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Aim: The objective of this study was to evaluate the antitumor activity of lipophilic bismuth 

nanoparticles (BisBAL NPs) on breast cancer cells.

Materials and methods: The effect of varying concentrations of BisBAL NPs was evaluated 

on human MCF-7 breast cancer cells and on MCF-10A fibrocystic mammary epitheliocytes as 

noncancer control cells. Cell viability was evaluated with the MTT assay, plasma membrane 

integrity was analyzed with the calcein AM assay, genotoxicity with the comet assay, and 

apoptosis with the Annexin V/7-AAD assay.

Results: BisBAL NPs were spherical in shape (average diameter, 28 nm) and agglomerated 

into dense electronic clusters. BisBAL NP induced a dose-dependent growth inhibition. Most 

importantly, growth inhibition was higher for MCF-7 cells than for MCF-10A cells. At 1 µM 

BisBAL NP, MCF-7 growth inhibition was 51%, while it was 11% for MCF-10A; at 25 µM 

BisBAL NP, the growth inhibition was 81% for MCF-7 and 24% for MCF-10A. With respect 

to mechanisms of action, a 24-hour exposure of 10 and 100 µM BisBAL NP caused loss of 

cell membrane integrity and fragmentation of tumor cell DNA. BisBAL NPs at 10 µM were 

genotoxic to and caused apoptosis of breast cancer cells.

Conclusion: BisBAL NP-induced growth inhibition is dose dependent, and breast cancer cells 

are more vulnerable than noncancer breast cells. The mechanism of action of BisBAL NPs 

may include loss of plasma membrane integrity and a genotoxic effect on the genomic DNA 

of breast cancer cells.

Keywords: antitumor activity, bismuth nanoparticles, breast cancer, chemotherapy, 

cytotoxicity

Introduction
Breast cancer continues to be a major challenge for modern medicine worldwide.1 

Despite the efforts of the chemical and medicinal industry, breast cancer prevalence 

is expected to rise.2 Conventional treatments, including surgery, chemotherapy, and 

radiation, not only kill tumor tissue but also healthy tissue. Chemotherapy is the treat-

ment of choice for localized and metastasized cancers. Cancer tissue distinguishes 

itself from normal tissue in the following aspects: sustained proliferative signaling, 

evasion of growth suppressors, resistance to cell death, replicative immortality, induc-

tion of angiogenesis, invasion, and metastasis.3 Traditional chemotherapy not only 

kills the tumor but also damages normal healthy tissue. There is an ongoing effort for 

developing selective antitumor agents that attack tumor tissue with a higher efficacy 

while sparing healthy tissue and diminishing side effects. Several metallic nanostruc-

tures, including silver, gold, and selenium nanoparticles (NPs), have been analyzed 
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to inhibit the growth of breast cancer cells.4–6 Nonmetallic 

NPs have been used as a vehicle for “specific drug delivery” 

at the tumor site.7

Bismuth is the heaviest member of the pnictogen group 

and is often referred to as a “green” element.8 In medicine, 

bismuth subsalicylate (ie, Pepto-Bismol) is used to treat 

diarrhea, indigestion, and nausea. Although bismuth has no 

direct application against cancer cells, several bismuth-based 

compounds have potent anticancer activity, eg, thiosemi-

carbazone, hydrazone, and dithiocarbamate.9–12 Hydrazone 

derivatives are well-known to possess antimicrobial activ-

ity, but the Bi(III) hydrazine complex proved to be the most 

active form against several cancer cell lines (Jurkat, HL60, 

MCF-7, and HCT-116).13,14 A novel bismuth–sulfapyridine 

complex that inhibits the growth of leukemia cells (K562)15 

and heterocyclic organobismuth(III) compounds, which were 

investigated as antimicrobial agents, turned out to have sig-

nificant anticancer activity against several human cancer cell 

lines.16 Interestingly, the aforementioned bismuth compounds 

have both antimicrobial and anticancer activities. Recently, 

our group described the excellent antimicrobial properties 

of lipophilic bismuth NPs (BisBAL NPs) with a minimal 

inhibitory concentration of 5–10 µM against several oral 

pathogens.17 However, the potential anticancer activity of 

bismuth NPs has not been extensively explored. A recent 

report describes how tumor-targeted bismuth NPs enhanced 

X-ray radiation therapy against breast cancer cells.18

In this work, we report for the first time that BisBAL 

NPs selectively inhibit the growth of breast cancer cells in a 

dose-dependent way. BisBAL NPs seem a promising innova-

tive alternative in cancer chemotherapy that deserves to be 

evaluated in other cancer cell lines and animal models.

