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Recent HIV vaccine designs have sought to block viral
escape pathways by compressing antigenic diversity.
In light of HIV’s propensity to mutate and thereby to

ever ramify viral populations, could it be that providing
sufficient protection against global diversity is an
insurmountable problem? We propose an alternative HIV-1
vaccine design that deliberately includes viral segments
conserved across the entire main group (or M group) of HIV-
1 strains and excludes variable segments. We describe a
prototype conserved elements (CE) vaccine constituted of 45
viral segments at least eight amino acids long that fulfill
stringent conservation criteria.

Our paradigm contends that the best way to cope with
HIV-1 diversity may be to avoid it altogether. We argue that a
successful vaccine must elicit responses against conserved
regions of the viral proteome in which mutations would
severely compromise the viability of the virus.
Simultaneously, it must not elicit responses against variable,
‘‘decoy’’ elements of the virus, i.e., features that can mutate
while retaining function, and that can absorb much of the
adaptive host immune response.

Coping with HIV-19s extensive diversity is a major
challenge for vaccine design strategies. Centralized
(consensus and ancestral) immunogens [1–3] have in some
cases improved the breadth of responses, and recent designs
seek to compress the more common variant features among
circulating strains into immunogens [4–6]. However, there is
a practical limit to antigenic complexity that may prevent
inclusion of all escape pathways in realistically sized
immunogens. Besides, HIV’s propensity to mutate has been
shown to provide means for HIV to escape from
antiretrovirals and antibody and cytotoxic T lymphocyte
(CTL) pressures.

The foregoing considerations led us to propose a vaccine
exclusively composed of viral segments strictly conserved in
all HIV-1 M group proteins and specifically devoid of mutable
segments. The presence of segments that are nearly invariant
in all HIV-1 M group proteomes strongly suggests that those
CE are both obligatory for viral viability and are the Achilles’
heels of the virus. Additionally, considering that variable
segments can readily escape CTL pressures and can be highly
immunogenic epitopes, we propose that mutable segments
may act as immunologic decoys, subverting responses away
from conserved elements.

Rationale

Despite HIV-19s extreme diversity, certain segments are
nearly invariant (Figure 1). Near-total conservation of some
sites implies that tight functional constraints obviate certain
mutations. Indeed, escape from CTL responses, as with
antiretroviral resistance, sometimes results in fitness decrease
[7–14]. Specifically, escape mutations in Gag impaired viral
fitness significantly more than mutations in Env (p ¼ 0.0033,
Mann-Whitney test) (unpublished data). These findings

corroborate the amount of polymorphisms that can typically
be accommodated in each protein, as also hinted by a study of
env V3 arguing for site-specific amino acid (AA) conservation
as a predictor of viral fitness [15].
As HIV-1 establishes infection, it relentlessly mutates away

from the founding strain [16]. However, some mutations
recover consensus-like AAs [14,17,18], and these transitions to
ancestral states may reverse CTL escape mutations back to
susceptible and possibly increasingly fit forms upon
transmission to human leukocyte antigen (HLA)-mismatched
individuals [10,11,18,19,20].
HIV-19s predilection to mutate away from CTL-susceptible

sequences highlights the critical importance of CTL
responses. Gag, the second-most conserved HIV-1 protein, is
immunodominant during infection [21] in different ethnic
groups [22]. Numerous studies have suggested a superior role
for Gag-specific CTL in viral containment [23–33], whereas
CTL targeting of variable proteins may not contribute or
even negatively impact immune control in HIV infection in
humans [23,30] and in mouse studies [34]. Likewise, the
emergence of escapes from Env-specific antibodies against
variable regions hinders efforts to generate neutralizing
antibodies [35,36].
Many studies underscored the challenge of broadening

CTL recognition through vaccination as they reflected typical
HIV immunodominance profiles: the immune system focuses
on relatively few immunodominant epitopes, leaving many
epitopes subdominant or cryptic. Since subdominant
responses may be critical to effective suppression [37],
mitigating immunodominance patterns could prove critical
for successful vaccines.
Those considerations converge onto the approach of

exclusively using conserved regions as components of HIV-1
vaccines [38–40]. Focusing on CTL induction, we articulate
the conserved elements approach to vaccine design and
describe here our candidate antigen. We consider that: (1) an
HIV vaccine must be composed of rigorously conserved
elements of the virus that cannot mutate without greatly
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deterring or eliminating viability; (2) mutable epitopes can
act as immunodominant decoys, thereby sapping responses
against protective, invariant epitopes; and (3) most HIV
targets that can mutate without drastically impairing virus
functionality do not contribute to the durable efficacy of the
immune response.

