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Abstract

Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epi-
demiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard pro-
blem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees
that must be considered as the problem size increases. A better understanding of the problem space could lead to
better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phy-
logenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can
be used to develop search methods capable of handling much larger data sets.

Background
Phylogenetic analysis has become an integral part of
many biological research programmes. These include
such diverse areas as human epidemiology [1,2], viral
transmission [3,4], and biogeography [5]. With the
advent of new automated sequencing techniques, the
ability to generate data for inferring evolutionary his-
tories (phylogenies) for a great diversity of organisms
has increased dramatically. Researchers are now com-
monly generating many sequences from many indivi-
duals. However, our ability to analyze the data has not
kept pace with data generation.
Phylogenetic search is a difficult problem. When parsi-

mony is used as the optimality criterion the problem is
known to be NP-complete [6]. The search problem
itself, independent of scoring, is known to be NP-Hard
[7]. This means that optimal phylogenetic searches on
even hundreds of taxa will take years to complete and
heuristic searches for near optimal trees must be used.
A variety of heuristic search methods have been used

to find optimal trees within a tree space. The most com-
mon method is to search tree space using tree rearran-
gements [8-11]. Other methods such as those based on
Bayesian inference [12], or genetic algorithms [13] also
exist. However all of these methods rely only on local
information to guide the phylogenetic search. This

limitation arises because no global exploitable structures
have been previously observed in tree space.
Greater understanding of the problem space may allow

more sophisticated search techniques to be applied, with
a consequent improvement in the effectiveness of the
search. One technique that can be used to better under-
stand the space of phylogenetic search, and the behavior
of search algorithms within this space, is visualization.
This includes two separate activities: first, defining the
search space of phylogenetic trees, or tree space, and sec-
ond, developing methods to display tree space in a way
that is exploitable in search techniques.
This visualization must have the following properties

to be useful.

• Each tree should map to a single deterministic
position. Otherwise the method is restricted to post-
processing, and cannot be used to guide a search.
• Distance between trees should be easy to calculate.
If it is not, the visualization will not be able to be
used in real time to guide a search.
• The visualization should reveal exploitable struc-
ture. This is important because if a visualization
shows no structure it provides no guidance for a
search.
• This mapping should be reversible, meaning that
there should be a method of turning a position into
a tree. This is necessary, as to be useful in searching
it must be possible to quickly find trees in the space
suggested by the visualization.
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This work presents an elegant linear projection of
trees. This projection can be computed much faster
than current alternatives and is better at preserving
structural continuity between trees after the projection.
Furthermore this projection is deterministic, allowing it
to be used as an inline rather than a post-process analy-
sis. This property coupled with the structural preserva-
tion allows the consideration of novel search strategies
in the new projected space.
The Results and Discussion section presents a defini-

tion of tree space and an elegant projection of that space
that has all four of these desirable properties. This pro-
jection is then used to visualize the tree space and expose
structure that can be exploited to guide the searches of
common, but computationally expensive, methods.

Related Work
Tree space consists of all of the possible phylogenetic trees
for a given set of taxa and their relationships with each
other. This space is the domain of whatever search strat-
egy is employed. Previous search strategies have not expli-
citly defined this domain, and the tree space that implicitly
arises from these strategies is very cumbersome to work
with. Tree spaces have also been explicitly defined without
designing algorithms to take advantage of these spaces.
This is primarily due to a lack of exploitable structure in
these explicitly defined tree spaces. Figure 1 contains a
visual comparison of three tree spaces that have been used
previously and are discussed in the following sections.

Subtree Transfer Induced Spaces
The most common tree spaces used in phylogenetic
search are the spaces implicitly defined by the subtree

transfer operations, such as Tree Bisection and Recon-
nection (TBR) or Subtree Prune and Regraft (SPR), used
during the search. These operations in turn induce dis-
tances between trees [14]. These tree spaces take the
form of graphs where each node is a specific tree. Each
pair of trees that can reach each other with a single sub-
tree transfer operation is connected with an edge of the
graph.
This type of space is very amenable to hill climbing, a

search strategy in which the search moves from a tree
to its best neighboring tree until no neighbor trees are
better than the current tree. The typical phylogenetic
search begins at some node in this graph of tree space
corresponding to an initial tree. This tree is typically
either selected randomly, determined by the user, or is
built using a heuristic. Common choices for this heuris-
tic include UPGMA and stepwise maximum parsimony.
The tree is then modified using a subtree transfer opera-
tion such as Nearest Neighbor Interchange (NNI), Sub-
tree Prune and Regraft (SPR), Tree Bisection and
Reconnection (TBR), or p-Edge Contraction and Refine-
ment (p-ECR) [15]. The new best node becomes the
starting node and the process is repeated until conver-
gence. This is also the space used by Keith et al. [16] to
build their generalized Gibbs sampler.
Unfortunately, though this space has been commonly