Materials and methods
Synthesis and characterization of 
BisBAL NPs
To synthesize BisBAL NPs, the colloidal method according to 

Badireddy et al was used.17 Briefly, 0.485 g of Bi(NO
3
)

3
•5H

2
O 

was dissolved in 20 mL propylene glycol, heated to 80°C, 

and agitated for 2 hours to obtain a 50 mM Bi3+ solution. 

A 2:1 molar ratio of Bi3+ (Bis) to 2,3-dimercapto-1-propanol 

(BAL) was prepared by adding 25 µL 10 M BAL to 10 

mL 50 mM Bi3+ solution. A stock suspension of 25 mM 

BisBAL NPs was prepared by adding 0.85 volumes (V) 

of ice-cold ultrapure water and 0.15 V of freshly prepared 

ice-cold 75 mM NaBH
4
 to 5 mL 50 mM BisBAL NP under 

continuous vigorous mixing; the pink-colored BisBAL solu-

tion instantly transformed to a black-colored suspension of 

BisBAL NPs. The distribution of BisBAL NP’s size and 

shape was analyzed with scanning electron microscopy 

(SEM; Nova NanoSEM 200, FEI Company, Eindhoven, the 

Netherlands; 15 kV). The presence of bismuth was corrobo-

rated by energy-dispersive X-ray spectroscopy (EDS) SEM. 

For structural analysis, X-ray diffractometry patterns were 

obtained from water-washed (three centrifugation cycles, 

16,100×g, 30 seconds), air-dried BisBAL NPs (deposited 

several times on a glass slide overnight) using an X-ray dif-

fractometer (Panalytical X’Pert PRO MRD) equipped with 

Cu Kα as an X-ray source (λ=1.541874 Å). The ultraviolet 

(UV)-visible spectrum of the BisBAL NP suspension was 

recorded using a spectrophotometer (SpectraMax Plus384 

Absorbance Microplate Reader; Molecular Devices, LLC, 

Sunnyvale, CA, USA).

Cell culture
The human breast carcinoma cell line MCF-7 was obtained 

from the American Type Culture Collection (ATCC HTB-22; 

ATCC, Rockville, MD, USA). A fibrocystic mammary gland 

epithelial cell line, MCF-10A (ATCC CRL-10317; ATCC) 

was used as a nontumor control. MCF-7 cells were culti-

vated in DMEM/Ham’s F12 (DMEM/F12) supplemented 

with 10% FBS (Gibco-Invitrogen, Carlsbad, CA, USA) 

and 100 U/mL penicillin, 100 µg/mL streptomycin, and 

0.25 µg/mL amphotericin B (Sigma-Aldrich Corporation, 

St Louis, MO, USA) in cell culture flasks (Corning Inc., 

Corning, NY, USA) at 37°C in a humidified atmosphere 

with 5% CO
2
.19 MCF-10A cells were cultivated in mammary 

epithelial cell growth medium supplemented with 100 ng/mL 

cholera toxin in cell culture flasks (Corning Inc.) at 37°C 

and 5% CO
2
. Cells of a confluent monolayer were harvested 

by scraping, washed three times with 10 mM PBS, pH 7.4 

(PBS), and counted with a hemocytometer.

MTT cell viability assay
The effect of BisBAL NPs on MCF-7 and MCF-10A cell 

number was evaluated using the MTT cell viability assay 

(Biotium, Hayward, CA, USA).20 Then, 1×105 cells were 

incubated with 0, 0.125, 1, 10, 25, 50, and 100 µM of BisBAL 

NPs or 1,000 µM doxorubicin (Doxolem, Teva Lab, Madrid, 

Spain). The treatment was terminated by washing the cells 

with PBS. Next, cells were incubated with MTT (10 µL/

well) at 37°C and 5% CO
2
 for 2 hours in the dark according 

to the manufacturer’s instructions. Next, the medium was 

removed, and 100 µL of dimethylsulfoxide (DMSO) was 

added to dissolve the reduced MTT formazan product. To 

quantify the reduced MTT, the absorbance at 570 nm (A
570

) 
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was measured by microplate absorbance reader (BioTek, 

Winooski, VT, USA); DMSO served as a blank. The assay 

was performed in triplicate.

