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MOTIVATION Classifying the type of molecular motion and extracting the underlying bio-physical and
geometrical parameters from large amount single-particle trajectories remains a daunting task. We present
methods and algorithms available as an ImageJ plugin called ‘‘TrajectoryAnalysis’’ that allow users to auto-
matically detect regions of high densities, compute the diffusion and density maps with high precision, find
the boundary and energy of the nanodomains defined as potential wells, and reconstruct a network from
trajectories.
SUMMARY
Super-resolution imaging can generate thousands of single-particle trajectories. These data can potentially
reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However,
computational methods that can derive quantitative information from such massive datasets are currently
lacking. We present data analysis and algorithms that are broadly applicable to reveal local binding and
trafficking interactions and organization of dynamic subcellular sites. We applied this analysis to the endo-
plasmic reticulum and neuronal membrane. The method is based on spatiotemporal segmentation that ex-
plores data at multiple levels and detects the architecture and boundaries of high-density regions in areas
measuring hundreds of nanometers. By connecting dense regions, we reconstructed the network topology
of the endoplasmic reticulum (ER), as well as molecular flow redistribution and the local space explored by
trajectories. The presentedmethods are available as an ImageJ plugin that can be applied to large datasets of
overlapping trajectories offering a standard of single-particle trajectory (SPT) metrics.
INTRODUCTION

Subcellular compartments are focused sites where large

numbers of molecules dynamically interact to support cellular

function (Cole et al., 1996). The trajectories of ions and proteins

as they move between the cytoplasm, plasma membrane, and

organelles are critical to cellular function (Betzig et al., 2006;

Cohen et al., 2018). These dynamics occur at the endoplasmic

reticulum (ER) (Wu et al., 2017, 2018; Petkovic et al., 2014), the
Cell Rep
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mitochondrial network, endosomes and lysosomes, and micro-

tubules and are impacted by the local properties of these

different environments (Lu et al., 2020). Several experimental

paradigms measure these constitutive molecular motions at

subcellular sites, including fluorescence recovery after photo-

bleaching (FRAP) (Axelrod et al., 1976; Saxton and Jacobson,

1997), which locally depletes fluorescence and measures

the timescale and fraction of recovery. Analysis of these data

can reveal trafficking at a population level. In contrast,
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photoactivation (Wang et al., 2014) consists of activating mole-

cules in a local region of the cell and reveals their spread over

a transient time frame. Combined with diffusion modeling and

stochastic simulations, various biophysical properties can be

measured, including diffusion coefficients and the fraction and

timescale of recovery (Lippincott-Schwartz et al., 2003). These

methods provide information on the dynamic function of organ-

elles but are insufficient to identify and reconstruct high-density

regions. These approaches also cannot examine phase separa-

tion stability or the local spaces explored by molecules at a

nanoscale resolution. Statistical analysis (Manley et al., 2008;

Hoze et al., 2012) of a large ensemble of super-resolution sin-

gle-particle trajectories (SPTs) (Figures 1A and 1B) has the po-

tential to reveal local molecular interactions. Molecules are not

uniformly distributed inside a cell but instead form heteroge-

neous aggregates, possibly in phase-separated nanodomains,

characterized by high-density regions (HDRs). Such regions

are characterized by reduced velocity movement of molecules

and confinement. These local areas can be enriched with cal-

cium channels at neuronal synapses and store-operated calcium

entry receptors such as STIM1 on spine apparatus and can also

be found at ER nodes (Heck et al., 2019; Wu et al., 2014; Heine

and Holcman, 2020; Holcman et al., 2018). Interestingly, these

ubiquitous structures are transient yet persist, with a timescale

that is longer than that associated with molecular trafficking. In

short, many interactions that are critical to the cell are regulated

and controlled by subcellular mechanisms that currently cannot

be easily captured by quantitative analysis.

To determine the underlying physical properties of molecular

trafficking, various computational modeling methods have

been developed to analyze SPTs. These models include those

based on classical free (Crank, 1979) and confined (Kusumi

et al., 1993; Saxton, 1995; Saxton and Jacobson, 1997; Holcman

and Schuss, 2004) diffusion, active deterministic motion, or a

mixture of deterministic and stochastic models (Hozé and Holc-

man, 2017). Based on this theoretical framework, analysis of

SPTs has revealed the dynamics of local chromatin organization

in the nucleus (Gasser, 2016; Amitai and Holcman, 2017; Hauer

et al., 2017), synaptic receptor trafficking at neuronal synapses

(Dupuis and Groc, 2020), and vesicular stomatitis virus G protein

(VSVG) virus assembly (Manley et al., 2008). A significant recent

advance is the analysis of massive numbers of overlapping

SPTs. This statistical analyses can reveal the properties of mo-

lecular trajectories. However, analyzing these data can poten-

tially also allow quantification of membrane dynamics (Holcman

et al., 2015) and may give insight into organelle organization.

Software developed to analyze SPTs generally fall into two cat-

egories: (1) thosewhere parameters are extracted along individual

trajectories, and (2) those based on spatially combining these tra-

jectories to recover intrinsic properties. The first category includes

SpotOn (Hansen et al., 2018), used to fit multi-states diffusion

models from the distribution of displacements, the 4P-parameter

algorithm, used to reconstruct chromatin dynamic (Amitai et al.,

2017; Shukron et al., 2019), and, more recently, the 4P-

Gaussian-Mixture (Basu et al., 2021), used to subsegment

trajectories into confined and unconfined regions. For the second

category, common methods include diffusion/drift maps and po-

tential well extractions pioneered in Hoze et al. (2012) (https://
2 Cell Reports Methods 2, 100277, August 22, 2022
bionewmetrics.org/super-resolution-single-particle-trajectories-

using-stochastic-analysis/) or the SR-Tesseler algorithm (Levet

et al., 2015), used to reconstruct and extract biophysical parame-

ters from the local density ofpoints. Anotherpackage isTRamWAy

(Beheiry et al., 2015), used to reconstruct diffusion and energy

maps, but this approach does not reconstruct the potential well

boundaries.

Here, we have developed a method based on hybrid algo-

rithms and automated an analysis pipeline for SPTs (Figure 1C)

based on the Langevin (Schuss, 2009) equation of motion to

provide statistical analysis of these data. This method estimates

biophysical characteristics and is capable of reconstructing

nanodomain sizes and boundaries using the classical physical

model of a potential well (Kramers, 1940; Schuss, 2009), well

known since Kramer’s work in 1940 (Kramers, 1940). This

method allowed us to characterize calcium channel organization

in the membranes of hippocampal neurons. We also present an

algorithm that reconstructs a network from SPTs based on the

clustering of low-velocity trajectory fragments and use it to

reconstruct ER network topology as well as estimate the time-

scale of lysosome trafficking and ER network interactions.

Finally, thesemethods allowed us to extract themotion of trajec-

tories relative to the reconstructed network, thereby revealing

the redistribution of trajectories inside the ER of normal and at-

lastin-null mutant cells (Niu et al., 2019). The diversity of datasets

used here demonstrate the broad applicability of these methods

to cell biological processes. The algorithms we developed here

are available in an ImageJ plugin with a graphical interface for

processing individual experiments and a programming

interface for batch processing.

RESULTS

Cosine filtering improves diffusion map accuracy
The diffusion coefficient is extracted from SPTs locally and is

used to construct the diffusion map. Such maps have been pre-

viously constructed from a square grid overlaid on top of the tra-

jectories (Hoze et al., 2012; Heck et al., 2019), but this estimation

is strongly affected by the number of displacements falling in

each bin. To improve the accuracy of the diffusion map, we pro-

pose to use a cosine filter that computes for each bin of a square

grid the diffusion coefficient based on all the displacements start-

ing within some radius of the bin center (larger than the bin size).

Each displacement is weighted by a cosine function depending

on its distance to the center of the bin (see Method details).

We tested the capacity of the method to reconstruct a syn-

thetic diffusion field, either with a constant or with local variations

using numerical simulations (see Methods S1). We find that the

cosine-filter method has a smaller overall error andmuch greater

coverage than the classical diffusion map (Figure S1). We then

compared the results obtained by raw diffusion map, cosine

filtering, and local averaging on empirical data (Figure S2; Data

S1) and found that they all give similar results, but cosine filtering

recovers more local details compared with the other methods.