used for searching, it is not easily visualized. For exam-
ple using TBR, a very popular subtree transfer opera-
tion, the graph that represents this tree space has O(n!!)
nodes and each node is degree O(n3). Displaying this
graph is clearly not practical for any problem of signifi-
cant size. Worse, as this tree space is essentially a graph,
there is no significant meaning to position, violating the
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Figure 1 A visual comparison of three tree spaces previously used. The graph structure induced by TBR (a) moves is highly connected. The
geodesic structure (b) consists of tiles of Euclidean space (orthants) each consisting of one topology with all its possible branch lengths. These
tiles are joined together along their edges in accordance with valid p-ECR moves. Finally Multidimensional Scaling (MDS) (c) plots trees in
locations that preserves some distance metric. A typical search is shown where a long tail of trees is followed by a larger group of topologically
similar trees.
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first two criteria for a useful visualization. Also, distance
can be extremely difficult to compute. Calculating TBR
distance is NP-Hard [14]. These difficulties violate the
third criterion. Finally this graph structure shown in
Figure 1a does not exhibit exploitable structure, the
fourth criterion, as trees of similar score are not
grouped together. As shown in Figure 2, the quality of
trees that are within 1 TBR rearrangement of a given
tree varies wildly over the range of possible scores.
Furthermore, due to the graph structure of the space
there is no way to distinguish one such tree from
another, without performing the rearrangement and
examining the resulting tree.

Geodesic Tree Space
Billera et al. [17] introduced a new description of tree
space, which has been further refined by Hultman [18].
Under this description, each fully resolved (bifurcating)
topology is given its own orthant, the higher dimen-
sional analog of a graph quadrant. Each dimension of
the orthant corresponds to one of the branches in the
topology, and the value associated with that dimension
is the length of that branch. Within each orthant, dis-
tance is a simple Euclidean distance. At the edges of the
orthant, where at least one coordinate becomes zero,
the tree becomes an unresolved (multifurcating) tree.
This unresolved tree has a corresponding point on each
of the orthants that represent a potential resolution of
this tree. The distance between these points on separate
orthants is defined to be zero, thus forming a geodesic
space. These connections between orthants are directly

related to p-ECR rearrangements. The structure of this
space can be seen in Figure 1b.
This space is unlike the tree space induced by subtree

transfer operations. The branch lengths of the trees are
included and this tree space is continuous. However,
because it is a geodesic, it can be difficult to calculate
distances, though recent work [19-21] has begun to
address this issue. Unfortunately, like the subtree trans-
fer induced spaces used during phylogenetic search, geo-
desic tree space is not easily visualized due both to the
high dimensionality of each orthant and the complex
connections between orthants. These connections are
based on a subtree transfer operation, p-ECR, and so
like the tree space defined by TBR there is no significant
meaning to position between orthants. Thus, like the
TBR induced tree space, this tree space does not meet
the criteria for a good visualization. While position and
trees are tightly connected, distance is difficult to com-
pute and it is not clear that there is any exploitable
structure.

Multidimensional Scaling
Multidimensional Scaling (MDS) has also been used to
visualize tree space [22,23]. This method does not
directly define a tree space, rather it uses the space
induced by the distance metric used for the MDS. In
both the work of Hillis et al. [23] and the prior work by
Amenta and Kilinger [22], Robinson-Foulds distance
was used. This distance is a measure of how many
branches are not in common between two trees. MDS is
a highly non-linear projection, as it moves points around
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Figure 2 The frequency of various parsimony scores for trees found within 1 TBR rearrangement of a tree with a score of 16,218, the
best known score on the Zilla data set. Note the wide spread of scores and that most neighbor trees are much worse than the initial tree.
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to minimize the sum of the squared differences of the
distances between points before and after the projection.
One difficulty is that in the presence of many points,
clusters formed by MDS may not reflect topological
similarity, but instead reflect the best found compromise
in this strain function.
Using this method Hillis et al. [23] were able to show

some important characteristics of phylogenetic search.
The most notable characteristic visualized was the pre-
sence of plateaus, large groups of closely related trees,
that tend to slow down the search.
There are however some significant limitations to

their use of MDS, which may not apply to the many
variants of Multidimensional Scaling [24] or to other
manifold-based methods. First, MDS is strictly a post-
processing step. All of the points to be projected must
be known beforehand, which limits the method to
analysis of a search. Secondly there is no meaning to
the space between points. It is not possible under
MDS to determine a tree that would map to a specific
point. Third, the axes of the new space have no con-
sistent meaning. The only thing that MDS tries to pre-
serve is some sense of distance; direction does not
have any meaning after MDS is performed. As a result
of these limitations, while MDS is a good visualization
technique it does not meet the criteria of this work.
This is primarily due to the highly non-linear and irre-
versible nature of the MDS transformation. MDS can
be a very descriptive visualization, but it is a poor pre-
dictive visualization.