Cell membrane permeability by 
fluorescence microscopy
Calcein AM is an excellent tool to study cell membrane 

integrity. Calcein AM is membrane-permeant and can be 

introduced into cells via incubation. Once inside the cells, 

nonfluorescent calcein AM is hydrolyzed by endogenous 

esterase into a highly charged green fluorescent molecule 

that is retained in the cytoplasm of living cells. Therefore, 

intracellular calcein AM in living cells was interpreted as 

a signal of intact cell membrane. This assay was used to 

analyze the cell membrane permeability of MCF-7 cells 

after a 24-hour exposure to 0, 1, 10, and 100 µM BisBAL 

NP; 0 µM BisBAL NP, ie, cells exposed to pure culture 

medium, served as a growth control. After incubation, cells 

were washed three times with PBS and stained with 2 µM 

calcein AM (Biotium) for 30 minutes at 37°C.21 Nuclei of 

MCF-7 cells were stained with 1 µg/mL DAPI (Abcam Inc, 

Cambridge, UK).22 Next, cells were washed again with PBS 

and air-dried in the dark. Cell morphology was observed with 

fluorescein isothiocyanate (FITC) and DAPI filters at 485 and 

358 nm, respectively (Thornwood, NY, USA). A degraded 

or amorphous nucleus was interpreted as a potential geno-

toxic effect.

Genotoxicity by comet assay and 
fluorescence microscopy
To determine the possible genotoxic effect of BisBAL NPs, 

MCF-7 cells were incubated overnight at 37°C/5% CO
2
 

with 1 or 10 µM BisBAL NP, 100 µM etoposide (Sigma) as 

a positive control, or culture medium as a growth control. 

After incubation, cell damage was determined with the 

OxiSelect™ Comet Assay Kit (Cell Biolabs, Inc, San Diego, 

CA, USA) according to the manufacturer’s instructions.23 

Briefly, cells were harvested by scraping and centrifugation 

(700×g, 2 minutes) and washed with PBS. Cell suspensions 

were mixed with liquefied Comet Agarose at a 1:10 ratio (v/v) 

and pipetted on an OxiSelect Comet Slide (75 µL/well). After 

a 15-minute embedding step (4°C, dark, horizontal posi-

tion), cells were lysed (25 mL lysis buffer/slide, 30-minute 

incubation, 4°C, dark, horizontal position) and treated 

with an alkaline solution (25 mL/slide, 30 minutes, 4°C, 

dark) to relax and denature the DNA. Finally, the samples 

are electrophoresed in a horizontal chamber (300 mA for 

30 minutes) to separate intact DNA from damaged fragments. 

Next, samples are washed with sterile MilliQ water, treated 

with 70% cold ethanol for 5 minutes, air-dried, and stained 

with the DNA dye DAPI (100 µL/well), and viewed with an 

epifluorescence microscope using a DAPI filter (Thornwood, 

NY, USA).

Apoptosis evaluation by 
phosphatidylserine-expressing plasma 
membrane by fluorescence microscopy
In healthy cells, phosphatidylserine is located in the inner 

leaflet of the plasma membrane. Apoptotic cells, on the 

contrary translocate phosphatidylserine to the outer leaflet 

of the plasma membrane to be recognized by phagocytes. 

In order to analyze whether BisBAL NPs promote apopto-

sis among cancer cell lines, the CF®488A Annexin V and 

7-AAD Apoptosis Kit (Biotium) was used according to 

the manufacturer’s instructions. Briefly, cells (1×104/well 

in a 96-well plate) were cultured for 24 hours at 37°C/5% 

CO
2
 in DMEM/F12 and exposed for 3 hours to 1 or 10 µM 

BisBAL NP, 100 µM etoposide (Sigma) as positive con-

trol of cell death, or pure culture medium as a growth 

control. Next, cells harvested by scraping were washed 

three times with PBS, resuspended in 100 µL 1× annexin 

binding buffer, and incubated (30 minutes, on ice, dark) 

with 5 µL CF488A-Annexin V and 2 µL of 7-AAD work-

ing solution. Next, cells were observed with a fluorescence 

microscope using FITC and CY5 filters (Thornwood,  

NY, USA).

