 2014; Siewert
and Voight 2017, 2020; Bitarello et al. 2018; Cheng and
DeGiorgio 2019), consistent with our simulation results.
The B statistics, on the other hand, employ a mixture model,
where the component modeling balancing selection is not
based on an explicit evolutionary model, but nevertheless
shows impressive performance on simulated data, as the
shape of the distribution of allele frequencies is similar to
what might be expected under balancing selection. The often
superior performances of both approaches over summary
statistics are understandable, as both utilize the genomic spa-
tial distribution of genetic diversity in their inferences.

However, within the T statistic framework, the model for
the null hypothesis (neutrality) is not nested in the alternative
hypothesis (balancing selection). Although the T1 and T2 sta-
tistics could have adopted nested models by employing the
standard neutral coalescent as the model for the null hypoth-
esis, doing so would increase susceptibility to demographic
factors, which can also alter the genome-wide SFS. To better
account for these factors, DeGiorgio et al. (2014) instead
employed the genome-wide distribution of genetic variation
to compute probabilities under the null hypothesis of neu-
trality. This explains the substantial decay in power for both T
statistics as the window size increases (fig. 2 and supplemen-
tary fig. S2A and B, Supplementary Material online), as well as
its robust performance under varying sized demographic
models (DeGiorgio et al. 2014; Cheng and DeGiorgio 2019,
supplementary figs. S15 and S16, Supplementary Material on-
line). In contrast to the T statistics, the null model for B
statistics (which also employs the genome-wide SFS) is nested
within the alternative, due to their mixture model framework.
This feature mitigates the biases introduced by sites far from
the test site, while simultaneously accounting for demo-
graphic factors. Consequently, the B statistics display robust
performance under oversized windows and realistic demo-
graphic models in our simulations (fig. 2 and supplementary
figs. S2, S15, and S16, Supplementary Material online).

Another advantage of the B statistics over the T statistic
approach, especially for B2 compared with T2, is the compu-
tational load. Because the probability distribution of allele
frequencies under the Kaplan–Darden–Hudson (Kaplan
et al. 1988) model is difficult to compute, the T2 statistic relies
on previously generated sets of simulated site frequency spec-
tra over a grid of equilibrium frequencies x 2 f
0:05; 0:10; . . . ; 0:95g for each distinct sample size n and
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recombination distance d. Generation of such frequency
spectra is computationally intensive, and the load increases
substantially with the increase in sample size, thereby limiting
the application of T2 to data sets with larger sample sizes.
However, this is not a limitation of B2, as the SFS under bal-
ancing selection is determined simply as a mixture of the
given genome-wide distribution of allele frequencies and a
statistical distribution with closed-form solutions whose com-
putational cost is minor, and only increases linearly with the
sample size. Moreover, the rapid computation of this spec-
trum permits a finer grid of equilibrium frequencies x to be
interrogated.

Considering Multiallelic or Multilocus Balancing
Selection
Both model-based approaches employed by the T and B sta-
tistics assume that balancing selection acts on a single biallelic
locus. Whereas this case may be the most intuitive and sim-
plistic scenario to model and simulate, many well-established
empirical examples of balancing selection—such as the MHC
locus in animals (Wills 1991; Hedrick 2002), the ABO blood
group in primates (Saitou and Yamamoto 1997; Fumagalli
et al. 2008; S�egurel et al. 2012; Leffler et al. 2013), and the
plant self-incompatibility locus (Charlesworth et al. 2000)—
feature multiple alleles balanced across an extended genomic
region. It therefore brings into question how these methods
perform on genomic regions evolving under multiallelic or
multilocus balancing selection, and whether current frame-
works can be extended to consider these more complicated
cases of balancing selection.

Extending Mixture Models to account for Multiallelic
Balancing Selection
There exist theoretical models of multiallelic balancing selec-
tion based on the coalescent (Hey 1991; Muirhead and
Wakeley 2009). However, possibly due to computational con-
straints, such models have not been implemented within a
likelihood-ratio framework for detecting the footprints they
characterize. Here, instead of following DeGiorgio et al. (2014)
to compute the densities of polymorphisms and substitutions
or to approximate the SFS using simulations under an explicit
coalescent model, our mixture models can be readily ex-
tended to account for multiallelic balancing selection at a
single locus without the extensive computational burden of
coalescent-based approaches that integrate selection.
Specifically, we consider samples with multiple balanced
alleles as following multinomial distributions (see supplemen-
tary note 1, Supplementary Material online), and henceforth
use the mixture models to approximate the SFS at biallelic
neutral sites that are linked to a selected locus with m 2 f
2; 3; 4; . . .g balanced allelic classes. This extension is also
implemented in our BalLeRMix software, with the special
case of m¼ 2 reducing to the model introduced in the
Model Description section.