Results and Discussion
Another tree space is one defined in terms of partitions
of taxa. A projection can be defined from this space
which both deterministically maps trees to single points
and is reversible. These properties give us the first three
criteria for a good tree space and visualization. In the
results section we show that this space also displays
exploitable structure.
There are several varieties of trees that can be used in

phylogenetics. Since only one specific set of n taxa will
be considered at any time we constrain tree space to
contain only trees of exactly those n taxa. Both candi-
date scoring metrics (likelihood and parsimony) work
with unrooted trees so the space is further constrained
to contain only unrooted and fully resolved trees.
Definition 1. An n-tree is a graph in which all ver-

tices have degree one or three, with exactly n vertices of
degree one.
Every branch in an n-tree divides the taxa on the tree

into two sets, one on each side of the branch. Thus
every branch can be thought of as a partition of the
taxa. Some of these branches, those that connect to the
leaves, are common to all n-trees. These branches are

not useful in discriminating between different tree
topologies and so are called trivial.
Definition 2. A trivial branch is a branch that con-

nects a leaf node with an internal node.
Given n taxa there are 2n-1 - n - 1 possible nontrivial

partitions of those taxa. We define a space, called split
space, where every possible nontrivial partition is asso-
ciated with a unique dimension. We denote the split
space associated with trees of n taxa as n .
The location of a given tree in n is a vector, where

each element of the vector is 0 if the corresponding par-
tition is not part of the tree and 1 if the partition is pre-
sent in the tree. There is a one-to-one mapping between
vectors in split space and n-trees.
The mapping from an n-tree to a vector in n is sim-

ple. Initially, every element of the vector is set to 0. A
non-trivial branch is selected and the associated parti-
tion is created by putting all taxa on one side of the
branch into the first group in the partition and all other
taxa in the second. The element in the vector associated
with this partition is set to 1. This process is repeated
for each non-trivial branch. This mapping is one-to-one
but not onto, as there are more possible vectors than n-
trees. This is because there exist conflicting partitions
which cannot both be in one tree; however there are
vectors which would include these conflicts.
Building an n-tree from a vector in n is also possi-

ble. However given a vector that does correspond to a
valid tree, that tree can be reconstructed in the follow-
ing manner. This is very similar to the method proposed
by Gusfield [25]. First, all of the trivial branches are
added to the tree. Next, all non-trivial partitions where
the smaller group contains two taxa are considered.
Each of the two taxa in the smaller group are joined at
a new internal node and a new branch is added to that
node. Next, partitions with incrementally larger small
groups are considered, and their subclades which have
already been built are joined at new internal nodes.
After all non-trivial partitions have been considered,
there will remain three clades. These three subtrees are
joined together at the final internal node and the tree
has been reconstructed. Figure 3 graphically shows this
reconstruction. As there is a mapping from an n-tree to
a vector in n and the reverse mapping also exists,
these trees and vectors are equivalent.

The Hypersphere of Trees
A hypersphere consists of the set of all points which are
equidistant from a given center point. It is the higher
dimensional analog of circles and spheres. The set of all
vectors in n which correspond to valid n-trees has this
structure as shown in Theorem 4.
Lemma 3. All n-trees have 2n - 3 branches, and n - 3

of which are nontrivial.
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Proof. See Waterman [26], Proposition 14.1
Theorem 4. All n-trees lie on a hypersphere in n .
Proof. By Definition 1, n-trees are fully resolved. All

fully resolved trees on n taxa have n - 3 nontrivial
branches by Lemma 3. As each such branch corresponds
to exactly one of the possible partitions, an arbitrary n-
tree in n will have exactly n - 3 axes along which the
coordinate of the tree will be 1 and all other axes will
have a coordinate of 0. The Euclidean distance to this
point from the origin of n will therefore be n − 3 ,
which is the same for all n-trees. As all n-trees are equidi-
stant from the origin, they lie on a hypersphere.

Projecting the Sphere
Directly visualizing the hypersphere model is clearly
infeasible as the number of dimensions that would need

to be included quickly exceeds the number of dimen-
sions that we can conveniently visualize. Therefore
some form of dimension reduction is needed.