Algorithm to reconstruct nanodomains in HDRs
In order to extract subcellular regions where a high density of

molecular interactions are occurring, we developed a novel

https://bionewmetrics.org/super-resolution-single-particle-trajectories-using-stochastic-analysis/
https://bionewmetrics.org/super-resolution-single-particle-trajectories-using-stochastic-analysis/
https://bionewmetrics.org/super-resolution-single-particle-trajectories-using-stochastic-analysis/
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Figure 1. High-throughput SPT analysis pipeline

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.crmeth.2022.100277.

High-throughput automated trajectory analysis workflow.

(A) Acquisition device and raw data of a single-particle experiment.

(B) Raw data from (A) are transformed into trajectories using classical software such as Trackmate, available as an ImageJ plugin.

(C) Schematic description of the high-throughput analysis implemented here: trajectories are first discretized both spatially, using a square grid, and temporally,

using temporal binning (time-windows analysis). We then interpret the trajectories based on the Langevin equation, allowing us to generate high-resolution maps

of the local trajectories motion. High-density/low-velocity regions of the maps are extracted by automated algorithms to detect potential wells/reconstruct the

network. Finally, the outputs consist in statitstics associated with well locations and with reconstructed network. These characteristics allow to analyze how

trajectories locally explore their environment at the nanometer scale.
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computational approachandautomatedpipeline (Figure 1) based

on stochastic equations,multi-scale analysis, optimal estimators,

andmaximum likelihoodstatistics. In contrast tomethodsused to

extract density of points (Sibarita, 2014; Levet et al., 2015) or to
compute the maximum likelihood estimator (MLE) (Parutto

et al., 2019; Briane et al., 2020), the present approach combines

density of pointswith local dynamics associatedwith the elemen-

tary displacement DX = Xðt +DtÞ � XðtÞ, where XðtÞ is the
Cell Reports Methods 2, 100277, August 22, 2022 3
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position of the particle at time t (Hoze et al., 2012; Heck et al.,

2019) to extract the field of forces. Indeed, trajectories following

the stochasticEquation (2),where the forcesdefining thenanodo-

main given by Equation (12) are characterized by a local accumu-

lation approximated by a Gaussian density of point, and

converging arrows for the local drift field (Figures S3Aa–S3Ac;

Data S1). We could thereby assess the nature, organization,

and stability of a large amount of HDRs by collecting statistics

that can reveal hidden cellular organization. HDRs could previ-

ously only be characterized bymanual curation based on extract-

ing parameters of potential wells, a concept in classical physics

(Chandrasekhar, 1943; Schuss, 2009) that describes the stability

of dynamic systems, such as the motion of a bead attached to a

spring. In contrast, using combined optimization procedures,

the present method allows users to automatically extract local

diffusion coefficients, energetics, local field potential, and, most

importantly, local boundaries.

The method relies on an interesting observation that nanodo-

mains of high density tend to have an elliptic shape. Thus, the

first step to detect them is to recover their center and boundaries

(see Method details). Non-automated classification algorithms

have used the density of points (Parutto et al., 2019) or displace-

ments ðDXÞ separately, but these procedures often lead to

parameter estimations that are not completely satisfactory due

to a shallow minimum of the associated error function that leads

to a large variability and possible mistakes in the estimation of

most of the nanodomain parameters such as the boundary and

the energy of nanodomains.

To overcome these difficulties, we developed a hybrid

algorithm (Figure 1), described in the Method details, which

combines two independent procedures starting with a prin-

cipal-component analysis to recover the elliptic boundary and

followed by a maximum likelihood estimation of the effective

diffusion coefficient and drift properties. More precisely, the

new algorithm comprises three steps:

1. Automatic determination of bins with the highest density of

points (Figure S3Ba).

2. For each such bin, we iterate over square regions of

increasing width wk around the bin center. For each itera-

tion k, we apply a principal-component analysis to esti-

mate the semi-axis ak ; bk , the center ck , and a score L
(Equation 24) based on the points falling in the square of

sizewk (Figures S3Bb and S3Bc). We iterate until we reach

themaximum size of the well set by the user (Figure S3Bc).

3. In the termination step, we select the optimal value of the

iteration providing the optimal parameter (see Method de-

tails).

The reconstruction is illustrated in Figure S3C for three wells.

To evaluate the performances of this hybrid algorithm, we con-

structed ground-truth datasets consisting of trajectories

following Equation (2), with the energy field given by 12 for

different types of potential wells (see Methods S1 for the detail

of the procedures). In order to be able to compare different algo-

rithms in a fair manner, we developed a parameter optimization

procedure where a grid search is used to find the parameters

of each algorithm that gives most accurate reconstruction of a

known potential well. Based on this procedure, we showed
4 Cell Reports Methods 2, 100277, August 22, 2022
that the hybrid algorithm performs better than two previous algo-

rithms, the drift-based algorithm from Heck et al. (2019) and the

density-based algorithm from Parutto et al. (2019), in estimating

all parameters, especially at higher well energies (see Tables S1

and S2). The algorithm is effective at reconstructing wells over a

large range of energies, from 1 to 10 kT (Table S3; Figure S3D),

and can effectively discriminate the presence or absence of a

parabolic field (see also Methods S1 for detection on wells

with E = 0 kT). Moreover, for sufficiently large regions, the algo-

rithm can distinguish between a parabolic field and a Brownian

motion confined by impenetrable walls (see Methods S1 and

Data S1).

At this stage, we have thus validated the hybrid algorithm by

using ground-truth datasets to identify and automatically recon-

struct nanodomains. This hybrid algorithm outperformed the

others when reconstructing the exact shape of the nanodomain

and its energy.

Analysis of SPTs for the endogeneous voltage-gated
calcium channels reveals their organization and weaker
stability in nanodomains
We applied the new hybrid algorithm to reanalyze trajectories of

calcium voltage channels (CaV2.1) on the surface of neuronal cells

for two overexpressed splice variants, CaV2.1 D47 and CaV2.1

+ 47, previously shown to shape synaptic short-term plasticity

(Heck et al., 2019), as well a new set of endogenously tagged

CaV2.1 channels. Using a large number of redundant SPTs, we

were able to automatically detect the nanodomains defined

as HDRs. Representative examples of such trajectories and

their associated density and diffusion maps are presented in

Figures 2A–2C. The algorithm allowed us to identify the character-

istics of the nanodomains (reported in Table S4) approximated as

ellipses with semi-axis lengths a = 143± 51 and b = 104± 33 nm

forCav2.1D47.Theseparametersaresimilar forCav2.1 + 47,while

they were smaller for endogenous Cav2.1 with a = 100± 47 and

b = 73± 31 nm (Figure 2D). The diffusion coefficient was

D = 0:091± 0:052 mm2=s for the D47 variant and

D = 0:087± 0:045 mm2=s for the + 47 variant and was smaller

for endogenous CaV2.1, with D = 0:069± 0:051 mm2=s (Fig-

ure 2E). Interestingly although the associated energy was

� 3:9 kT for the two variants and 3:3 kT for endogenous

CaV2.1 (Figures 2F and 2G), we found that the associated

residence times of a receptor in a nanodomain was around

174–181 and 94 ms, respectively (Figure 2H). The estimations of

these residence times are larger than the ones reported in Heck

et al. (2019), which could be due in part to differences in the

boundary estimated by the present algorithm and in part due to

the different estimators used for computing the attraction and

diffusion coefficients of potential wells. Indeed, the estimators

constructed from the statistical moments used in Heck et al.

(2019) have a tendency to underestimate these parameters,

whereas the MLEs used here give values closer to the ground

truth (see Tables S1–S3 and Methods S1). Interestingly, we found

a positive correlation between the diffusion coefficients and the

sizes as well as the attraction coefficients A but no correlation

with the energy of the potential wells (Figures S6A–S6C; Methods

S1). Finally, we conclude that the present approach captures the

differences between the variant forms of the calcium channels,
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Super-resolution SPTs automated analysis reveals CaV nanodomain organization.

(A) Examples of endogenous CaV2.1 trajectories together with the detected potential well regions (red ellipses).(B) Associated density map, presenting the local

point density (in log (points/mm2)) and computed over a grid with bin sizes of 50 nm and locally averaged over a 3 3 3 Gaussian kernel.

(C) Associated cosine-filtered diffusion maps (see cosine filtering improves diffusion map accuracy), displaying the local diffusion coefficients (in mm2= s)

computed over a grid with bin sizes Dx = 80 nm, for bins possessing at least 15 displacements and using a disk radius rfilt = 100 nm.

(D–H) Violin plots representing the distribution, median, and interquartile range of the well characteristics recovered using the hybrid algorithm from CaV2.1 D 47,

CaV2.1 +47, or endogenous CaV2.1 trajectories. (D) Distribution of semi-axes lengths of elliptic well boundaries, (E) diffusion coefficients inside wells,

(F) attraction coefficients A, (G) energies of the well ðkTÞ, and (H) residence time distribution of a trajectory inside a well.