To simulate single-locus multiallelic balancing selection, we
employed SLiM version 3.3, which can simultaneously incor-
porate the four standard nucleotides of DNA and thus allows
these distinct nucleotides to coexist at the same site. We

introduced two, three, or four distinct mutations with fitness
parameters s¼ 0.001 and h¼ 20 in each simulated replicate
500,000 generations in the past to examine the relative per-
formances of T, biallelic B, and multiallelic B statistics. Under
this fitness scheme, the equilibrium frequencies when two,
three, or four alleles are balanced in the population are ap-
proximately ð1=2; 1=2Þ; ð1=3; 1=3; 1=3Þ, or
ð1=4; 1=4; 1=4; 1=4Þ, respectively (see Materials and
Methods for details). As the number of balanced alleles as-
sumed by B statistics (i.e., parameter m) increases, the powers
of B statistics barely change when two (supplementary fig.
S55A–C, Supplementary Material online) overdominant
mutations are introduced. When more than two overdomi-
nant alleles are balanced in the population, it is remarkable
that B statistics with m set to three or four (supplementary
fig. S55E and F, Supplementary Material online, respectively)
outperform those with m¼ 2 (supplementary fig. S55D,
Supplementary Material online). Furthermore, we also ob-
serve that the optimal equilibrium minor allele frequencies
reported by the B statistics match well with the true equilib-
rium frequencies in the simulated replicates (supplementary
fig. S56, Supplementary Material online).

To further dissect the relative performances of B statistics
(with m¼ 4), we also applied other statistics with their opti-
mal window sizes on these simulated sequences (supplemen-
tary fig. S57, Supplementary Material online). As the number
of balanced alleles increases, each statistic demonstrated
improvements in their power. Furthermore, the B1, B2, and
B2;MAF statistics outperform their respective T- or summary-
statistic analogs under all three scenarios considered.

Taken together, these results suggest that the multiallelic B
statistics can substantially improve the detection power for
balancing selection with more than two balanced alleles.
Moreover, B statistics with larger m parameters, the pre-
sumed number of balanced alleles, are downward compatible
with population samples carrying fewer than m balanced
alleles, as the presumed equilibrium minor allele frequencies
of the extra allelic classes would be optimized close to zero
(see supplementary fig. S56, Supplementary Material online).

Performance of Single-Locus Methods on Multilocus
Balancing Selection
Similar to multiallelic balancing selection, despite previous
theoretical work to model or simulate multilocus balancing
selection (Barton and Navarro 2002; Navarro and Barton
2002; Tennessen 2018), no detection approach has yet been
developed accordingly. Meanwhile, neither model-based de-
tection framework underlying the T statistics nor the B sta-
tistics can address these cases without jointly accounting for
allelic combinations at multiple informative sites as the target
of selection. Therefore, without shifting the paradigm to con-
sider such site-to-site combinations so as to accurately locate
the set of neighboring selected loci, one can still examine the
performance of extant balancing selection approaches for
locating genomic regions containing more than one locus
under balancing selection.

To this end, we tested the simplest case with two nearby
loci carrying independent overdominant alleles (see Materials
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and Methods). To ensure that individuals heterozygous at
both loci are as advantageous as in the single-locus balancing
selection simulations with s¼ 0.001 and h¼ 20 (supplemen-
tary fig. S58A and B, Supplementary Material online), we set
the selective coefficients of both overdominant mutations to
s¼ 0.0005. That is, a two-locus genotype that is heterozygous
at each of the loci would have fitness approximately equal to
1þ 2hs ¼ 1:2. Despite this adjustment, we observed that all
statistics show drastic improvements in their powers (supple-
mentary fig. S58C and D, Supplementary Material online),
with the lowest power among them of 0.8 (supplementary
fig. S58D, Supplementary Material online). This result suggests
that multilocus balancing selection can potentially create
more-prominent footprints compared with single-locus bal-
ancing selection. To further gauge the extent to which the
additional selected locus can boost detection power, we sim-
ulated sequences with two nearby loci each evolving under
s ¼ 10�5 and h¼ 20, such that the selective coefficient s is 2
orders of magnitude smaller than that of the mutations in-
troduced in the sequences evolving under single-locus bal-
ancing selection (supplementary fig. S58A and B,
Supplementary Material online). Remarkably, all methods still
exhibit substantially higher powers for sequences with two
nearby loci with weakly advantageous (s ¼ 10�5) alleles un-
dergoing balancing selection (supplementary fig. S58E and F,
Supplementary Material online).

The higher powers observed for simulated multilocus bal-
ancing selection scenarios is understandable, as Tennessen
(2018) demonstrated that two noninteracting neighboring
loci tend to reinforce the maintenance of polymorphisms
when both are independently subjected to balancing selec-
tion. However, multilocus balancing selection can also be
achieved by epistasis (Barton and Navarro 2002; Navarro
and Barton 2002), whereby the fitness effect of one locus is
contingent on the allelic state of another locus, and has been
shown by a growing body of empirical studies to be pervasive
in the genome (as reviewed by Shao et al. 2008; Lehner 2011;
Mackay 2014). Though we did not simulate such scenarios in
this study, because two interacting loci would better maintain
polymorphisms at the selected loci than two noninteracting
ones (Barton and Navarro 2002; Navarro and Barton 2002;
Tennessen 2018), it would not be surprising that they would
produce even stronger footprints than what we observe here.