Sphere to Plane Projections
Cartographic projections [27] are particularly apt at
sphere to plane transformations. The basic cartographic
projection takes a hypersphere in n dimensions and pro-
jects it onto a hyperplane of n - 1 dimensions. This is
done by selecting n - 1 vectors, typically chosen from a
basis set. Figure 4 shows how this reduction can project
three dimensional data onto two dimensions. The inner
product of each point on the hypersphere to be pro-
jected with each of the selected vectors is computed.
These inner products become the coordinates of the
projected point on a hyperplane of n - 1 dimensions.

i

x

i   x

j    x

j longitude
latitude

x

Figure 4 Cartographic projection of a sphere onto a plane, the most familiar of which is used in map making. Two vectors are selected,
indicated as i and j. For any given point x on the sphere the inner products i • x and j • x are computed. These two quantities become the new
coordinates of the point on the map.
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{3|12456} {4|12356}
{5|12346} {6|12345}
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Begin with trivial branches

1 2 3 4 5 6 {12|3456} {56|1234}

Add branches for partitions of size 2
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1 2 3 4 5 6

Join remaining three branches

Figure 3 Converting a six taxon partition set to an unrooted tree structure.
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This cartographic projection can be extended to a new
projection that reduces the dimensionality of the space
more than the basic cartographic projection. Reducing
the n dimensional space by one dimension when n
grows as the number of possible partition sets is not sig-
nificant. Therefore, rather than choosing n - 1 vectors
which results in a n - 1 dimensional space, three vectors
are used, yielding a three dimensional space. Three
dimensions are used because it is well known how to
display 3-D data, and the use of three dimensions pre-
serves more structure than if the data were reduced to
two dimensions.
As an example of this process, consider all trees with

five taxa numbered 1-5 respectively. Every non-trivial
branch has two taxa on one side and three on the other.
There are ten such partitions, yielding a ten dimensional
space. To project this space onto a two dimensional
plane, two reference vectors are required. The vectors
chosen, along with the projected positions of all five
taxon trees are shown in Figure 5. In these examples
trees are expressed in Newick format, with the taxa
represented by numbers and parenthesis to indicate
clades. The tree ((1,2),3,(4,5)) is mapped in the following
manner. The partition (1,2) has an x value of 1.0 and a
y value of 0.9. Likewise the partition (4,5) has an x value
of -0.3 and a y value of 0.6. These values are added
together to give the final location of the tree ((1,2),3,
(4,5)) at the point (0.7,1.5).
The spherical structure of trees in n shown in Theo-

rem 4, permits the use of cartographic projections. As
this class of projections is deterministic, the position of
a tree after cartographic projection is deterministic and
depends only on the tree in question, thus satisfying the
first visualization criterion. Furthermore the space both
before and after the projection is a simple Euclidean

space where distance is easily calculated, satisfying the
second criterion. The results section shows the exploita-
ble structure revealed by the projection, which satisfies
the third criterion. The projection is also reversible,
which satisfies the final criterion.
Thus, the hypersphere structure and the use of carto-

graphic projections allow us to represent phylogenetic
search in a manner consistent with the original visuali-
zation criteria.

Results
The definitions of n and the cartographic projection
are deterministic, reversible and have an easily calcu-
lated distance metric, fulfilling three of the four criteria
for a useful visualization. The fourth criterion, exploita-
ble structure, is the most important. The cartographic
projection places similarly scored trees together in the
data sets examined. This creates a gradient, an exploita-
ble structure, which allows future work to develop a gra-
dient descent strategy, which would be an improvement
over current hill climbing techniques.

Locality of Structure
To have any exploitable structure there must be some
correlation between position in the projected space
and the topology of the trees near that position. Three
methods will be considered: first, the method of Carto-
graphic Projections, second, Multidimensional Scaling
in two dimensions as in TreeSetVis [23], and finally
Multidimensional Scaling in three dimensions to
account for any effects from the extra degree of free-
dom. The test case will be the exaustive set of all trees
of seven taxa, with each method running 100 times as
they all have random elements. Once each projection
is calculated, the nearest m neighbors for every tree
are found, with m ranging from 0 to 25. A majority
rule consensus tree is then constructed for each of
these neighborhoods. This tree contains only those
partitions which are present in a majority of the trees
in a neighborhood. The resolution of these trees is
reported, with a value of 1 indicating that the tree was
fully resolved and a value of 0 indicating that the tree
was fully unresolved.
Figure 6 shows the results of this test. The points are