See also Tables S4 and S5.
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revealing a significant reduction in interactions for the endoge-

nous dataset (see Methods S1).

Time-lapse analysis reveals the stability of CaV
nanodomains over time
To investigate the stability of nanodomains across time, we

used a time-lapse analysis (Figure S4; Data S1) with sliding
windows of 20 s and no overlap. This analysis allows determi-

nation of the lifetime of a nanodomain, which is given by the

number of successive windows where it is detected (Fig-

ure S5A; Data S1). For example, the trajectories obtained dur-

ing a 250 s experiment are split into 13 20 s windows (0–20,

20–40, ., 240–260 s). We searched for the presence of po-

tential wells in each window (Figures S5A and S5B). To follow
Cell Reports Methods 2, 100277, August 22, 2022 5
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a well across successive time windows, we consider that

two wells identified at times tk and tk + 1 are the same if the dis-

tance between their centers is less than 200 nm. The

ensemble of consecutive times ðtq;.; trÞ, where a well is first

detected at time tq and disappears at time tr + 1, is used to

define the stability duration t = tr � tq. This analysis allows

us to follow the size of the small and large axes of the wells

and the associated energy over time (Figures S5C and S5D).

Finally, we found that �55% of the wells were present for

more than 20 s (one time window) and that their average dura-

tion is �56 s for both D47 and + 47 variants (Figure S5E;

Table S5). However, nanodomain stability is reduced to 46 s

for endogenous CaV2.1. All of these durations are longer

than the �30 s that we previously reported (Heck et al.,

2019), indicating that the present algorithm advances our abil-

ity to capture the dynamics of these high-density enigmatic

subcellular domains.

The hybrid algorithm reveals that some ER nodes are
nanodomains defined by an attracting field of force
To further explore the range of applicability of the present

hybrid algorithm, we analyzed SPTs recorded from an ER

luminal probe in COS-7 wild-type (WT) and HEK-293T cells,

both presented in Holcman et al. (2018) and in COS-7 atlastin

knockout (dATL) cells obtained as in Holcman et al. (2018)

(see Methods S1). The ER networks of these cells generally

form a flat tubular monolayer at their periphery (Schroeder

et al., 2019), allowing the two-dimensional tracking of individ-

ual molecules as shown in Holcman et al. (2018). In the dATL

mutant, the morphology of peripheral ER tubules is altered,

but it is unclear how the ER flow is affected. Since nodes

have been previously characterized as HDRs (Holcman

et al., 2018), we asked here whether these nanodomains

could further be defined as potential wells. Applying the hybrid

algorithm reveals several potential wells (Figures 3A and 3B,

red ellipses) precisely located at nodes forming HDRs. We

further estimated the density, diffusion and drift maps,

observing converging arrows patterns in these regions

(Figures 3D and 3E, and S6D), a classical feature of potential

wells (Hozé and Holcman, 2017). Interestingly, these HDRs

were characterized by ellipses with large semi-axis lengths

�220 nm, , small semi-axis lengths �160 nm, diffusion coeffi-

cients � 0:3 mm2=s, and attraction coefficients � 1 mm2=s,

corresponding to energies � 2:9 kT and residence times

� 90 ms (Figures 3F–3J; Table S6). Interestingly, although

the elliptic parameters are not much different in the case of

COS-7 WT and COS-7 dATL, a difference can be observed

in the dynamical parameters characterizing the transport of

the material across the ER network. To conclude, the present

hybrid algorithm reveals that some ER nodes concentrate

trafficking of luminal molecules by a spring-force type mech-

anism, the origin of which should be further explored.
(C–E) Density, diffusion, and drift maps for the regions shown in (A). Arrows in the

South (blue), and North (red).

(F–J) Violin plots representing the distribution, median, and interquartile range of t

and small b), (G) diffusion coefficient D, (H) attraction coefficient A, (I) energy of

See also Table S6.
Organelle network reconstruction from a large number
of SPTs
We next wanted to check whether our approach can be used to

define the structure of the ER and be generalized to other organ-

elles. For these goals, we developed a novel method and algo-

rithm to reconstruct the network from SPTs.

Graph reconstruction algorithm (GRA) to unravel the ER

network

Although SPTs can be used to explore the ER network architec-

ture (Holcman et al., 2018), we still lacked a method for the auto-

mated reconstruction of the ER, especially in cases where the

local density is variable. We therefore developed an algorithm

to see if the dynamic architecture of this complex organelle

can be recovered from SPTs. We illustrate the principle of

the automatic ER-reconstruction procedure in Figure S7 and

(Methods S1) for ER-luminal trajectories. The starting point is

to color trajectory displacements depending on their instanta-

neous velocity, which reveals a dynamical segregation of the

ER into nodes and tubules (Figures S7A–S7C). Based on this

segregation, we developed the GRA to recover the ER structure

from SPTs (see Methods S1).

This procedure allows us to reconstruct a two-dimensional

graph for the organelle network that can be used to study further

statistical properties. Finally, we tested the GRA on a ground-

truth dataset exacted from a live-cell image (Figure S8; Methods

S1). We simulated trajectories on the extracted graph and

applied our algorithm on these trajectories to reconstruct the to-

pology of the underlying ER network. This procedure gave a

satisfactory reconstruction result (8.1% error), thus validating

the present algorithm (Table S7).

GRA of the ER network of COS-7 dATL cells reveals

aberrant organization and trafficking

Next, we examined whether disruptions to organelle structure

and dynamics can be captured using our algorithm. We

analyzed SPTs recorded in the ER of COS-7 dATL cells (acquired

as in Holcman et al. [2018]; see Methods S1), which lack the ER

membrane-shaping protein atlastin (double knockout of the

ATL2/3 genes [Niu et al., 2019]) and exhibit a disrupted peripheral

ER morphology with elongated tubules (Niu et al., 2019). We

present color-coded trajectories based on their instantaneous

velocity (Figures 4A and 4B) and the density and diffusion maps

(Figures 4C and 4D), as well as the histogram of the apparent

diffusion coefficients (Figure 4E), revealing an average Dapp =

1:56± 0:83 mm2=s.

We applied the GRA to obtain a network from these trajec-

tories (Figure 4F) where the HDRs (brown) are connected

by blue segments. This approach allows the quantification

of the distribution of distances between nodes with a mean

dnodes = 0:92± 0:32 mm (Figure 4G) and the nodes area

Anodes = 0:15± 0:12 mm2 (Figure 4H). Note that the GRA could

miss non-explored ER regions or regions that are underrepre-

sented in the trajectories. To conclude, our algorithm allows us
drift maps are colored according to the direction: West (purple), East (green),

he characteristics of the detected potential wells. (F) Semi-axis lengths (large a

the well E, and (J) estimated residence time.
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to automatically reconstruct organelle networks based on SPT

exploration once there are enough datapoints.

GRA and SPT segmentation reveal the duration of ER-

lysosome interactions

To demonstrate the broad applicability of the algorithms, we

analyzed an ensemble of trajectories of individual lysosomes

obtained in COS-7 cells from Lu et al. (2020) (Figure 5A). These

trajectories are characterized by a distribution of instantaneous

velocities in the range ½0 � 3:5� mm=s (Figure 5B). However,

low and high velocities are not segregated, as was the case for

ER luminal trajectories, but are instead found in similar regions

(Figure 5A, left and right). The distribution fðvÞ of velocities (Fig-

ure 5B) can be fitted by a sum of two exponentials:

fðvÞ = A exp

�
� v

v0

�
+B exp

�
� v

v1

�
; (Equation 1)

where a best fit approximation gives v0 = 0:043 mm=s (95% con-

fidence interval ½0:041;0:044�) and v1 = 0:388 mm=s (95% confi-

dence interval ½0:370;0:407�) (coefficient of determination R2 =

0:999), with A = 0:780 and B = 0:075. This fit suggests that

the distribution of lysosomes is largely driven by low-velocity

components. The rare appearance of high-velocity compo-

nents suggests a possible switch between slow and fast mo-

tions. Finally, note that 86.1% of displacements are associ-

ated with a velocity of less than 0:5 mm=s, and 12.7% are in

the range of [0.5–1.5] mm=s.

To further study how lysosomes move in the cytoplasm, we

computed relevant density and diffusion maps (Figures 5C and

5D) and found that the motion had a diffusion component (Fig-

ure 5E), with an average apparent diffusion coefficient of

Dapp = 0:062± 0:040 mm2=s. Interestingly, regions of low-diffu-

sion coefficients colocalized with regions of high density in the

density map (Hoze and Holcman, 2014; Holcman et al., 2015)

(Figures 5A–5C).