Furthermore, genomic sequences with multiple nearby
balanced loci will have more extended footprints of balancing
selection. With the capability to optimize over window sizes,
B statistics should be more sensitive to such regions than
other approaches applied with small fixed windows. Indeed,
B2 substantially outperforms T2 (applied with 12 informative
sites on either side of a test site) when the two neighboring
loci under selection are weakly advantageous themselves
(supplementary fig. S58E and F, Supplementary Material on-
line). The margins between their powers still persist even
when T statistics adopt windows with 122 informative sites
on either side of the test site (supplementary fig. S59E and F,
Supplementary Material online), despite the marginal
increases in their powers for two-locus balancing selection.

Our exploratory results imply not only that extant
approaches for detecting balancing selection have high power
when applied to genomic regions carrying multiple balanced
loci but also that such power is also likely much higher than
they would have for single-locus regions. For B statistics in
particular, because they optimize over window sizes, the gap
between their sensitivity for multilocus balancing selection
and that for single-locus settings may be more profound
than other methods when applied with small windows.
Our results also support the speculation that top candidates
identified in previous scans for balancing selection may be
more likely to carry more than one functional polymorphic
site, as is the case for the MHC locus, considering that all
methods we evaluated show higher powers for multilocus
balancing selection than for the single-locus process.

Application of B2 to Empirical Data
In this study, we applied the B2 statistic on both human and
bonobo genomic data and identified sensible candidate tar-
gets in each species. We first reexamined the CEU and YRI
human populations in the 1000 Genomes Project data set
(1000 Genomes Project Consortium 2015) with B2, which
have been previously probed for long-term balancing selec-
tion in multiple studies (DeGiorgio et al. 2014; Siewert and
Voight 2017; Bitarello et al. 2018). We found that top candi-
dates reported by B2 overlap largely with previous scans, lend-
ing confidence in the power of B statistics to make replicable
discoveries. Next, we performed the first model-based scan
for footprints of balancing selection on bonobo polymor-
phism data. In addition to the genomic regions previously
reported to be under ancient balancing selection in humans
and chimpanzees (e.g., the MHC-DQ genes at the MHC locus;
Leffler et al. 2013; Teixeira et al. 2015; Cheng and DeGiorgio
2019), we have also uncovered novel candidates such as
KLRD1 and SCN9A, which play roles in pathogen defense
and pain perception, respectively. Our results may corre-
spond to the unique features and evolutionary history of
bonobos, as suggested by accumulating evidence (de Waal
1990; Hare et al. 2012; de Groot et al. 2017; Wroblewski et al.
2017; Maibach and Vigilant 2019) on bonobo behavior and
physiology.

Potential Balancing Selection on Gamete-Associated
Genes in Humans
In the scans of human populations, we recovered previously
reported candidates STPG2 (formerly C4orf13) and CCDC169
(formerly C13orf38), in addition to the HLA-D locus and
ERAP2. Neither of the two former genes was discussed in
previous studies after reporting them as top candidates, prob-
ably due to their late characterization. Intriguingly, both genes
are related to gametogenesis, with recent association and
clinical studies underscoring their functional importance. In
particular, the expression of STPG2 has been detected in male
tissues, endocrine tissues, as well as the brain (Uhl�en et al.
2015). Structural mutations deleting this gene have been
linked to azoospermia (Yakut et al. 2013) and velocardiofacial
syndrome (Wu et al. 2019), and association studies of SNPs in
this have correlated it with autism (Connolly et al. 2017) and
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preclampsia (Johnson et al. 2012). A recent study even
reported footprints of ongoing positive selection on a segre-
gating preclampsia-associated SNP in this gene (Arthur 2018).
Note that these authors only analyzed the disease-associating
variants and applied haplotype-based selection tests, which
tend to reveal regions with at least one dominant haplotype.
The footprints reported by Arthur (2018) can result from
either recent partial sweeps or balancing selection, with
only the latter matching the kilobase-scale size of the in-
creased diversity surrounding the region (supplementary
figs. S31 and S32, Supplementary Material online).

The conjoined gene CCDC169–SOHLH2 encodes a read-
through transcript of the gene CCDC169 and its immediate
downstream SOHLH2, a crucial gene for gametogenesis. In
addition to its potential to initiate the transcription of
SOHLH2 on occasions of read-through, CCDC169 has also
been found to have specific expression in prenatal brain tis-
sues (Pletikos et al. 2014). More interestingly, the B2 scores
across this gene do not form a typical peak as seen in many
other candidate regions (supplementary figs. S33 and S34,
Supplementary Material online). Instead, we observed a pla-
teau of elevated B2 scores above the region joining the two
genes. Furthermore, both the mean pairwise sequence differ-
ence (p) and T2 with a 22-informative-site-radius window
show two minor peaks across this region. Considering our
results for multilocus balancing selection (supplementary fig.
S58, Supplementary Material online), such footprints may be
reflective of multiple loci undergoing balancing selection,
probably interactively via epistasis, which can create foot-
prints of extended tracks of elevated genetic diversity
(Barton and Navarro 2002; Navarro and Barton 2002).