plotted with the minimum, average and maximum values
for the resolution. Note that cartographic projections are
superior to both two and three dimensional MDS in every
case. Not only are close trees more structurally similar,
but also the neigborhoods over which some degree of
topological similarity is found are much larger. It is thus
concluded that cartographic projections produce, in terms
of topology, a smoother mapping of tree space. Further
this superiority is not due to the added flexibility of pro-
jecting onto three dimensions rather than two.
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Results from Nine Taxon Set Exhaustive Searches
To explore the inherent structure of the maximum par-
simony problem, several nine taxon data sets out of
BAliBASE [28] were fully analyzed. The data set size
was selected because with only 135,135 possible solution
trees, it was very feasible to exhaustively enumerate all
solutions for many different data sets of this size and to
plot all of the points. Each set was exhaustively enumer-
ated and scored using PAUP* [10]. The three reference
points for the projection were chosen at random. Under
this projection each of the possible trees mapped to a
unique point in the new three dimensional space. The
same projection was used for all of the data sets. These
points were then colored according to the parsimony
score of the corresponding tree, with white indicating a
poor score and black indicating a good score.
In all of the data sets, there is significant exploitable

structure. In some, such as that shown on the right in
Figure 7, a clear nearly linear gradient was visible
throughout the entire cloud of possible trees. While in
others, such as that shown on the left in Figure 7, clus-
tering of scores is clear. Even though the gradient was
much more complex, it would still be possible to use
gradient descent.

Visualizing an Exhaustive Search with MDS
The tool TreeSetViz was used to produce a visualization
of a complete data set for comparison with our carto-
graphic projections. Due to the very high memory
requirements of multi-dimensional scaling, it was not

possible to use a nine taxon data set. An eight taxon sub-
set was used instead. The program was run overnight to
allow the program adequate time to converge to the
mapping shown in Figure 8.
A few features are noteworthy. First, the circular

shape, which is a result of the hyperspherical nature of
tree space. As all of the trees lie on the surface of a spe-
cific sphere, the best MDS solutions are circular. Also
the MDS clustering, like the cartographic projection, has
a large concentration of good trees. Unlike the carto-
graphic projection of these 8 taxon sets (result not
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Figure 7 Two distinct 9 taxon data sets under cartographic
projection. Dark points represent trees with better scores. The set
on the left shows clear clustering with good trees near the center
of the cloud. The set on the right shows a gradient, with good
trees at the upper point of the cloud.
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shown), however, the MDS formed two separate clusters
and also has a scattering of good trees throughout a
large portion of the visualization. Although it is not
clear that the clustering of scores caused by MDS is
inferior to that of cartographic projections, it is crucial
to note that MDS is a post process step and cannot be
used to guide a search. Therefore any structure is inher-
ently not an exploitable structure.

Results from Large Data Set Searches
It is not practical to exhaustively search the tree space
associated with a large data set. Instead the phylogenetic
search program PSODA [29] was modified to output
every tree that it was going to perform a TBR rearrange-
ment on, and every 100th rearrangement so produced.
This gives not only the path of best trees found by the
search as it progressed, but also a sampling of the trees
that were rejected.
Figure 9 shows a projection of a TBR search with the

Zilla data set [30] using cartographic projections. Again,
a clustering of scores is apparent among the trees con-
sidered by the search, revealing exploitable structure in
this difficult data set.

Future Work
The cartographic projection from the hypersphere of
trees has revealed significant structure to the problem of
phylogenetic search. Further contributions can be made
in improving our understanding of the revealed struc-
ture. More importantly new search techniques can be
developed that can exploit this structure.

Axis Optimization
The current projection from split space to the 3-D
visualization is based on the random selection of the
points in split space. These points are guaranteed to
result in linearly independent reference vectors and are
very likely to result in vectors which are orthonormal
as well. Although the initial random selection provides
encouraging results, a more intelligent selection of
basis vectors could improve the quality of the
visualization.

Improved Phylogenetic Searches
There are two directions in which to take this work
with respect to improving phylogenetic searches by uti-
lizing the structure seen in the visualization. The first is
to create a human guided search. As the projection
from split space to the visualization is a simple linear
transformation, it is possible to select a point in the
visualized space and calculate the subspace of split
space that corresponds to that point. A tree or trees in
that subspace would then be generated and added to
the list of trees used in a typical TBR based search,
thereby restarting the search from the desired location.
The second approach is to calculate and directly use
the apparent gradient seen in the visualization to find
better trees.