Statistical analysis
A multiple comparison 2-way ANOVA with Tukey’s correc-

tion was used to compare all groups. For all statistical tests, 

a significance level of α=0.05 was considered.

Results
Characterization of BisBAL NPs
The obtained BisBAL NPs were spherical in shape with 

an average diameter of 28 nm. The NPs were composed of 

rhombohedral crystallites (≈18 nm) with dithiols as lipo-

philic surface groups and the lattice spacing of individual 

crystallite was 0.325 nm. The specific presence of bismuth 

was confirmed by EDS-SEM. The BisBAL NPs formed 

electrodense clusters (Figure 1). UV-visible absorbance 

revealed that BisBAL NPs had a higher (≈70%) affinity for 

1-octanol rather than for water, consistent with a lipophilic 

property of the dithiols bound to NP surface. BisBAL NPs 

resulted to be stable for at least 2 months at 4°C and room 

temperature.
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Antitumor activity
MCF-7 tumor cells that had been exposed to 1 µM BisBAL 

NP grew 50% less than MCF-7 that had not been exposed to 

BisBAL NPs (Figure 2). Unlike tumor cells, the growth of 

control cells decreased only 10.5% (Figure 2). When exposed 

to a higher dose (25 µM BisBAL NP), tumor cell growth was 

80.4% less and control cells grew 26% less than nonexposed 

cells. Exposure to 1,000 µM doxorubicin diminished MCF-7 

cell growth by 98%. Thus, BisBAL NPs selectively inhibit 

tumor cell growth in a dose-dependent way.

Cell membrane permeability alteration 
after exposure to BisBAL NPs
After a 24-hour exposure to 1 µM BisBAL NP, MCF-7 

morphology changed; cells rounded up and released calcein 

AM, indicating loss of cell membrane integrity (Figure 3). 

This effect was more pronounced after exposure to 10 µM 

BisBAL NP, whereas after exposure to 100 µM BisBAL NP 

only cell debris was observed. These results are consistent 

with the MTT cell viability assay results, where 95% of tumor 

cells died at 100 µM BisBAL NP.

Genotoxic assays
Possible damage to genomic DNA of breast cancer cells was 

analyzed with the comet assay and fluorescence microscopy, 

in which 100 µM etoposide served as a positive control of 

DNA break induction. As of 10 µM BisBAL NP, “comets” 

identical to the ones in the etoposide control were observed 

(Figure 4), suggesting that 10 µM BisBAL NP promotes 

DNA strand breaks. Interestingly, 1 µM BisBAL NP did 

not alter genomic DNA.

Apoptosis assays
Programmed cell death is a response to different kinds of 

stimuli. To analyze if BisBAL NPs could induce apop-

tosis among MCF-7 cells, the Annexin V, 7-AAD assay, 

θ

Figure 1 Characterization of lipophilic bismuth nanoparticles (BisBAL NPs).
Notes: (A) Shape, size, and shape-and-size distribution of BisBAL NPs were obtained by scanning electron microscopy. (C) The presence of bismuth was confirmed by the 
emission lines characteristic of this element, as can be seen in the spectrum. The signal at 1.486 keV is due to the aluminum substrate where the sample was placed. (B) and 
(D) The UV-visible absorbance and the X-ray diffractometry pattern of BisBAL NPs.
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and fluorescence microscopy were used. BisBAL NPs at 

1–10 µM yielded results that were very similar to the posi-

tive control of 100 µM etoposide (Figure 5). In contrast, 

no signals of programmed cell death were observed in the 

growth control. Altogether these results suggest that low 

concentrations of bismuth NPs promote apoptosis among 

breast cancer cells.