CE Vaccine Design

To define CE, we evaluated the conservation in a database
of all HIV-1 M group nucleotide sequences available (one
sequence/person; sequence accession numbers and
alignments available at http://mullinslab.microbiol.
washington.edu/HIV/Rolland2007/). We then identified
protein stretches at least eight AAs long, the minimal size of a
CTL epitope, in which every AA is nearly conserved across
the entire HIV-1 M group. Given the preponderance of
defective HIV sequences in vivo, we did not require absolute
conservation but included segments where each AA is found
in more than 98% of all HIV-1 M group sequences (1st tier
CE). This level of conservation is consistent with our recent
study of fitness loss associated with mutations in Gag
(unpublished observations). We have also included CE in

which two variant forms at a given position together account
for more than 99% of the amino acids found in the database
(2nd tier CE) (Figure 1). Although the Los Alamos HIV
sequence database (HIVDB) is overwhelmingly constituted of
clades B and C, other M group subtypes were sufficiently
represented in sequence alignments such that a subtype-
specific AA would drag that site below the 1st tier criterion of
conservation.
Most 1st and 2nd tier CE were identified in Pol (n¼27; only

1st tier peptides were included in our CE, due to the extreme
conservation of Pol) and Gag (n¼10), the two most conserved
HIV-1 proteins; however, other CE were found in Env (five),
Vif (two) and Rev (one) (Table 1). The idiosyncrasy of the CE
design means that more than half of CE peptides correspond
to Pol segments. However, it should be noted that Pol
epitopes are rarely targeted in natural infection. Recent
results suggest that the infrequent recognition of Pol epitopes
is likely related to the considerably lower ratio of Pol
compared to Gag proteins produced by the virus [41] rather
than to a lack of immunogenicity. Both observations raise
concerns about Pol segments as sagacious choices for vaccine
candidates.

doi:10.1371/journal.ppat.0030157.g001

Figure 1. Conservation of M Group Sequences across HIV-1 Proteins

The full lengths of each of the viral proteins containing 1st and/or 2nd tier CE are shown. The histogram indicates the tier of conservation for each
segment of at least eight AAs in length, with tier number shown on the y-axis. 1st tier segments correspond to segments at least eight AAs long in
which the AA at each site is found in more than 98% of HIVDB database sequences. 2nd tier include sites at which the most common AA is found in less
than 98% of sequences in the database, but at which two AAs together make up more than 99% of the AAs found at that site in the database. For
comparison, additional tiers of potential use for vaccine design are shown. 3rd tier expands the set to include two variable sites, and 4th tier includes n
variable sites, each of which satisfy the criteria of having two AAs that together make up more than 99% of the AAs in the database. The 5th tier
corresponds to peptides that have n variable sites that satisfy the criteria for 4th tier, but the requirement for conservation encompassed by the two
AAs at each site is relaxed to more than 98%.
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Indeed, early vaccine trial results show a preponderance of
CTL responses in Pol when Gag and Pol are administered at
the same ratio: a study of immune responses elicited by an
Ad5 vaccine candidate in 30 HIV-uninfected participants
showed that 39 distinct epitopes were recognized in Pol and
eight in Gag (Helen Horton, personal communication). As
another consequence of not defining our candidate vaccine
based on the frequency of recognition in natural infection,
our CE vaccine design does not contain Nef epitopes, a
traditional component of HIV-1 vaccine candidates,
including the recently failed Merck/STEP clinical trial. We
reason that while both Gag and Nef are under important CTL
pressure, the degree of polymorphisms that can be
accommodated in Nef leads to a cycle of CTL escape
mutations/de novo responses to variant epitopes, and those
readily escapable shifting CTL responses do not afford long-
term control of HIV-1 replication. In contrast, a CTL escape
mutation in Gag has a strong impact on viral viability and
those strong constraints on HIV-1 evolution might coerce the
virus toward minimal replicative fitness capacities. Likewise,
we consider that a CTL-based vaccine would not benefit from
focusing largely on Env antigens.

The CE segments contain known CTL epitopes, including
some previously associated with long-term nonprogression or
recurrent HIV exposure without seroconversion [42–46]
(Note: CE sequences are available at http://mullinslab.
microbiol.washington.edu/HIV/Rolland2007/). Some epitopes
are strictly embedded in CE: eight in Gag, 11 in Pol, and three
in Env, representing a variety of HLA restrictions. In
addition, CE sequences include supertype motifs from all
nine supertypes (B7, A3, A2, A24, B44, A1, B27, B62, B58) in
both Gag and Pol, providing a population coverage of at least
80%, regardless of ethnicity [47]. Additional epitopes were
found to overlap CE/non-CE junctions (data not shown); thus
extending CE immunogens could increase the number of