Conclusions
This cartographic projection from n fulfills all defined
criteria for a good visualization. First the mapping from
n-trees to n is one-to-one and further the cartographic
projection for n to R3 is linear. This means that each
tree maps to exactly one point, and this point is not

Figure 9 Projection of a search through the Zilla 500 taxa data
set.

Figure 8 A multi-dimensional scaling (MDS) visualization of an
exhaustive search of 8 taxa. Dark points represent trees with
better scores. Note that there is some clustering of good trees but
that they can be found throughout the visualized set.

Sundberg et al. Algorithms for Molecular Biology 2010, 5:26
http://www.almob.org/content/5/1/26

Page 8 of 13



affected by any outside influences. Also because the
mapping is linear, it is reversible, which meets the sec-
ond criterion. Euclidean distance in n is easy to calcu-
late. Robinson-Foulds distance is also closely related to
n as both definitions are based on the partition sets of
trees. Either of these distance metrics are easily calcu-
lated and meet our third criterion.
More importantly, the use of a cartographic inspired

projection has revealed significant structure to the pro-
blem of phylogenetic search. The visualization shows a
general clustering of trees with similar scores, and in
some data sets a clear gradient structure is observed.
This promises to be useful in furthering our understand-
ing of the problem of phylogenetic search and for
informing the development of new methods in the field.
These new methods will expand our ability to perform
phylogenetic analysis which has implications for many
biological fields.

Methods
The extremely high dimensionality of n makes explicit
storage of the three reference vectors needed for the carto-
graphic projection infeasible. Likewise, due to the size of
these vectors the typical calculations used for computing
inner products require infeasible amounts of time. A naïve
implementation of cartographic projections is adequate for
very small numbers of taxa, but more sophisticated techni-
ques are required for most data sets.

Hash Table Vector Representations
The memory usage of a straightforward implementation
of cartographic projections is exponential in the number
of taxa. Rather than explicitly storing the very large
reference vectors a hash table representation is chosen.
This representation has a fixed memory size, which can
be arbitrarily chosen independently of the number of
taxa. A similar hash table was used by Pattengale et al.
[31] to quickly compute RF distances. Many of the
assumptions necessary for computing RF distances, such
as a small incidence of collisions, are violated in this
work. However, the similarities do help to explain why
the method of cartographic projections does so well at
preserving RF distances.
To construct this table, a hash function and three

representative vectors of a feasible dimensionality, one
for each reference vector, are chosen. The hash function
chosen must have a range equal to the set of nonnegative
integers up to the dimensionality of the reference vectors
and a domain equal to the set of natural numbers up to
the dimensionality of the representative vectors.
Together these representative vectors and the hash

function are used to compute the elements of the
reference vectors as needed. The ith element of each
reference vector is defined to be the element of the

corresponding representative vector with the hashed
value of i as follows:

X Xi h i← ( )
’ (1)

This representation allows a fixed amount of memory
to be adequate for data sets of any number of taxa. This
bound on memory usage is critical for the visualization
of large data sets.

Orthogonality and Normalization of the Reference
Vectors
It is desirable that the three reference vectors be ortho-
gonal to each other and also that they be normalized, so
that we have an orthonormal basis for visualization. As
the dimension of the three reference vectors is very
large it is not practical to directly enforce either of these
constraints. An additional complication is that each
reference vector is not explicitly stored, but is instead
implicitly defined by its representative vector and the
hash function. Yet, with these constraints it is still possi-
ble to make the reference vectors mutually linearly inde-
pendent and give bounds on their normality and
orthogonality. These bounds and their proofs are given
later in this section.
If the representative vectors are made to be orthogonal

then regardless of the choice of hash function, the true
reference vectors are linearly independent by Theorem 9.
The quality of the orthogonality property of the reference
vectors is dependent on the quality of the hash function
as shown in Theorem 10. Given the size of the represen-
tative vectors used (65,535 elements) and only 20 taxa
the angle between reference vectors is 90 ± 7.32 × 10-5

degrees, very close to orthogonal. As the number of taxa
increases this bound becomes even tighter.
Normalizing the reference vectors is more difficult.

Due to the finite precision arithmetic of computers, it is
not possible to normalize the reference vectors to unit
length. As the vectors have a very high dimensionality,
normalization tends to make each individual element
too small to be represented, which in turn results in all
of the reference vectors becoming the zero vector. As
an alternative, each representative vector is made to
have the same length as the others, without constraining
this length to be one.
Again the normalization can only be performed on the

representative vectors in the hash table. However Theo-
rem 11 shows that the reference vectors are also normal
if the hash function is perfectly even and gives a bound
on how far off of normal the vectors can be in every
other case.
The bounds given do not depend on the hash func-

tion, so any good hash function should be adequate.
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Bob Jenkins’ one-at-a-time hash function [32] was used
for the results in this paper.