We then isolated regions of high density using amethod based

on the density of points (Method details), revealing an ensemble

of n = 95 HDR subdomains, approximated by ellipses (black in

Figure 5F) of semi-axis lengths a = 516± 196 (large) and b =

278± 143 nm (small) (Figure 5G). By considering the displace-

ments connecting different regions, we reconstructed (Method

details) a network explored by the lysosomes (Figure 5H), where

HDRs (red circles) are connected by direct lines (yellow). Inter-

estingly, the histogram of average velocities between

these regions is not symmetric (Figure 5I), with a mean velocity

v = 1:03± 0:32 mm=s, which clearly deviates from diffusion, as

computed from the Rayleigh distribution. This deviation sug-

gests that the transitions between these regions are driven by

an active motion. Moreover, the overlay between ER (white)
Figure 4. ER network reconstructed in a COS-7 dATL cell

(A and B) Individual trajectories color coded according to their instantaneous ve

(C and D) Corresponding density (C) and drift (D) maps.

(E) Distribution of diffusion coefficients obtained from the individual bins of the d

(F) Reconstructed network, showing the nodes in red and links in blue overlaid on

of links).

(G) Distribution of distances (i.e., tubule lengths) between connected nodes, with

(H) Distribution of the areas covered by nodes, with the average ± SD (n is the n
and the lysosome reconstructed network (Figure 5H) suggests

that the lysosome trajectories follow the topology of the ER

network (Lu et al., 2020). To conclude, our analysis reveals that

lysosomes travel along a network that strongly colocalizes with

the ER. However, high and low velocities occur in similar regions.

Since lysosomes move along microtubules, this present statisti-

cal analysis suggests that the ER-microtubule network shapes

lysosome trafficking.
Trajectory resynchronization approach reveals single
local molecular dynamic exploration inside an ensemble
In the previous result sections, we reconstructed the networks

hidden inside SPT data. We shall now introduce a last step in

our method, which resynchronizes trajectories that fall inside

the same subcellular area but that were acquired at random

times. This approach allows us to study the dynamics of trajec-

tories with respect to the ensemble of trajectories that visit the

same spatial region. The approach also enables determination

of the local spatiotemporal properties that trajectories explore

at the single-unit level.

Trajectory segmentation reveals ER-lysosomes

interaction timescale

To study the possible interactions between lysosomes and the

ER (Figure 6A), we focused on the confined portion found along

individual lysosome trajectories (see Method details and Fig-

ure 6A). We hypothesize that the lysosome motion can switch

between a directed and confined motion (Figure 6B). We first

show that the lysosome can indeed switch between directed

and confined motion (Figure 6C).

To recover the size of the confinement areas, we fitted ellipses

over these regions and obtained average semi-axes lengths (Fig-

ure 6D) of a = 232± 77 (large) and b = 94± 47 nm (small).

Furthermore, this approach allowed us to estimate the confine-

ment strength l by considering that the confined motion could

be generated by a spring force, modeled by an Ornstein-Uhlen-

beck process (Schuss, 2009). We found that the spring force is

l = 0:123± 0:025 s� 1 (Figure 6E), associated with an average

local diffusion coefficient ofD = 0:032± 0:020 mm2=s (Figure 6F)

for a total of n = 818 confinement regions. Finally, the distribution

of times in confined regions could be well approximated by a sin-

gle exponential with a time constant t = 5:35 s (Figure 6G). The

average residence time of lysosomes in these regions is

t = 30± 12 s, which can be interpreted as a time where lyso-

somes could interact with the ER. These confinement events

are quite common, with trajectories spending �30% of their life-

time confined (Figure 6H) in one or multiple confinement events

(Figure 6I). To conclude, the present algorithm reveals that as ly-

sosomes travel along a network that strongly colocalizes with the
locity shown in (B).

iffusion map presented in (D), with the average ± SD (n is the number of bins).

top of the individual trajectories (black), with the average ± SD (n is the number

the average ± SD (n is the number of links) .

umber of nodes).

Cell Reports Methods 2, 100277, August 22, 2022 9



A

C

F

J

HG

D

B

E

I

(legend on next page)

10 Cell Reports Methods 2, 100277, August 22, 2022

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
ER, the velocity can switch from large to small displacements,

and the trajectories can become restricted into regions of size

�200 nm, on a timescale of 5 s. This could correspond to a

change in directionality of movement or a direct interaction

with the ER. Our approach can therefore extract changes in lyso-

some dynamics that may reflect functional interactions from

complex data.

Trajectory resynchronization approach shows how a

single trajectory explores single nodes

After an ER network is reconstructed from SPTs by the GRA (Fig-

ure 7A), the node-tubule topology emerges. Thus, it becomes

possible to study how trajectories locally explore the network

by synchronizing them upon exit from a chosen node (Figure 7B).

Interestingly, we found that the mean instantaneous velocity at

exit is ve = 30:2± 10:2 mm=s and keeps decreasing during the

next 200 to 300 ms (Figure 7B). Escape occurs in equal direc-

tions (Figures 7C and 7D), as shown in four examples where

we followed their dispersal. To characterize this dispersion, we

plotted the dispersion index (as defined in Methods S1),

revealing two phases (Figure 7B): one below 100 ms, showing

a rapid dispersion, followed by a second phase with less expan-

sion. These two phases can be interpreted as follows: for the first

one, trajectories escape from a well, then in the second phase,

trajectories tend to be recaptured for a certain time in nodes,

thus preventing a fast exploration of the network.

Trajectory resynchronization reveals novel local

dynamics within dATL ER-tubules

We next analyzed how the local space exploration of trajectories

is modified in COS-7 dATL cells (Figure S8H). Under normal con-

ditions, trajectories are mostly located in nodes (Holcman et al.,

2018), while here trajectories predominantly explore long tubules

(Figure S8I) with average lengths of 5:4± 2:44 mm (Figure S8J),

much longer than the � 1 mm found for the tubules of WT cells.

Inside these tubules, we found that trajectories exhibit a ‘‘stutter-

ing’’ behavior around different positions that lasts for seconds.

To characterize this behavior, we estimated several parameters

such as the duration that a trajectory spent around a given

position tll = 79± 76 ms (Figure S8K), the transition time be-

tween different positions tt = 27± 15 ms (Figure S8L), the length

of a transition step Dll = 0:53± 0:45 mm (Figure S8M) and

finally the SD around the stable positions SD = 0:14± 0:07 mm

(Figure S8N).

To conclude, following the reconstruction of networks using

our algorithm, we were able to reposition and resynchronize

SPTs. Using analyses of the ER lysosome, ER in normal COS-7
Figure 5. Lysosome trajectories analysis

(A and B) Individual lysosome trajectories displacements color coded according to

fit to a two-exponentials function (n is the number of displacements).

(C and D) Corresponding density (C) and diffusion (D) maps.

(E) Histogram of diffusion coefficients obtained from the individual bins presente

(F) Magnification of the density map of two regions of interest presented in (C), s

(G) Boxplot showing themedian, interquartile range, and extreme data points of th

ellipses.

(H) Reconstruction of a lysosome graph, where nodes (red ellipses) correspond to

starts in one node and enter to the other one in one or two frames.

(I) Average instantaneous velocities between pairs of connected nodes presented

of velocities between nodes).

(J) Percentage of displacements with a specific instantaneous velocity. Inset, pe
cells, and ER in COS-7 dATL cells, the algorithm revealed

trajectories explored by the local space and the associated

time scales.

DISCUSSION AND LIMITATIONS OF THE METHODS

We present here a general method and the associated algo-

rithms that can automatically characterize nanodomains

where trajectories accumulate. Our approach generates graph

representations of organelle networks from SPTs. Automatically

finding nanodomains is useful to extract large statistics (size, en-

ergy of potential wells, mean residence time of particles) and

compare their properties. Further, by quantifying the trajectories

inside and outside these nanodomains, we could recover mem-

brane organization, as well as determine the local redistribution

dynamics of organelles and proteins. By reconstructing a graph

of ER or lysosome networks from SPTs, we can recover

molecular flow at the nanoscale level. We found here that nano-

domains could be characterized as an attractive region (potential

wells), and this generic representation suggests a universal

mechanism of molecular stabilization that probably requires

further investigation. Interestingly, these structures can be tran-

siently remodeled in time, as revealed by the present time-lapse

analysis.