Lastly, despite the intriguing functional implications be-
hind our candidates, we are aware that some of our candidate
regions show worrying signs for artifacts. For example, STPG2
(also a top candidate in the scan by DeGiorgio et al. 2014) has
low 35-mer sequence uniqueness scores across the whole 40-
kb region examined, despite surviving the 50-mer mappability
filter. The peak linking CCDC169 and SOHLH2 shows overall
higher sequence uniqueness than STPG2, but the few regions
with relatively lower uniqueness colocalize with the peaks
reported by p and T2. This colocalization is also observed in
the gene CPE, where peak regions with a drop in sequence
uniqueness also display lower sequencing depths than other
regions. Though not all regions with low mappability neces-
sarily yield outstanding scores for balancing selection, these
signs could still be indicative of erroneous mapping and war-
rant further investigation and caution in interpretation.

Footprints of Balancing Selection in Bonobos and
Their Implications
As one of the two sister species to humans, bonobos (initially
known as the pygmy chimpanzees; Prüfer et al. 2012) have
been drawing increasing attention from the genomics com-
munity (Prüfer et al. 2012; Prado-Martinez et al. 2013; de
Manuel et al. 2016). However, compared with chimpanzees
(the other sister species), bonobos are relatively understudied,
despite their close relationship to humans and unique social
behaviors. For bonobos, one of their most idiosyncratic traits

is their high prevalence of sociosexual activities (de Waal
1990; Kano 1992; Wrangham 1993), which serve important
nonreproductive functions and include frequent same-sex
encounters. As a close relative to humans, their female-
dominance, low-aggression, and hypersexual social behaviors
contrast fiercely with those of humans and chimpanzees
(Kano 1992; Wrangham 1993). A growing number of recent
studies have also characterized the differences in physiological
responses between bonobos and chimpanzees behind their
social behaviors (Heilbronner et al. 2008; Hohmann et al.
2009; Wobber et al. 2010; Deschner et al. 2012; Surbeck
et al. 2012), yet the genetic component underlying their
unique behaviors, however, remains largely elusive. From
the B2 scan of bonobo genomes, we identified a number of
interesting top candidates involved in pathogen defense.
Despite that most of the MHC region was removed by a
mappability filter (see Materials and Methods), we still ob-
served extraordinary signals from the remainder of this region.
More specifically, the MHC-DQ and MHC-DP genes harbor the
highest peaks across the genome (figs. 4 and 5). These genes
encode the component proteins of MHC-DQ and MHC-DP
molecules, which are cell-surface receptors on antigen-
presenting cells (Ball and Stastny 1984) and has long been
known to be highly polymorphic in great apes (Takahata et al.
1992; Prüfer et al. 2012; Teixeira et al. 2015).

Another immune-related gene, KLRD1, which encodes the
cell-surface antigen CD94, also exhibited outstanding B2

scores. The interaction between KLRD1 (CD94) and NKG2
family proteins can either inhibit or activate the cytotoxic
activity of NK cells (Pende et al. 1997; Cantoni et al. 1998;
Masilamani et al. 2006), as well as pivot the generation of cell
memory in NK cells (Cerwenka and Lanier 2016).
Furthermore, KLRD1 (CD94) has been shown to play an im-
portant role in combating viral infections such as cytomega-
lovirus (Cerwenka and Lanier 2016) and influenza (Bongen
et al. 2018) in humans, as well as the mousepox virus in mice
(Fang et al. 2011). In humans and chimpanzees, KLRD1 is
highly conserved (Khakoo et al. 2000; Shum et al. 2002).
Here, the involvement in viral defense of KLRD1 presents
an especially intriguing case for bonobos. Bonobos have
been recently shown to harbor reduced levels of polymor-
phism in MHC class I genes (Maibach et al. 2017; Wroblewski
et al. 2017), which were further predicted to have lower ability
to bind with viral peptides when compared with chimpan-
zees (Maibach and Vigilant 2019). The genes encoding an-
other regulator of MHC class I molecules, the killer cell
immunoglobulin-like receptors (KIR), were also found to
have contracted haplotypes in bonobos (Rajalingam et al.
2001; Walter 2014; Wroblewski et al. 2019), with the lineage
III KIR genes serving reduced functions (Wroblewski et al.
2019). In fact, many studies have pointed out that these re-
duced features are unlikely the natural consequences of de-
mographic factors—even after considering the harsher
bottlenecks bonobos have undergone compared with chim-
panzees—and speculate that selective sweeps in bonobos on
these regions (Prüfer et al. 2012; Walter 2014; Maibach et al.
2017; Wroblewski et al. 2017, 2019) may have eliminated the
diversity in these critical immunity genes. In this light, the
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polymorphisms on KLRD1 may be compensating the reduced
diversity in their binding partners in bonobos.