peptides available to CD8þ T lymphocytes. However, their
inclusion would relax our stringent conservation criteria. It
should be noted that attempts to correlate CTL breadth and
viral containment have been inconclusive [25,26,48–51]. The
conundrum of extending CE without including potentially
pathogenic variable positions thus begs for a better
understanding of virus viability with respect to sequence
conservation.
One intricate issue with the CE strategy is to ensure that

antigen structures are recognized outside of native proteins.
Thus, CE constructs have to be engineered optimally to elicit
immune responses by capitalizing on the mechanisms
governing epitope processing and presentation while
preventing the creation of junctional immunogenicity or
homology to the HIV or human proteome [52]. Furthermore,
certain elements of the HIV proteome may be conserved
because there is a dearth of features within and surrounding
these elements that are capable of mediating efficient
processing for presentation on HLA. Such elements would
not be useful for inclusion in a vaccine. Thus, configurations
should explicitly capitalize on emerging data on the
mechanisms that govern epitope processing and
presentation.
In eliciting responses to particular segments, another

undefined problem is immunodominance [22,53]. With
respect to all 9-mer peptides in datasets, epitope
concentrations were lower in CE than in non-CE, except in
Env (Table 1). However, epitopes in variable regions like Env
are under-represented in databases [18] and HLA class I allele
promiscuity is more pervasive than previously thought [54].
In terms of the utility of a CE vaccine, considering the lower
representation of epitopes in CE versus non-CE as
problematic may be misleading, especially as our CE design is
intended to not reproduce certain features of the antiviral
response seen in natural infection. Since CE are apparently

Table 1. CE Peptide Coverage

Protein L Coverage Coverage All

Peptides

CTL

Epitopes

9-mer

Coverage

Epitope

Concentration

Supertype

Restriction
1st Tier

Peptides

1st þ 2nd

Tier Peptides

n L % Total n L % Total n L CE Non-CE CE Non-CE CE Non-CE

Gag 497 6 53 10.7 10 111 22.3 19 211 8 215 5.83 94.17 1.37 2.28 All 9

Pol 1,002 27 312 31.1 (27.0) 312.0 (31.1) 27 312 11 150 9.29 90.71 1.18 1.65 All 9

Vif 192 2 17 8.9 2 19 9.9 3 29 0 26 1.59 98.41 0 0.26 A3, A24

Vpr 96 0 0 0 0

Tat 92 0 0 0 0

Rev 123 0 0 1 8 6.9 2 16 0 18 0.2 99.8 0 0.18 B27

Vpu 82 0 0 0 0

Env 847 4 41 4.8 5 56 6.6 8 92 3 136 1.91 98.09 1.57 1 A2, A24, A1,

B62, B58

Nef 206 0 0 0 0 0 1.39

Total 3,137 423 13.5 506 16.1 59 660 22 545

CE peptides are described for each protein by the number of fragments (n), the corresponding number of AAs (L), and the fraction of the whole protein they represent. Coverage is shown
separately for 1st tier peptides, 1st and 2nd tier peptides, and for the total combinations of 1st and 2nd tier variant peptides. Due to the extreme conservation of the protein, only 1st tier
peptides are considered for Pol (the 1st tier numbers are enclosed in parentheses in the 1st and 2nd tier columns). HIV-1 M group sequences were scanned for CTL epitopes of eight to 11
AAs in length previously reported in the HIVDB (these epitopes are heavily biased for viruses and laboratory reference strains belonging to subtype B, and increasingly, subtype C). Due to
the requirement of including multiple peptides to encompass 2nd tier CE, the number of peptides to cover all of the overlapping 9-mer peptides were generated from the sequence
dataset used to identify the CE (available at http://mullinslab.microbiol.washington.edu/HIV/Rolland2007/); 9-mer coverage corresponds to the percentage of all possible 9-mer peptides
found in CE and non-CE segments. The epitope concentration is the number of CTL epitopes divided by the 9-mer coverage. The nine supertypes correspond to B7, A3, A2, A24, B44, A1,
B27, B62, and B58 [47].
doi:10.1371/journal.ppat.0030157.t001
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not preferentially targeted in natural infection, CE vaccine
designs have to deliberately focus the immune response
toward segments that are not traditionally immunodominant,
thereby assuring that reactivity against CE is not obscured by
the immunodominating responses evident in natural
infection. For example, isolating subdominant epitopes in CE
vaccines might promote their recognition [55,56].

Concluding Remarks

To overcome the stumbling block posed by HIV-1 diversity,
we specified a novel HIV vaccine design that exclusively
includes portions of the proteome meeting stringent
conservation criteria and thereby explicitly deprived of
mutable segments. We consider that variable regions act as
decoys that divert the immune system from responding to
conserved regions, which are seemingly better for long-term
viral control. Crucially, our scheme culminates in a single
global CE vaccine suited for evaluation against all circulating
HIV-1 M group strains. &
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