Universality of high-density nanoregions characterized
as potential wells
High-density nanoregions have now been associated with po-

tential wells for several receptors and channels such as CaV

(Heck et al., 2019), AMPAR (Hoze et al., 2012), glycine receptors

(Masson et al., 2014), or GAGs (Hoze and Holcman, 2017; Flo-

derer et al., 2018). Interestingly, some nodes of the ER can

also be characterized as potential wells, whichmay reflect reten-

tion of luminal content or could be interpreted as a nanoregion

allowing protein maturation. This representation suggests a

generic membrane organization to retain particles (receptors,

channels, proteins, etc.) in a field of force with long-range

interactions.

Interestingly, the geometry of these regions and their energy

profiles are independent of the experimental conditions, further

confirming again their stability. Note that the physical nature of

the potential well remains unclear (Holcman, 2013). The present

method could be applied to analyze molecular crowding and the

dynamics of nanodomains, thus clarifying processes relevant for

phase separation at synapses (Feng et al., 2019). With the
their instantaneous velocity shown in (B). The black line in (B) corresponds to a

d in (D), with the average ± SD (n is the number of bins).

howing high-density regions, approximated by ellipses.

e distributions of semi-axis lengths of the high-density regions approximated as

high-density regions and a link (in yellow) is added when at least one trajectory

in (H), with the average ± SD and a fit to a Rayleigh distribution (n is the number

rcentage of displacements for the velocity regimes defined in (A) and (B).
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Figure 6. ER network-lysosome interaction revealed by confined trajectories

(A) Schematic representation of a lysosome switching between a directed motion along microtubule and confined motion at ER nodes.

(B) Switching dynamics representation: the confined state is characterized by a spring constant l, a diffusion coefficient D, and a confined time constant t.

(C) Three examples of confinement regions for different lysosome trajectories. Confined trajectories are colored, and unconfined trajectories are in gray.

(D–F) Boxplot showing the median, interquartile range, and extreme data points of the semi-axis lengths (small and large) of the ellipses fitted to the confinement

regions (D), spring constants of the Ornstein-Ulenbeck process associated with the confinement regions (E), and diffusion coefficients estimated inside a

confinement region (F). n = 818 confinement regions.

(G) Residence times inside a confinement region with a fit to a single exponential (n is the number of confinement regions).

(H) Fraction of time trajectories spend confined (relative to the trajectory length); n = 577 trajectories with at least one confinement event.

(I) Number of confinement events along individual trajectories; n = 521 trajectories with between 1 and 5 confinement events.
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development of new labeling methods, improved fluorophores,

and the ability to tag endogenous populations of molecules via

CRISPR-Cas9, it will soon be possible to investigate phase

separation at a population level and with SPT, to track endoge-

nous dynamics, offering novel opportunities for the present

approach.

Trafficking in networks
We show here that we can reconstruct a network from lysosome

SPTs that resembles the ER network (Figure 5). This recon-

structed network is further segregated into nodes and links,

but low and high velocities are mixed (Figure 5A) compared

with the reconstruction obtained from luminal proteins (Fig-

ure S7B). It is possible that lysosomes follow the cytoskeleton
12 Cell Reports Methods 2, 100277, August 22, 2022
network, which is correlated with the ER (Lu et al., 2020). In

addition, we find that the distribution of lysosome velocity fol-

lows a double exponential (Figure 5B) with fast (� 0:388 mm=s)

and slow (� 0:043 mm=s) components. However, a more

detailed analysis revealed that these velocities can be further

subdivided into (1) confined motion (Figure 6) characterized by

a residence time of � 5 s, and (2) deterministic motion between

HDRs (Figures 6F and 6G), characterized by a distribution of ve-

locity with an average of 1:03 mm=s. It would be interesting to

better characterize the switch between confined and rectilinear

motion. Regions of deterministic velocities and those where

diffusion can be found are often not well separated, suggesting

that lysosomes can use various modes of transport, indepen-

dently of the subregions where there are located. We found,
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Figure 7. Local space exploration after trajectory resynchronization

Local network exploration revealed by spatial resynchronization of super-resolution SPTs.

(A) Reconstructed ER network using the GRA with nodes (black polygons) connected by segments (blue). Four nodes (I, II, III, and IV) are selected (red arrows).

(B) Average distance between the points of trajectories exiting a given node versus time after escape. The four nodes highlighted in (A) are also highlighted in red

here, and the average line is presented in blue with its SD in blue shade (n = 258 nodes). This curve exhibits a fast (<50 ms) and a slow phase.

(C) Local exploration of neighboring nodes from trajectories (various colors) exiting from the chosen node for example nodes presented in (A).

(D) Distribution of velocities for trajectories exiting a node for the four nodes presented in (C). The rapid desynchronization of trajectories causes themean velocity

to rapidly decrease after exit (n is the number of trajectories exiting each node).
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however, some regions characterized by a high density of trajec-

tories, with a low velocity, suggesting that there are possible

trapping mechanisms to retain lysosomes in specific subregions

of the ER, possibly at exit sites (Manley et al., 2008). This mode of

motion is quite different from the internal motion inside the ER

lumen or on its membrane: in the first case, the node-tubule to-
pology is associated with diffusion-drift while lysosomes may be

trapped in interaction with the ER.

Future work should reveal interaction times between lyso-

somes and the ER. By applying our algorithms to different cells

and organelles, we have shown that the boundaries and dy-

namics of subcellular interactions can be revealed from large
Cell Reports Methods 2, 100277, August 22, 2022 13
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SPT datasets. The automated algorithms presented here can be

applied to analyze hundreds of thousands of trajectories and to

study nanodomains with almost no human interventions and are

available as an ImageJ plugin.
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METHOD DETAILS

Diffusion model, velocity, vector fields and empirical estimators
In the Smoluchowski’s limit of the Langevin equation (Schuss, 2009), the position XðtÞ of a molecule is described by

_X =
FðXðtÞ; tÞ

g
+

ffiffiffiffiffiffiffi
2D

p
_W; (Equation 2)

where FðXÞ is a field of force, W is a white noise, g is the friction coefficient (Schuss, 2009) and D is the diffusion coefficient. At a

coarser spatio-temporal scale, the motion can be coarse-grained as a stochastic process (Hoze et al., 2012; Hoze and Holcman,

2014)

_X = aðXÞ+
ffiffiffi
2

p
BðXÞ _W; (Equation 3)

where aðXÞ is the drift field andBðXÞ the diffusionmatrix. The effective diffusion tensor is given byDðXÞ = 1
2BðXÞBT ðXÞ (:T denotes the

transposition) (Schuss, 2009, 2010). The drift and diffusion fields from Equation 3 can be recovered from SPTs acquired at any infin-

itesimal time step Dt by estimating the conditional moments of the trajectory displacements DX = Xðt +DtÞ � XðtÞ (Schuss, 2009;
Friedrich and Peinke, 1997; Siegert et al., 1998; Hoze and Holcman, 2014; Hozé and Holcman, 2017)

aðxÞ = lim
Dt/0

E½DXðtÞjXðtÞ = x�
Dt

; (Equation 4)
DðxÞ = lim
Dt/0

E
h
DXðtÞTDXðtÞjXðtÞ = x

i
2Dt

: (Equation 5)

The notation E½,jXðtÞ = x� represents averaging over all trajectories that are passing at point x at time t. To estimate the local drift

aðXÞ and diffusion coefficientsDðXÞ at each pointX of themembrane and at a fixed time resolutionDt, we use a procedure based on a

square grid.
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The local estimators to recover the vector field and diffusion tensor (Parutto et al., 2019) consist in grouping points of trajectories

within a lattice of square bins Sðxk ;DxÞ centered at xk and of width Dx. For an ensemble of N two-dimensional trajectories

fX iðtjÞ = ðxð1Þi ðtjÞ; xð2Þi ðtjÞÞ; i = 1.N; j = 1.Mig with Mi the number of points in trajectory X i and successive points recorded with

an acquisition time tj + 1 � tj = Dt.,the discretization of Equation 4 for the drift aðxkÞ = ðað1ÞðxkÞ; að2ÞðxkÞÞ in a bin centered at position

xk is

aðuÞðxkÞz 1

Nk

XN
i = 1

XMi � 1

j = 0;xiðtjÞ ˛ Sðxk ;DxÞ

 
x
ðuÞ
i ðtj + 1Þ � x

ðuÞ
i ðtjÞ

Dt

!
; (Equation 6)

where u = 1::2 and Nk is the number of points xiðtjÞ falling in the square Sðxk ;rÞ. Similarly, the components of the effective diffusion

tensor DðxkÞ are approximated by the empirical sums

Dðu;vÞðxkÞz 1

Nk

XN
i = 1

XMi � 1

j = 0;XiðtjÞ ˛ Sðxk ;DxÞ

h
x
ðuÞ
i ðtj + 1Þ � x

ðuÞ
i ðtjÞ

ih
x
ðvÞ
i ðtj + 1Þ � x

ðvÞ
i ðtjÞ

i
2Dt

: (Equation 7)

The centers of the bin and their size Dx are free parameters that are optimized during the estimation procedure.