Several other genes in high-scoring regions are also found
to be involved in immunity. For one, the highest peak on
chromosome 7 encompasses the entire gene GPNMB (sup-
plementary fig. S40, Supplementary Material online), with el-
evated B2 scores particularly on exons. This gene encodes
osteoactivin, a transmembrane glycoprotein found on osteo-
clast cells, macrophages, and melanoblast (Loftus et al. 2009;
Yu et al. 2016), and is shown to regulate proinflammatory
responses (Ripoll et al. 2007). Aside from its heavy involve-
ment in cancer (Zhou et al. 2012), the protein GPNMB has
also been shown to facilitate tissue repair (Li et al. 2010; Rose
et al. 2010; Hu et al. 2013) as well as influence iris pigmenta-
tion (B€achner et al. 2002; Maric et al. 2013). Other potential
evidence for balancing selection operating on innate
immunity-related genes includes the high B2 scores observed
around the intergenic region between BPIFB4 and BPIFA2
(supplementary fig. S42, Supplementary Material online),
which encode two bacterialcidal permeability-increasing
fold-containing (BPIF) family proteins (Levy 2000). The
BPIFA2 genic region is recently shown to harbor many SNPs
significantly associated with enteropathy (Fujimori et al.
2019), whereas the BPIFB4 gene is better known by its asso-
ciation with longevity (Villa, Malovini, et al. 2015; Spinetti
et al. 2017; Villa et al. 2018), speculated to partly result
from its protection of vascular functions (Villa, Carrizzo,
et al. 2015; Puca et al. 2016; Spinelli et al. 2017).

In addition to pathogen defense, we also found other in-
teresting candidates relating to neurosensory and neurode-
velopment. One such gene is SCN9A (supplementary fig. S43,
Supplementary Material online), which encodes NaV 1.7, a
voltage-gated sodium channel, with mutations on the gene
associated with various pain disorders (Yang et al. 2004; Cox
et al. 2006; Reimann et al. 2010). The peak we observe covers
the overlapping RNA gene encoding its antisense transcript,
SCN1A-AS1, which regulates the expression of SCN9A (Koenig
et al. 2015), suggestive of diversified regulation of pain per-
ception in bonobos. A few other candidate genes are also
involved in neurodevelopment, such as EPHA6 (Das et al.
2016), SUSD2 (supplementary fig. S47, Supplementary
Material online; Nadjar et al. 2015), and HPCAL1 (Tam 2015).

Lastly, we noticed that some candidate genes carry multi-
ple distinct functions and may have been undergoing balanc-
ing selection due to potential evolutionary conflicts between
some of their functions. For example, the gene GPNMB plays
roles not only in tissue repair (Li et al. 2010) but also in iris
pigmentation (B€achner et al. 2002). Another candidate,
PDE1A gene (supplementary fig. S45, Supplementary
Material online), encodes a phosphodiesterase that is pivotal
to Ca2þ- and cyclic nucleotide signaling (Lefièvre et al. 2012).
It is expressed in brain, endocrine tissues, kidneys, and gonads
(Uhl�en et al. 2015) and has multiple splicing variants. In fact,
the high-scoring peak we observed on this gene happens to
locate around the exons that are spliced out in some variants
(supplementary fig. S45, Supplementary Material online).
Studies have demonstrated the relation of this gene to brain
development (Yan et al. 1994), mood and cognitive disorders

(Xu et al. 2011; Martinez and Gil 2013; Pekcec et al. 2018;
Betolngar et al. 2019), and hypertension (Kimura et al. 2017).
Meanwhile, the PDE1A protein is also a conserved compo-
nent of mammalian spermatozoa (Lefièvre et al. 2012; Vasta
et al. 2005) and is involved in the movement of its flagella.
Similarly, the gene CAMK4 encodes Ca2þ- and calmodulin-
dependent kinase 4, which also plays important roles in both
immunity (Koga and Kawakami 2018) and spermatogenesis
(Wu et al. 2000). The cancer-related protein Sushi-domain
containing 2, encoded by SUSD2 (Watson et al. 2013), not
only regulates neurite growth in the brain (Nadjar et al. 2015)
but can also be used as a marker molecule for human sper-
matogonial progenitors (Harichandan et al. 2013). Though it
is difficult to judge for these genes which functions may be
subject to selective pressures, they nonetheless indicate that
pleiotropy can be an important driver of balancing selection.