Discussion
To claim antitumor property of any compound, it is funda-

mental to demonstrate cell death or loss of basic cell metabo-

lism after exposure to the compound of interest. Programmed 

cell death is a highly complex process by which the cell 

activates its own machinery for self-destruction in response 

to a variety of stimuli, which has led to a classification of 

Figure 2 Antitumor activity of BisBAL NPs on the human breast cancer cell line MCF-7.
Notes: Cell viability of MCF-7 (human breast cancer cell line) and MCF-10A (nontumor human breast cancer cell line) was determined by the MTT cell viability assay at 
A570 after a 24-hour exposure to 0, 0.125, 1, 10, 25, 50, and 100 µM BisBAL NP and 1,000 µM DOX (positive control of cytotoxicity). After a multiple comparison 2-way 
ANOVA with Tukey’s correction, all samples were significantly different (P,0.0001), except for: 1) 50 vs 100 µM BisBAL NP exposure for MCF-7 cells, 2) 0 vs 0.125 µM 
BisBAL NP exposure for MCF-10A cells, and 3) among 10 and 25 µM BisBAL NP, and 1,000 µM DOX exposure for MCF-10A cells. Bars indicate mean±SD (n=4 for MCF-7 
and n=3 for MCF-10A).
Abbreviations: DOX, doxorubicin; BisBAL NPs, lipophilic bismuth nanoparticles.

Figure 3 Effect of BisBAL NPs on cell membrane integrity of breast cancer cells evaluated with the calcein AM assay.
Notes: Fluorescent (485 nm) calcein AM distribution (within or outside MCF-7 cells) after a 24-hour exposure to 1, 10, or 100 µM BisBAL NP for 24 hours. Red arrow 
indicates released calcein AM. Bar, 5 µm.
Abbreviation: BisBAL NPs, lipophilic bismuth nanoparticles.
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Figure 4 Genotoxic effect of BisBAL NPs on MCF-7 breast cancer cells.
Notes: MCF-7 cells were incubated for 24 hours with culture medium as a growth control of intact cells, 100 µM etoposide (positive control of genotoxic effect), and 1 or 
10 µM BisBAL NPs. DNA damage was evaluated with the OxiSelect™ Comet Assay Kit, and DAPI-stained DNA was observed with an epifluorescence microscope with DAPI 
filter. Red arrow indicates the stellar morphology. Bar, 5 µm.
Abbreviation: BisBAL NPs, lipophilic bismuth nanoparticles.

Figure 5 Detection of apoptosis in human breast cancer cells by BisBAL NPs. 
Notes: Apoptosis induction in MCF-7 cells by BisBAL NPs was detected with the CF®488A Annexin V and 7-AAD apoptosis assay. Etoposide at 100 µM was used as 
a positive control of an apoptotic agent, whereas pure culture medium was used as a negative control; 1 and 10 µM BisBAL NPs were analyzed on MCF-7 cells. After 
treatments, cell cultures were observed with a fluorescence microscope using fluorescein isothiocyanate (green) and CY5 (red) filters. Bar, 5 µm.

cell death subroutines that includes extrinsic and intrinsic 

apoptosis, regulated necrosis, autophagic cell death, and 

mitotic catastrophe.24 For each subroutine, measurable bio-

chemical features have been defined.

Nanomedicine is a new discipline that offers the 

possibility to develop “smart drugs” that allows controlled 

target-specific, drug delivery controlled with less adverse 

effects than nontargetted drugs.25,26 Nanocomposites are 
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applied in tissue engineering and imaging for diagnostic 

and therapeutic purposes, including cancer diagnosis and 

treatment. Different metal NPs (silver, gold, platinum, 

magnesium, copper, etc) are applied in the treatment of 

cancer. The NP may have direct or indirect antitumor activ-

ity. In direct antitumor activity, the NP itself may inhibit 

growth or survival of tumor cells, whereas the induction of 

heat would be an example of indirect antitumor activity of 

NPs (photothermal therapy).27 Several groups have reported 

anticancer activity of different types of metal NPs, such as 

silver, gold, platinum, magnesium, and copper NPs.18,28,29 

Unfortunately, aforementioned metal NPs are toxic for 

human cells, which restricts their application in the clinic.30,31 

As opposed to aforementioned metal and others such as alu-

minum and antimony, bismuth is considered to be nontoxic.32 

In medicine, bismuth subsalicylate is used to treat diarrhea 

without cytotoxic reports.33 We previously reported the 

excellent bactericidal, antifungal, and antibiofilm activities 

of bismuth NPs.17 Furthermore, BisBAL NPs are not toxic 

for human epithelial and blood cells.32,34

In this work, we demonstrated the effectiveness of bis-

muth NPs to inhibit the growth of human tumor cells selec-

tively because 1 µM of BisBAL NPs decreased the growth of 

tumor cell growth with 51%, while the growth of control cells 

was unaltered. Employing in vitro assays Wang et al (2012) 

described that cuprous oxide NPs selectively induce apop-

tosis of tumor cells.35 On the contrary, Deng et al reported 

the indirect antitumor activity of bismuth NPs. They used 

bismuth NPs as radiosensitizers to enhance X-ray radiation 

therapy and achieved a significant tumor reduction.18 In our 

study, the antitumor effect of BisBAL NPs was not only 

direct and selective but also dose-dependent. In our in vitro 

set up, the therapeutic range was 1–25 µM BisBAL NP. 