Cosine-filtered estimation of the diffusion coefficient and drift
To increase the accuracy of the diffusion and drift maps, we weighted the points in themoving windows with a cosine function (would

also be possible to use wavelets). In that case, the new estimator for the drift field is now

aðuÞðxkÞz
PN

i = 1

PMi � 1

j = 0;xjðtjÞ˛Dðxk ;rÞ

�ðxðuÞi ðtj +1Þ� x
ðuÞ
i ðtjÞÞ

Dt
wi;jðxk ; rÞ

�
PN

i = 1

PNs � 1

j = 0;xiðtjÞ˛Dðxk ;rÞwi;jðxk ; rÞ
(Equation 8)

with Nk the number of points of the trajectories falling in the disk Dðxk ; rÞ of radius r and centered at xk . The weight of a displacement

starting at XiðtjÞ with respect to the disk Dðxk ;DxÞ is given by

wi;jðxk ; rÞ = cos

�
p

2

kX iðtjÞ � xkk
r

�
; (Equation 9)

with k:k the Euclidean norm. In that case, we can choose a refined grid Sðxk ; ðDxÞ0Þwith bin size ðDxÞ0 = Dx=lsc, where lsc is a scaling

factor. The role of the cosine weights w is to decrease continuously the influence of the points falling near the boundary.

Similarly, the generalized formula for the effective diffusion tensor DðxkÞ are given by the weighted sums

Dðu;vÞðxkÞz
PN

i = 1

PMi � 1

j = 0;X iðtjÞ˛Dðxk ;rÞ
ððxðuÞi ðtj +1Þ� x

ðuÞ
i ðtjÞÞðxðvÞi ðtj + 1Þ� x

ðvÞ
i ðtjÞÞÞwi;jðxk ;rÞ

2DtPN
i = 1

PMi � 1

j = 0;X iðtjÞ˛Dðxk ;rÞ
wi;jðxk ; rÞ

;

where the weights w are given by Equation (9).

Local point density estimation
The local density of points r can be determined using a procedure similar to the drift or diffusion estimation, dividing the image plane

into a square bin Sðxk ;DxÞ. We then compute for each square of s centered at xk

rDxðxkÞ =
Nk

ðDxÞ2; (Equation 10)

where Nk is the number of trajectory points falling into the bin centered at xk . In practice, it usually helps to smooth this density esti-

mation by applying a local average using a small d3d kernel with d � 1;3;5.

Estimating potential well parameters
In this subsection, we present the estimators for the two main parameters of potential wells: the extent of their boundary and

their associated energy (Hoze et al., 2012; Masson et al., 2014; Parutto et al., 2019). We recall that the diffusion coefficient

inside a well is considered to be constant and the energy of the well given by E = A=D where A is the attraction coefficient and D

the diffusion coefficient. The correlations between potential wells characteristics for CaV2.1 and ER luminal data are presented in

Figures S6A–S6C, S6E–S6G. In practice, for the potential wells reported in Figures 2 and 3, we filtered out the wells with energies

E > 10 kT .
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Residence time of particles inside a well
The potential well model allows to estimate the residence time using the classical escape time formula (Schuss, 2009; Hoze et al.,

2012) for a circular well

tez
Dr2

4A2
e

A
D; (Equation 11)

with r the radius of the well, A its attraction coefficient and D its diffusion coefficient. In the case of an elliptic well, we obtain an

approximate circular boundary using the harmonic mean of the semi-axes r =
ffiffiffiffiffiffi
ab

p
, where a and b are the large and the small-

axes lengths respectively. This approximation holds for azb.

Parabolic potential well representation
To extract the energy of a potential well, we consider the basin of attraction of a truncated elliptic parabola with the associated energy

function

UðXÞ =

8><>:A

"�
xð1Þ � mð1Þ

a

�2

+

�
xð2Þ � mð2Þ�

b

�2

� 1

#
; X ˛B

0 otherwise

(Equation 12)

where X = ½xð1Þ;xð2Þ�, m = ½mð1Þ;mð2Þ� is the center of the well, a;b are the elliptic semi-axes lengths and the elliptic boundary is defined

by

B =

(
X such that A

"�
xð1Þ � mð1Þ

a

�2

+

�
xð2Þ � mð2Þ�

b

�2

� 1

#
= 0

)
: (Equation 13)
Recovering the center m
The center of the nanodomain B is estimated as the center of mass of the cloud of points falling inside the HDR. We use the empirical

averaging formula

m =
1

N

XN
i = 1

X i; (Equation 14)

where N is the total number of points such that Xi ˛B.

Covariance matrix S

We use the sample estimator of the covariance matrix S defined for a cloud of N two-dimensional points X i = ðxð1Þi ; x
ð2Þ
i Þ as

sðu;vÞ =
1

N � 1

XN
i = 1

�
x
ðuÞ
i � mðuÞ

��
x
ðvÞ
i � mðvÞ

�
: (Equation 15)
Confidence ellipse estimation ε = ðm;a;b;4Þ
We define the boundary of the well as the X% confidence ellipse of the associated Gaussian density distribution of center m and

covariance S. Using the singular value decomposition method, we decompose the covariance matrix S as

S = UDV (Equation 16)

where U;V are unitary matrices and D is diagonal. The values in D represent the variance in each dimension along the principal

components. For a Gaussian density, the values of D follow a Chi-Squared distribution with n = 2 degrees of freedom. Therefore

the semi-axes lengths a;b can be obtained at the x% confidence level from D as

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxD

ð1;1Þ
p

; b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxD

ð2;2Þ
p

; (Equation 17)

with jx is given by Pðv <jxÞ = x for a Chi-Squared distribution with two degrees of freedom (for example j99 = 9:210, j95 = 5:991

and j90 = 4:605). Finally, the orientation 4 of the ellipse is defined by the angle

4 = atan

 
Uð2;1Þ

Uð1;1Þ

!
: (Equation 18)
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Maximum likelihood estimators (MLE) based on an Ornstein-Uhlenbeck model
Using the potential well representation from Equation 12 in the stochastic model presented in Equation 2 leads to a truncated Orn-

stein-Uhlenbeck process, centered at m, with an attraction coefficient l and diffusion coefficient s =
ffiffiffiffiffiffiffi
2D

p
. The probability density

function pðXðtj + 1Þ
��XðtjÞÞ for j = 1::ðM � 1Þ of observing two successive positions of the same trajectory XðtjÞ and Xðtj + 1Þ, separated

by a time step tj + 1 � tj = Dt is given by

Xðtj + 1Þ
��XðtjÞ � N ðmðXðtjÞÞ; sÞ; (Equation 19)

with

mðXðtjÞÞ = XðtjÞe� lDt +m
	
1 � e� lDt

�
(Equation 20)

and

s =
s2ð1 � e� 2lDtÞ

2l
; (Equation 21)

which we rewrite as

mðXðtjÞ Þ = mlb+XðtjÞð1 � lbÞ

s = s2

�
b � 1

2
lb2

�
; (Equation 22)

and

b =
1 � e� lDt

l
: (Equation 23)

The log-likelihood function of observing the successive pairs ðX iðtjÞ;X iðtj +1ÞÞ, i = 1.N, possibly from various trajectories, is given

by

Lðm; l; sjX1; ::;XnÞ =
XN
i = 1

logðpðXiðtj +1Þ;XiðtjÞÞ

=
XN
i = 1

"
log

�
1ffiffiffiffiffiffiffiffi
2ps

p
�

� ðXiðtj + 1Þ � mðXiðtjÞÞÞ2
2s

#

= � 1

2

XN
i = 1

"
logð2psÞ + ðXiðtj + 1Þ � mðXiðtjÞÞÞ2

s

#
:

(Equation 24)

The corresponding maximum likelihood estimators for l and D, ~l and ~D are obtained by solving the system of equations

vL
vm

= 0

vL
vl

= 0

vL
vD

= 0;

(Equation 25)

from which we obtain the empirical estimators for the drift coefficient (Tang and Chen, 2009)

~lN = � 1

Dt
log

0BBBBB@
� PN

i = 1

Xiðtj + 1ÞXiðtjÞ
�

�
�

1
N

PN
i = 1

XiðtjÞ
�� PN

i = 1

Xiðtj + 1Þ
�

� PN
i = 1

XiðtjÞ2
�

� 1
N

�
1
N

PN
i = 1

XiðtjÞÞ
�2

1CCCCCA; (Equation 26)

and the diffusion coefficient:

~DN =
l

Nð1 � e� 2lDtÞ
XN
i = 1

½Xiðtj + 1Þ � mðXiðtjÞÞ�2: (Equation 27)

Note that the parameter l in Equation 27 can be computed from the estimator ~lN.
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Hybrid density-drift algorithm
In this sub-section, we present two variants of an algorithm to detect the main characteristics of a potential well from some observed

trajectories: the center m, the semi-axes lengths aRb, the orientation 4, the attraction coefficientA, the diffusion coefficientD and the

energy E.