Concluding Remarks
Extant methods for detecting long-term balancing selections
are constrained by the pliability of their inferences as a func-
tion of genomic window size. In this study, we presented B
statistics, a set of composite likelihood ratio statistics based
on nested mixture models. We have comprehensively evalu-
ated their performances through simulations and demon-
strated their robust high performances over varying
window sizes in uncovering genomic loci undergoing balanc-
ing selection. Moreover, we showed that even when applied
with the least optimal window sizes, the B statistics still ex-
hibit high power comparable to current methods, which op-
erated under optimal window sizes, in uncovering balancing
selection of varying age and selection parameters, as well as
robust performance under confounding scenarios such as
elevated mutation rates, variable recombination rates, and
population size changes. We reexamined the 1000
Genomes Project YRI and CEU populations with B2 statistics
and have recovered well-characterized genes previously hy-
pothesized to be undergoing long-term balancing selection in
humans, such as the HLA-D genes, ERAP2, and CSMD2. We
also characterized previously reported top candidates STPG2
and CCDC169–SOHLH2, both of which are related to game-
togenesis. We further applied the B2 statistic on the whole-
genome polymorphism data of bonobos and discovered not
only the well-established MHC-DQ and MHC-DP genes but
also novel candidates such as KLRD1, PDE1A, SCN9A, and
SUSD2, with functional implications in pathogen defense,
neurodevelopment, as well as gamete functions. Moreover,
we have extended the B statistics to consider multiallelic
balancing selection, with these extensions demonstrating su-
perior properties to all previous methods for detecting se-
lected loci with more than two balanced alleles. Further, we
show that all current methods tend to have higher powers for
two-locus balancing selection than for single-locus processes.
Lastly, we have implemented these statistics in the open
source software BalLeRMix, which, along with other key
scripts used in this study, can be accessed at https://github.
com/bioXiaoheng/BalLeRMix/. We have also released the em-
pirical scan results for balancing selection in both humans
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and bonobos, which can be downloaded at http://degior-
giogroup.fau.edu/ballermix.html.

Materials and Methods
In this section, we discuss sets of simulations used to evaluate
the performances of the B statistics relative to previously
published state-of-the-art approaches (Hudson et al. 1987;
DeGiorgio et al. 2014; Siewert and Voight 2017, 2020;
Bitarello et al. 2018). Finally, we describe the application of
our B statistics to an empirical bonobo data set (Prado-
Martinez et al. 2013).

Evaluating Methods through Simulations
We employed the forward-time genetic simulator SLiM (ver-
sion 3.2; Haller and Messer 2019) to generate sequences of
50 kb in length evolving with or without balancing selection.
Based on the respective levels in humans and other great
apes, we assumed a mutation rate of l ¼ 2:5� 10�8 per
base per generation (Nachman and Crowell 2000) and a re-
combination rate of r ¼ 10�8 per base per generation
(Payseur and Nachman 2000). In scenarios with constant
population sizes, we set the diploid effective population size
as N ¼ 104. To create baseline genetic variation, each repli-
cate simulation was initiated with a burn-in period of 10N
¼ 105 generations. To speed up simulations, we applied the
scaling parameter k to the number of simulated generations,
population size, mutation rate, recombination rate, and se-
lection coefficient, which allows for the generation of the
same levels of variation with a speed up in computational
time by a factor k2. For scenarios based on a model of con-
stant population size, we used k¼ 100. For the demographic
models of European humans and bonobos, we used k¼ 20.
We simulated 500 replicates for each scenario considered and
sampled 50 haploid lineages from the target population and
one lineage from the outgroup in each simulation for down-
stream analyses.

We simulated data from two other diverged species, under
the demographic history inspired by that of humans, chim-
panzees (Kumar et al. 2005), and gorillas (Scally et al. 2012).
Specifically, the closer and farther outgroups diverged 2:5�
105 and 4� 105 generations ago, respectively, which corre-
spond to 5 million and 8 Ma, assuming a generation time of
20 years.

To evaluate the power of each method to detect balancing
selection with varying selective coefficient s, dominance co-
efficient h, and age, for each combination of s and h, we
considered 15 time points at which the selected allele was
introduced, ranging from 5� 104 to 6:5� 105 generations
prior to sampling with time points separated by intervals of
5� 104 generations. Assuming a generation time of 20 years,
these time points are equivalent to 1; 2; 3; . . . ; 15 My before
sampling. In each scenario, a single selected mutation was
introduced at the center of each sequence at the assigned
time point, and we only considered simulations where the
introduced allele was not lost.

Accelerated Mutation Rate
To evaluate whether the B statistics are robust to high mu-
tation rates, we applied the methods on simulated sequences
evolving neutrally along the same demographic history (sup-
plementary fig. S1, Supplementary Material online), but in-
stead with a 5-fold higher mutation rate of
5l ¼ 1:25� 10�7 per site per generation. To generate
sequences with regional increases in mutation rate, we sim-
ulated 50-kb sequences with a 5-fold higher mutation rate of
5l ¼ 1:25� 10�7 per site per generation at the central
10 kb of the sequence and the surrounding region with the
original rate l.