In these range, antitumor activity was selective as it hardly 

had adverse effects on healthy cells. The anticancer activity 

of silver NPs on the human colon adenocarcinoma cell line 

HT-29 is also dose-dependent.36 Apart from having antican-

cer activity, NPs in the form of polymeric carbon nanotubes 

have been proposed to serve as carriers of chemotherapeutic 

agents by facilitating an increased permeability and retention 

within the tumor.37,38

The anticancer potential of NPs was screened for against 

the MCF-7 cancer cell line and the MCF-10A normal cell 

line as a control with the calcein AM assay. The anticancer 

results were comparable with the anticancer drug (cisplatin), 

but without damaging the control cell line.39

Based on the calcein AM assay, we suggest that the 

possible anticancer action mechanism of BisBAL NPs is 

altering the cell membrane integrity of tumor cells. After a 

24-hour exposure to 100 µM BisBAL NP, MCF-7 cells look 

completely destroyed; an effect not seen after exposure to 

10 µM BisBAL NP. Similar results have been reported for 

silver NPs that had been synthetized with a “green method.” 

Copper ferrite NPs also decreased cell viability and caused 

membrane damage in a dose-dependent way in MCF-7 

breast cancer cells.40 We hypothesize that the water solubil-

ity and lipophilicity of bismuth is enhanced when bismuth 

ions are complexed with small lipophilic molecules such as 

dimercaptopropanol. It is highly probable that the lipophilic 

character of BisBAL NPs is responsible for an increased 

affinity to cell membranes of breast cancer cells compared 

with nonlipophilic bismuth presentations. The cellular uptake 

of several anticancer composites has been improved after 

increasing the lipophilicity of the composites.41,42 Another 

strategy to improve drug delivery while protecting the drug 

is the encapsulation of the compound in liposomes.41

The genotoxicity experiments revealed that the genomic 

DNA of exposed tumor cells to 1–10 µM BisBAL NP was 

significantly more damaged than the DNA of nonexposed 

tumor cells. The genotoxicity of silver, gold, and platinum 

NPs on different cell lines is well-known.43 Using the same 

comet assay as we did, Lebedová et al recently reported DNA 

damage induced by silver NPs. The effect was independent 

of NP size.43 On the contrary, the DNA damage induced by 

gold and platinum NPs was NP size-dependent.43 Liu et al 

described the cytotoxic and genotoxic effects of a 24-hour 

exposure of liver cells to cobalt NPs. Interestingly, cobalt 

ions were less cytotoxic than cobalt nanostructures.44

Our results indicate that low concentrations of BisBAL 

NPs induced apoptosis among MCF-7 cells. Likewise, Banu 

et al reported that silver and gold NPs promote apoptosis and 

regulate p53 and Bcl-2 expression in human breast adeno-

carcinoma cells.45 Azizi et al described a cytotoxic effect, via 

apoptosis, of albumin-coated copper NPs on MCF-7 cells,46 

suggesting that they could be a new chemotherapeutic agent 

against invasive breast cancer. Our results with BisBAL NPs 

suggest that concentrations up to 10 µM kill tumor cells 

selectively, probably by disrupting the cell membrane before 

causing damage to genomic DNA at higher concentrations. 

Altogether, our results suggest that BisBAL NPs could alter 

the plasma cell membrane during their entry and diminish its 

permeability. Once internalized, BisBAL NPs damage the 

genomic DNA by direct interaction.

In conclusion, BisBAL NPs inhibit human tumor cell 

growth selectively and in dose-dependent way. The possible 

action mechanisms of BisBAL NPs may be altering the 

membrane permeability of breast cancer cells and causing 

damage to the genomic DNA.
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