Fixed spatial scale hybrid density-drift algorithm
Initiation

Search for high-density regions: the image is partitioned by a gridGDx with square bins of sizeDx. fromwhich we compute the density

map rDxðxÞ (Equation 10). We then select the bins from rDxðxÞ with the highest d% density as possible ‘‘seed’’ regions containing a

potential well.

Iterations

For each seed region obtained in the initiation step, we apply an iterative procedure that is going to consider increasingly

larger square neighborhoods around this region. For each iteration k = 1::K, we keep only the trajectories contained inside

the square Gk;Dx of size ½ð2k + 1Þ3ð2k + 1Þ�ðDxÞ2 and centered at point mk� 1. The point mk is the center of mass of points falling in

the square Gk (Equation 14) and m0 is the center of the initial high-density bin. The elliptic semi-axes ak , bk are computed as the

x% confidence ellipse (Equation 17, ellPerc parameter as defined in Methods S1) from the covariance matrix Ck (Equation

15) and the angle 4k is the orientation of the ellipse (Equation 18). These parameters define the elliptic boundary of the well at

iteration k

εkðDxÞ = ðmk ; ak ;bk ;4kÞ: (Equation 28)

The attraction coefficient Ak and diffusion coefficient Dk are computed from Equations 26 and 27 respectively, for the trajectories

contained inside εk . Specifically, we obtain Ak from

l
ð1Þ
k =

2Ak

a2k
and l

ð2Þ
k =

2Ak

b2
k

: (Equation 29)

We repeat this procedure K times, with K =


Ms

Dx

�
for the spatial parameterDx and themaximum region sizeMs, defined by the user.

Termination

This step consists in selecting the best iteration among K: we evaluate for each iteration k > 1 the likelihood score

Lk = Lðmk ; lk ;sk
��X1; ::Xp ˛ εk � εk� 1Þ defined by Equation 24 but computed for sub-trajectories falling in the ring formed by the el-

lipses εk� 1 and εk . In practice, we filter out rings with < ringMinPts trajectories which is a value specified by the user (see Methods

S1). The best iteration k� is selected as the first local maximum of the curve Lk .

Multiscale hybrid algorithm
We generalize the hybrid density-drift algorithm defined above for a fixed spatial scale, by now varying the grid size Dx, in the

range Dx1 <Dx2 < ::<DxN selected by the user. The purpose of this algorithm is to select the optimal size Dxi� that maximizes the

likelihood

k�Dx�
i
= max

i = 1::N
Lðmk� ; lk� ;sk� jX1; ::Xp ˛ εk� ðDxiÞÞ; (Equation 30)

where k�Dx�
i
is the iteration that maximizes L across all the spatial scalesDxi, i = 1::N. In practice the range of grid sizes is specified by

a minimal value Dxmin, a step Dxstep and a maximum value Dxmax as presented in Methods S1.

Density-based algorithm
The Density-Based Algorithm uses the density of points estimated around the local density maximum of a high-density region and

was first presented in (Parutto et al., 2019). The algorithm uses the level set of a Gaussian distribution of points inside a potential well.

We define the level set Ga with respect to a local maximum M� as the ensemble of all trajectory points falling in bins with a density

greater than aM�:

Ga = fX i such that reðxÞ > aM�g; (Equation 31)

where re is the empirical point density, estimated over the bins of a square grid (Equation 10) and a˛ ½0;1� is a density threshold. For

the points X i = ðxð1Þi ; x
ð2Þ
i Þ located in Ga, the center m of the distribution is approximated by the empirical estimators based on Equa-

tion 14 but restricted to the points in Ga:

bmðuÞ
a =

1

Np

XNp

fk = 1;Xk ˛Gag
x
ðuÞ
k ; (Equation 32)

with Np the number of points in the ensemble Ga and u = 1::2. Similarly, we extend the estimator for the covariance matrix S (Equa-

tion 15) to
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bsðu;vÞ
a =

1

Np � 1

XNp

fk = 1;Xk ˛Gag

�
x
ðuÞ
k � bmðuÞ

a

��
x
ðvÞ
k � bmðvÞ

a

�
: (Equation 33)

We now define the density-based algorithm:

Initiation

Search for high-density regions: the image is partitioned by a gridGDx with square bins of size Dx fromwhich we compute the density

map rDxðxÞ (Equation 10). We then select the bins from rDxðxÞ with the highest d%density as possible regions containing a potential

well.

Iterations

For each selected high-density bin, we initialize the well center ~m0 at the center of the bin. We then construct a refined grid centered at

~m0 and with bin size Dx0 <Dx (parameter locGridDx as defined in Methods S1). In this grid, we compute the centers m0;ak
, for

different values of a: a1 <.<aN, selected by the user. The refined center m0 is obtained as the center of mass of the centers

m0;ak
for k = 1::N.

We then apply an iterative procedure that considers increasingly larger concentric annulus of center m0, width Dr and radius rk for

k = 1::K. Where the number of iterations K is determined based on a minimal r1 = rmin and maximal rK = rmax distances defined by

the user (see Methods S1). For each iteration k, we compute the confidence ellipse εk = ðm0; ak ;bk ;4kÞ (see sub-section Method de-

tails) obtained from the covariance matrix Sk (Equation 33) computed only for the points that fall in the annulus of radius rk . We

then search for the iteration r� that maximizes the ratio CvðrkÞ =
ffiffiffiffiffiffiffiffiffiffiffiffi
ak=bk

p
(in practice, we limit the maximal distance for finding Cv

to rk < ratMaxDist, which value is specified by the user (see Methods S1)) and use it to define the refined distance to the center

reðXÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xð1Þ � m

ð1Þ
0

�2
+ k
�
xð2Þ � m

ð2Þ
0

�2r
; (Equation 34)

where k = Cvðr�Þ, that transforms an ellipse into a circle with the same center. Finally, we compute the density of pointsNeðrkÞ falling
in the annulus of radius rk based on the refined distance measure re.

Termination

We select the first iteration k� such that Neðr�k Þ>Neðrk� � 1Þ: it is the first iteration where the derivative of the density with respect to the

distance to the center, stops decreasing. This criteria is more stable on empirical data than searching for the minimum of the density

(see Figures 3 and 4 panel B3 of (Parutto et al., 2019)). The elliptic boundary of the well ε� is centered at m0, has semi-axis lengths

a�;b� given by a� = rk� and b� = krk� and orientation 4k� .We then use theML estimator (Equation 27) to estimate the constant diffusion

coefficient D inside ε
�. Finally, to compute A� we use the diagonal form of the covariance matrix estimated (Equation 33) for all the

points falling in ε
�:

S =
D

A

�
a2 0
0 b2



: (Equation 35)

and estimate

A� =
D

2

 
ða�Þ2
s11

+
ðb�Þ2
s22

!
: (Equation 36)
Drift-based algorithm
The drift based algorithm uses an error function in the space of the vector field to estimate the characteristics of a well and was intro-

duced in (Heck et al., 2019). Its principle is as follows:

Initiation

Search for high-density regions: the image is partitioned by a gridGDx with square bins of size Dx fromwhich we compute the density

map rDxðxÞ (Equation 10). We then select the bins from rDxðxÞ with the highest d%density as possible regions containing a potential

well.

Iterations

For each region selected in the initiation, we apply the following iterative procedure for k = 1::K:

(a) We select only the sub-trajectories falling into a square Gkðmk ;DxÞ centered at mk� 1 and of size ð2k + 1ÞDx3 ð2k + 1ÞDx. We

take m0 to be the center of the high-density bin.