Recombination Rate Estimation Error
For evaluating the robustness to erroneous estimation of re-
combination rates, we simulated sequences with uneven re-
combination maps and applied the model-based methods
with the assumption that the recombination rate is uniform.
In particular, we divided the 50-kb sequence into 50 regions of
1 kb each, and in turns inflate or deflate the recombination
rate of each region by m fold, such that the recombination
rates of every pair of neighboring regions have a m2-fold dif-
ference. We tested m¼ 10 and m¼ 100 in this study.

Demographic History
To examine the performance of methods under realistic de-
mographic parameters, we considered the demographic his-
tories of a European human population (CEU; Terhorst et al.
2017) and of bonobos (Prado-Martinez et al. 2013). For the
human population, we adopted the history of population size
changes inferred by SMCþþ (Terhorst et al. 2017) that spans
105 generations, assuming a mutation rate of l ¼ 1:25
�10�8 per site per generation (assumed when estimating
the CEU demographic history in Terhorst et al. 2017), a gen-
eration time of 20 years, and a scaling effective size of 104

diploids. To account for recombination rate variation, we
allowed each simulated replicate to have a uniform recombi-
nation rate drawn uniformly at random between r ¼ 5
�10�9 and r ¼ 1:5� 10�8 per site per generation. We
also simulated an additional population that split from the
human population 2:5� 105 generations ago, which is iden-
tical to the outgroup (named O1) in the demographic model
depicted in figure 3A, with an effective size of N ¼ 104 diploid
individuals.

For the bonobo population history, we scaled the pairwise
sequentially Markovian coalescent (PSMC) history inferred
from the genome of individual A917 (Dzeeta; sample
SRS396202) by Prado-Martinez et al. (2013) with a mutation
rate of l ¼ 2:5� 10�8 per site per generation, identical to
the simulations on the three-population demographic history
(fig. 3A). Because the inferred PSMC model provides a specific
ratio of the mutation and recombination rates, we set the
recombination rate to r ¼ 2:84� 10�9 per site per genera-
tion. To be consistent with the three-population demo-
graphic history, we set the population size prior to 71,640
generations ago, which is the maximum time covered by the
PSMC inference, to N ¼ 104 diploid individuals, and had the
outgroup split 2:5� 105 generations ago with the same
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diploid population size, identical to the outgroup O1 in the
three-population demographic history (fig. 2A).

To simulate species with distinct mutation rates, we split
the simulation into two stages, with the first stage concerning
the sequences in the ancestral species up until the two pop-
ulations diverge 5 Ma. Upon divergence, two separate SLiM
simulations are used to distinguish the mutation rates in the
target and outgroup populations, and samples are output
separately before being integrated in subsequent analyses.
We set the target species to mutate at a rate of l ¼ 1:2�
10�8 per site per generation (Scally and Durbin 2012) after
divergence, and the other species (including the ancestral
species) evolving with the mutation rate of l ¼ 2:5
�10�8 per site per generation (Nachman and Crowell
2000). The recombination rate across all simulations is r ¼
10�8 per site per generation (Payseur and Nachman 2000).
For the simulations with constant population sizes, we set the
effective size of all populations as N ¼ 104 diploid individuals
and adopted the scaling parameter k¼ 100. For simulations
employing realistic demographic histories, we used k¼ 20, set
the effective population size of the ancestral and the out-
group species as N ¼ 104 diploids (Takahata et al. 1995),
and the target species following the demographic history in-
ferred from the CEU human population (Terhorst et al. 2017)
for 105 generations prior to sampling. Additionally, we set the
generation time of the target species to be 25 years (akin to
humans; Scally and Durbin 2012), whereas for the outgroup
and ancestral species we used 20 years (akin to nonhuman
great apes; Prado-Martinez et al. 2013). Consequently, the
species divergence occurred 200,000 generations ago for the
target species and 250,000 generations ago for the outgroup.

Three- and Four-Allelic Balancing Selection at a Single
Site
To simulate balancing selection on a single site with more
than two balanced alleles, we used SLiM3.3 (Haller and
Messer 2019) so that all four nucleotides, instead of binary
representations of 0s and 1 s, can be incorporated into the
simulations. We adopted the same three-species demo-
graphic history as illustrated in supplementary figure S1,
Supplementary Material online, and simulated sequences of
length 50 kb consisting of randomly generated strings of four
nucleotides at the beginning of each replicate, with equal
chance of occurrence for each nucleotide. We considered
the Jukes–Cantor substitution model and set the between-
nucleotide mutation rate as l ¼ 8:3� 10�9 per site per
generation, such that the total mutation rate (three times
the between-nucleotide mutation rate) is l ¼ 2:49� 10�8

per site per generation—roughly the same as adopted in the
biallelic balancing selection simulations. We also assumed a
uniform recombination rate of r ¼ 10�8 per site per gener-
ation (Payseur and Nachman 2000). At 500,000 generations
before sampling, we introduced two, three, or four mutations
of distinct nucleotides that have selective coefficient s¼ 0.001
and dominance coefficient h¼ 20. Note that SLiM considers
colocalized mutations of distinct types as if they were at dif-
ferent positions and computes fitness for the individual by
multiplying fitness values of each mutation. That is, a diploid

individual who is heterozygous at a site harboring two distinct
selectively advantageous mutant alleles with parameters
s¼ 0.001 and h¼ 20 would have fitness
ð1þ hsÞð1þ hsÞ ¼ 1:44, whereas a homozygote for either
selectively advantageous mutation would have fitness
1þ s ¼ 1:001. At the completion of the simulation, we sam-
pled 25 diploid individuals uniformly at random from each of
the sister species (P and O1), and one diploid individual was
sampled uniformly at random from species O2, with only one
haplotype of this individual being considered as the reference
sequence. Only biallelic sites were considered in the down-
stream analysis.