Calculating the Inner Product
The naïve method of calculating an inner product grows
linearly with the dimension of the two vectors involved.
Unfortunately, in this case the size of those vectors grows
as the combinations of taxa. This method therefore gives
worse than exponential performance with respect to
number of taxa. However, for any given tree of n taxa,
the vector representing that tree will have exactly n - 3
non-zero components by Lemma 3. Furthermore, each of
these will be exactly one by the definition of trees in n .
These two properties can be exploited to give an algo-
rithm that computes the needed inner products in time
O(n), where n is the number of taxa.
This method begins with a hash table. Each element of

the hash table contains one element from each of the
reference vectors. The keys into the hash table are parti-
tion sets. The mapping of a tree is accomplished with
the following steps.

• A list of the n - 3 partition sets is built: O(n)
• Each partition is used to lookup a set of x, y, and z
values in the hash table: O(1) * O(n)
• The n - 3 values are summed giving the final map-
ping: O(n)

These steps give an overall runtime execution of O(n).
For example, consider all trees of five taxa numbered 1-

5 respectively. Every non-trivial branch has two taxa on
one side and three on the other. The hash function will
be computed as follows; add the taxon numbers of the
two taxa on one side, then divide this sum by three and
take the remainder as the value of the hash function.
There are three possible values for this hash function 0,
1, and 2. Figure 10 shows the full reference vectors. A
reference vector is assigned to each of these values. The
reference vectors will be axis-aligned unit vectors, the
value of 0 will correspond to the vector (1.0,0.9), 1 to the
vector (-0.9,0.9) and 2 to the vector (-0.8,-0.8).
This scheme gives six possible locations for each of

the fifteen possible trees to map onto, one of which
does not correspond to any valid trees. These locations
are all shown in Figure 10. In this example the tree
((1,2),3,(4,5)) maps to the point (2.0,1.8). The partition
(1,2) as well as the partition (4,5) both map to the vec-
tor (1.0,0.9), these results are added together to obtain
the final location of the tree.
This method has two main advantages. First the time

needed to compute the inner product scales with the
number of taxa rather than with the dimensionality of
split space. Secondly only a fixed amount of storage for

the hash table is required, regardless of the number of
taxa in the tree. This upper bound on necessary storage
makes the visualization of larger data sets feasible.

Proofs
As givens in all of the following proofs are two vectors
X and Y, each of dimension d. These vectors are arbitra-
rily chosen orthogonal vectors. They are also used to
construct two vectors X’ and Y’, each of dimension d’,
using a hash function h.
This paper used three vectors of dimension 65535,

with elements chosen randomly with a uniform distribu-
tion from [-1,1]. Using the Gram-Schmidt method these
vectors were all made to be orthogonal to each other.
Finally they were each modified to make their magni-
tudes equal to the magnitude of the first vector.

Definitions
Definition 5. h is a function with the following proper-
ties:

range h d

d domain h

( ) ⊂ <{ }
< ′{ } ⊂ ( )




(2)

Such a function is easily constructed. One such func-
tion when d <d’ is h(x) = x mod d.
Definition 6. X’ and Y’ are two vectors constructed

from X, Y, and h as follows:

X X

Y Y

i h i

i h i

’

’

←

←

( )

( )
(3)

−0.9

−1 2102−

−2

−1

0

1

2

3,5
2,3
1,4

3,4
2,5
1,3

1,2
1,5
2,4
4,5

Hashed
ValuePartition

0

1

2

Tree

1
0
0
1

0
0
0

0
0
0

x

−0.8

1.0

y

−0.8

0.9

0.9

Figure 10 A 2-D cartographic projection of all 5 taxon trees,
with reference vectors represented through a simple modulo 3
hash. Under this simple hash function and small representative
table size there are only 5 locations which correspond to valid trees.
This projection is therefore not one-to-one. In practice this
possibility is mitigated by using a larger table. The vector for the
tree ((1,2),3,(4,5)) is also shown. The point corresponding to this tree
is highlighted in the graph.
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Definition 7. The frequency with which h maps any
number j onto a given number i is

f

h j i

h j ij

d

di =

( )=
( )≠

⎧
⎨
⎪

⎩⎪=

′
∑

′

1

01 (4)

Note that fi has the following bounds:

∀
′

≤ ≤
′− +

′
i

d
f

d d
di,

1 1
(5)

Definition 8. ξ, the quality of the function h, is a
measure of how evenly the elements of X’ and Y’ are
mapped by h onto X and Y.