(b) We estimate the elliptic well boundary εk = ½mk ; ak ;bk ;4k � as the x% confidence ellipse (parameter ellPerc as discussed in

Methods S1) from the cloud of points in Gkðck ;DxÞ. Where x is a parameter selected by the user (usually 90; 95 or 99).

(c) We then compute a new grid GDxðmkÞ centered at mk , that we use to estimate the local drift map (Equation 6)

akðXÞ = ½að1Þk ðXÞ; að2Þk ðXÞ� and estimate the attraction coefficient Ak of the well using the least-square regression formula
Cell Reports Methods 2, 100277, August 22, 2022 e6
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Ak =
1

2

PM
i = 1

a
ð1Þ
k

ðX iÞxð1Þi

a2
+

a
ð2Þ
k

ðX iÞxð2Þi

b2PM
i = 1

ðxð1Þi Þ2
a4

+
ðxð2Þi Þ2

b4

; (Equation 37)

where X i = ½xð1Þi ; x
ð2Þ
i � ði = 1.MÞ are the centers of the M bins from GDxðmkÞ that are contained inside the ellipse εk .

(d) Finally, we estimate the quality of the well (parabolic index) based on the residual least square error:
Skðak ;AkÞ = 1 �

� PM
i = 1

a
ð1Þ
k

ðX iÞxð1Þi

a2
+

a
ð2Þ
k

ðX iÞxð2Þi

b2

�2

� PM
i = 1

ðxð1Þi Þ2
a4

+
ðxð2Þi Þ2

b4

�� PM
i = 1

kakðX iÞk2
�: (Equation 38)

The index Sk ˛ ½0;1� is defined such that Sk/0 for a drift field generated by a parabolic potential well and Sk/1 for a random drift

vector field as observed for diffusive motion.

The number of iterations is given byN = bwmax =Dxcwherewmax is themaximumsizeof the region to consider and is given by the user.

Termination

We select the iteration k� that minimizes the parabolic index S: k� = argmink = 1.KSkðak ;AkÞ. We estimate the diffusion coefficient

inside the well using the local estimator (Equation 4) for all the displacements inside the ellipse εk� .

Sliding window analysis to study the stability of the wells over time
To determine the stability of the potential wells, we use a non-overlapping sliding window of 20 s (Heck et al., 2019), to recover the

ellipse characteristics, as shown on different examples in Figure S6A and S6C. When a well disappears in a given time window, but

reappears latter, we kept the well for the entire period.

Reconstructing the graph of the network explored by SPTs
We describe here a new variant of the algorithm to reconstruct a graph from SPTs exploring a network. This algorithm is based on the

graph reconstruction algorithm introduced in (Holcman et al., 2018) and exploits the heterogeneous distribution of points caused by

trajectories spending more time inside nodes than in tubules.

Recursive velocity based graph reconstruction algorithm of a network explored by SPTs
The recursive graph reconstruction algorithm first generates an ensemble of points from slow trajectory displacements based on a

maximum displacement length threshold vth and then recursively uses the dbscan algorithm (Ester et al., 1996) to cluster these

points based on their local density. The algorithm requires specification of two ensembles of parameters:

1. An ensemble of distances R = fRu;u = 1::Ug (in mm ) defining the neighborhood radius around points.

2. An ensemble of counts N = fNv; v = 1::Vg defining the numbers of points required in the neighborhood to form a cluster

(Ester et al., 1996).

A pair of these two parameters ðRu; NvÞ for any u; v defines a local density Nv

Ru
(points/ mm2) inside each cluster. The values of R and

N depend on the local number of recorded trajectories and can vary inside the image. For each dataset, these values can be deter-

mined such that the computed clusters overlap with the structure of the organelle formed by the trajectories.

We now present the steps of the algorithm:

1. We form the ensemble of points belonging to low-velocity trajectory fragments S =

�
XiðtjÞ;

����kDXiðtjÞk
Dt % vth

�
.

2. We apply the dbscanprocedurewith parameters ðRU;N1Þ to obtain a first ensemble ofK clusters c1;.; cK from the points inS.

3. We then perform a ‘‘recursive’’ step where we refine the initial clusters possessing more than maxClustNpts points. For any

such cluster ck :
e7
(a) We iteratively re-apply the dbscan algorithmwith themore stringent parameter pair ðRu;NvÞ for u = ðU� 1Þ::1 and v = 2::V

and replace the initial cluster with the resulting sub-cluster(s). We continue iterating over the generated sub-clusters until

they all possess less than maxClustNpts points.

4. We then approximate the boundary of each cluster either by its minimum volume ellipsoid (Todd, 2016) or its convex hull poly-

gon and assign each point discarded in step 1 to the cluster in which they fall if possible.

5. Finally, we merge any overlapping pair of clusters by computing the boundary of the combined ensemble of points (either

elliptic or the convex hull) and we iterate this procedure until no more clusters overlap.
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This first step allows to find the K nodes of the network. In the second step, we define tubules by constructing a connectivity matrix

C of size K3K where ci;j ð1 % i; j %KÞ is the number of first or second order trajectory segments connecting nodes i and j. Specif-

ically, we increment ci;j for each data point XkðtlÞ (1% k%Nt, 0% l <Mk � 1) in the following cases:

1. XkðtlÞ is located in node i and Xkðtl + 1Þ in node j

2. XkðtlÞ is located in node i, Xkðtl +1Þ does not belong to any node and Xkðtl +2Þ is located in node j (in this case 0% l <Mk � 2).

Lysosome analysis
Trajectories analysis for lysosome SPTs

To study the dynamics of lysosomes, we plotted the distribution of instantaneous velocities, computed from each trajectory displace-

ment Xðt +DtÞ � XðtÞ by

v =
Xðt +DtÞ � XðtÞ

Dt
; (Equation 39)

where Dt = 1:5 s. We approximate the distribution of instantaneous velocities using a two exponential model obtained by fitting

fðvÞ = Ae
� v

v0 +Be
� v

v1 to the distribution using MATLAB’s fit toolbox. The density and diffusion maps were computed using the esti-

mators from Equation 4 described above.

Local high-density region analysis: Ellipse approximation of the boundary

High-density regions are extracted from trajectories as follows: we construct a density map (Equation 10) based on a square grid with

bin sizeDx = 480 nm. From this density map, we select only the 5% highest density bins and in casemultiple such bins appear within

a distance of two squares of each other, only the one with the highest value was kept. For each selected bin of center c, we computed

a refined density map of size 535 squares, centered at c and with bin sizeDx0 = 200 nm. From this local map, we collected trajectory

points falling into the bins that have a density > 80% of the maximal bin value and use them to estimate the elliptic boundary of the

region from the 95%confidence ellipse (see sub-sectionMethod details). Finally, when a pair of ellipses overlap, we replaced themby

the ellipse computed over their combined ensemble of points and iterated this procedure until no more overlaps could be found.

Transient confinement detection

To detect transient confinement periods along individual trajectories, we used the following procedure: for each point XðtjÞ of a tra-

jectory, we considered the ensemble of its successors etj ;n = fXðtjÞ;.;Xðtj + nÞg, where initially n = Nnh is set by the user. We then

computed the center of mass mtj ;n and checked that all the points XðtkÞ˛ etj ;n have a distance to the center of mass kXðtjÞ � mtk ;nk<
Rnh, for a chosen distance threshold Rnh (k:k is the Euclidean norm). We then iterate the procedure, considering increasingly larger

ensembles of successors n = fNnh;Nnh + 1;.;Nnh +Kg until either reaching the end of the recorded trajectory or when the next point

Xðtj +n+1Þ do not fall into the neighborhood of the center of mass mtj ;n. The confinement duration is then computed by considering the

difference tj + n � tj in time between the two endpoints of the ensemble. Finally, the spring constant l and diffusion coefficientD of the

confinement is obtained by applying the Ornstein-Ulenbeck maximum likelihood estimators (Tang and Chen, 2009; Parutto et al.,

2019), where the OU-process is given by

dX = � lðX � mÞdt +
ffiffiffiffiffiffiffi
2D

p
dW: (Equation 40)
ImageJ plugin
The present method and algorithms are implemented into an ImageJ plugin called "SPTAnalysis". The plugin allows to reconstruct

the various maps (trajectories, density, drift, diffusion), detect potential wells and reconstruct the graph associated to trajectories. It

allows to extract various statistics such as the distribution of diffusion coefficients or the energy and the size of potential wells. The

algorithms performances are summarized in Figure S9 and Method S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical tests have been used in this paper. Data quantification is reported as average ± standard deviation, where the mean-

ings of n are indicated in the corresponding legends.
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