Application to Empirical Data
Human Genomic Data from the 1000 Genomes Project
We obtained variant calls from the 1000 Genomes Project
data set (1000 Genomes Project Consortium 2015), which
were mapped to human reference genome hg19, and
extracted the haplotypes for the CEU and YRI populations.
We used the chimpanzee reference genome panTro5 down-
loaded from the UCSC Genome Browser (Kent et al. 2002;
Haeussler et al. 2019) to call ancestral alleles and only retained
mappable monomorphic or biallelic polymorphic sites based
on the variation in the CEU (or YRI) population together with
the chimpanzee reference genome. For mappable sites not
included in the variant call data set, we assumed that the site
is monomorphic for the hg19 reference genome and called
substitutions accordingly.

To avoid making inference on potentially problematic
regions, we applied the RepeatMasker filter and removed
segmental duplications, both of which were downloaded
from the UCSC Genome Browser (Kent et al. 2002;
Haeussler et al. 2019). Genomic regions with mappability
50-mer score (Derrien et al. 2012) lower than 0.9 were dis-
carded as well. Moreover, we performed one-tailed Fisher’s
exact tests for Hardy–Weinberg equilibrium (Wigginton et al.
2005) on each polymorphic site and removed those with a
significant (P < 10�4) excess of heterozygous genotypes.

We applied B2 to each CEU and YRI data set separately,
assuming the human recombination map of the hg19 refer-
ence genome (International HapMap Consortium 2007). We
did not fix the window size of these scans, and instead per-
mitted B2 to optimize over both free parameters A and x. To
better compare our results with previous studies, we also
applied the T2 statistic (DeGiorgio et al. 2014) to the same
input data sets, adopting window sizes of 22 or 100 informa-
tive sites on either side of a test informative site. We also
computed sequence diversity p averaged across each 5-kb
window as a reference.

For downstream examination of the mappability of candi-
date regions, we consulted the 35-mer uniqueness score
(UCSC hg19 database; Kent et al. 2002; Haeussler et al.
2019) averaged across each 1-kb region. Furthermore, we
also downloaded the BAM files for each individual in the
CEU or YRI population and generated per-base read depths
with BEDTools 2.26 (Quinlan 2014). We then computed
sample-wide mean read depths, their standard deviations,
and the number of individuals without coverage for each
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population after merging read depths of all samples with
BEDTools. These references further aided in flagging poten-
tially problematic regions that survived initial filters, as they
typically feature lower mappability (mean 35-mer unique-
ness) or abnormally low or high read depths.

Bonobo Genomic Data from the Great Ape Project
We obtained the genotype calls of 13 bonobos from the Great
Ape Project (Prado-Martinez et al. 2013), which were origi-
nally mapped to human genome assembly NCBI36/hg18. We
lifted over the variant calls to human genome assembly
GRCh38/hg38, so that the bonobo genome assembly
panPan2 can be used for polarizing the allele frequencies,
with the sequence in hg38 considered as the ancestral allele.
Only genomic regions mappable across hg38 and panPan2
were considered for further analyses. For mappable polymor-
phic sites, we only considered biallelic SNPs. For mappable
sites without variant calls in bonobo, we assumed that these
sites were monomorphic for the panPan2 reference genome
sequence and called substitutions based on whether the
panPan2 reference allele was different from the hg38 refer-
ence allele.

To circumvent potential artifacts, we performed one-tailed
Hardy–Weinberg equilibrium tests on each site and removed
sites with an excess of heterozygotes (P< 0.01). This P-value
was determined by the distribution of the P-values of all
polymorphic sites across the genome, such that 0.035% of
such sites are outliers. We also applied the RepeatMasker,
segmental duplication, simple repeat, and interrupted repeat
filters (all downloaded from UCSC Genome Browser) to re-
move repetitive regions. To assess the mappability of each
genomic region, we employed the mappability scores
(obtained by setting the maximum mismatches tolerated
to zero; Derrien et al. 2012) of 50-mers. Regions with 50-
mer mappability scores lower than 0.9 were removed.
Because BalLeRMix employs a prespecified grid of A values
to accompany the distances d in centimorgans, when apply-
ing the method, we assumed a uniform recombination rate of
10�6 cM per site, which is the approximate recombination
rate in humans (Payseur and Nachman 2000).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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