∃ ∀
′

+ ≥ s t i
d
d

fi. . , (6)

Note that due to the bounds on all fi, ξ has the follow-
ing bounds:

0
2 1≤ ≤

′− +
′

 d d
d

(7)

Theorems
Theorem 9. Given two orthogonal vectors X and Y, two
arbitrarily larger vectors X’ and Y’ can be constructed
such that they are linearly independent.
Proof. As X and Y are orthogonal, they are also line-

arly independent. That is to say:

∀ ≠
∀ ∀ ∈ <{ } ≠

∀ ∃ =

∀ ∃ =

( )

s sX Y

s i d sX Y

k j X X

k j Y

i i

k h j

k

,

,

,

,

’

’



Definition 6

YYh j( )

(8)

Thus all equations of the form

sX Y j range hj j≠ ∈ ( ): (9)

can be rewritten as

sX Y k domain hk k
’ ’ :≠ ∈ ( ) (10)

In this fashion

∀ ∀ ∈ <{ } ≠

∀ ∀ ∈ < ′{ } ≠
∀ ′ ≠ ′

s i d sX Y

s j d sX Y

s sX Y

i i

j j





,

,

,

’ ’ (11)

From which it is clear that X’ and Y’ are linearly
independent.
Theorem 10. Given two orthogonal vectors X and Y,

two arbitrarily larger vectors X’ and Y’ can be constructed
such that they are orthogonal within a given bound.
Proof. Using Definition 7 the inner product 〈X’|Y’〉 can

be written in terms of X and Y.

′ ′ =

= ′

=

′

=

∑

∑

X Y X Y

d f X Y

i i

i

d

j j j

j

d

’ ’

1

1

(12)

As X and Y are orthogonal, their inner product 〈X|Y〉
= 0; therefore either

∀ =i X Yi i, 0 (13)

and clearly

∀ ′ ′ = X Y 0 (14)

or

∃ >
∃ <

i X Y

j X Y
i i

j j

,

,

0

0
(15)

In this second case it may not be true that X’ and Y’ are
orthogonal. Even so there are bounds on 〈X’|Y’〉. The lar-
gest possible magnitude of 〈X’|Y’〉 occurs when h maps
each member of {N <d} to one member of {N <d’} with
the exception of one element of {N <d} which maps to
the remaining elements of {N <d’}. Furthermore, that
sole exception corresponds with the largest magnitude of
XiYi. In this case the inner product is given by

′ ′ =
′−

′ ′
+

′

=
′−

′
+

′

=
∑X Y

d d
d d

X Y
d

X Y

d d
dd

X Y
d

i i j j j

i

d

i i

1

1





argmax

argmaax

argmax

argmax

j j j

i

d

j j j

j j j

X Y

d
X Y

X Y
d d

d
X Y

=
∑

= +
′

′ ′ ≤
′− +

′

1

0

2 1
2



(16)

The angle θ between X’ and Y’ is given by

cos =
′ ′
′ ′

X Y

X Y
(17)
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Applying the bound on 〈X’|Y’〉, and the bounds on the
magnitudes of X’ and Y’ from Theorem 11

cos ≤

′− +
′

d d

d
jX jY j

X Y

2 1
2

argmax
(18)

As X and Y are arbitrary but constant expressions,
note that

lim cos
′→∞

=
d

 0 (19)

Therefore as the number of taxa increases the vectors
in question approach orthogonality.
Theorem 11. Given two vectors of equal magnitude X

and Y, two arbitrarily larger vectors X’ and Y’ can be
constructed such that they are also of equal magnitude
within a given bound.
Proof. As X and Y are of equal magnitude it is the case

that

X Yi

i

d

i

i

d
2

1

2

1= =
∑ ∑= (20)

The magnitude of X’ is bounded above by

′ = ′

= ′

≤ ′
′

+⎛
⎝⎜

⎞
⎠⎟

≥ + ′

=

′

=

=

∑

∑

∑

X X

d f X

d
d
d

X

d d X

i

i

d

i i

i

d

i

d

i

2

1

2

1

1

2



(21)

As the range of h is in {N <d} every element of X is
also an element of X’. Therefore

X X≤ ′ (22)

The magnitude of Y’ is bounded in the same fashion.
The ratio of the two magnitudes is bounded as follows

1
d d

X

Y
d d

+ ′
≤

′
′

≤ + ′


 (23)

Additionally, if ξ = 0 then

′ =

=

′ =

=

=

=

∑

∑

X d X

d X

Y d Y

d Y

i
i

d

i
i

d

2

1

2

1

(24)

and the two vectors have equal magnitude
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