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Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule
implicated in synaptic plasticity, learning and memory and neurotoxicity during
neuroinflammation. However, little is known about the intracellular mechanisms
mediating PAF’s physiological or pathological effects on synaptic facilitation. We show
here that PAF receptors are localized at the synapse. Using fluorescent reporters of
presynaptic activity we show that a non-hydrolysable analog of PAF (cPAF) enhances
synaptic vesicle release from individual presynaptic boutons by increasing the size or
release of the readily releasable pool and the exocytosis rate of the total recycling
pool. cPAF also activates previously silent boutons resulting in vesicle release from a
larger number of terminals. The underlying mechanism involves elevated calcium within
presynaptic boutons and protein kinase C activation. Furthermore, cPAF increases
synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin
I from the presynaptic compartment during stimulation, freeing synaptic vesicles for
subsequent release. These findings provide a conceptual framework for how PAF,
regardless of its cellular origin, can modulate synapses during normal and pathologic
synaptic activity.

Keywords: platelet activating factor, PAF, presynaptic plasticity, synaptic vesicle pools, PKC, calcium, synapsin,
readily releasable pool

INTRODUCTION

Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule implicated
in synaptic plasticity, learning and memory, and neurotoxicity (Clark et al., 1992; Wieraszko
et al., 1993; Gelbard et al., 1994; Izquierdo et al., 1995; Teather et al., 1998; Xu et al., 2004).
Because PAF can alter synaptic plasticity as well as stimulate the immune system (Zimmerman
et al., 2002), PAF may fuel neuroinflammation and thus play multiple roles in neurodegenerative
disease, regardless of the etiology. PAF levels are elevated in the CNS of patients or rodent
models with multiple sclerosis, HIV associated neurocognitive disorders (HAND), seizure, trauma,
neuropathic pain, and stroke; suggesting disturbed PAF production and metabolism in disorders
with a neuroinflammatory component (Kumar et al., 1988; Lindsberg et al., 1990; Bazan et al.,
1991; Gelbard et al., 1994; Callea et al., 1999; Akisu et al., 2003). Although most cell types including
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neurons can produce PAF (Maclennan et al., 1996; Aihara
et al., 2000; Zimmerman et al., 2002), the cell type(s) generating
pathological levels of PAF in the above conditions is/(are)
unknown and may be different for each disorder. However, as
stimulated immune cells (macrophages, neutrophils, microglia,
etc.) generate large quantities of PAF by up-regulating expression
and/or activity of the PAF synthesizing enzyme LPCAT2, they
are likely central producers in neuroinflammatory disorders
(Morimoto et al., 2010; Okubo et al., 2012; Morimoto et al., 2014).

Multiple studies have shown that PAF can exacerbate
the inflammatory environment by stimulating inflammatory
monocyte and neutrophil chemotaxis, activation, and production
of TNF-α, Il-6, and reactive oxygen species (Czarnetzki and
Benveniste, 1981; Del Sorbo et al., 2001; Kihara et al., 2005;
Boetkjaer et al., 2007; Belanger et al., 2008; Forsman et al., 2013).
In addition to the inflammatory action of PAF, high doses of
PAF can be directly neurotoxic. PAF makes neurons vulnerable
to NMDA receptor-dependent excitotoxic injury and can induce
apoptosis (Gelbard et al., 1994; Xu et al., 2004; Bellizzi et al.,
2005). Sub-lethal doses cause dendritic beading, loss of spines,
and mitochondrial dysfunction (Perry et al., 1998, 2005; Parker
et al., 2002; Bellizzi et al., 2005). Pharmacological or genetic
inhibition of the PAF receptor (PAFR) in rodent models of
neuroinflammatory disease successfully decreases neurological
damage and inflammation (Kihara et al., 2005; Farooqui et al.,
2006; Belayev et al., 2008; Eggert et al., 2009; Musto and Samii,
2011; Rodrigues et al., 2011; Okubo et al., 2012; Motoyama et al.,
2013). These studies validate the PAF/PAFR associated signal
cascade as viable targets for reducing inflammatory damage to the
CNS and warrant further study into the mechanisms of how an
overabundance in PAF signaling contributes to synaptic damage
and the continuing harmful cycle of neuroinflammation.

PAF also plays a role in non-pathological neuronal signaling.
In healthy brain, PAF enhances long-term potentiation (LTP) and
improves performance in learning andmemory tasks (Clark et al.,
1992; Wieraszko et al., 1993; Izquierdo et al., 1995; Teather et al.,
1998; Moriguchi et al., 2010). PAF is released from neurons by
high frequency stimulation or NMDA receptor activation (Aihara
et al., 2000). Both neurons and glia express the PAFR (Mori et al.,
1996), which is a G protein coupled receptor that signals through
Gαq but can also signal via Gαi (Shi et al., 1996; Ishii and Shimizu,
2000). The canonical Gαq pathway activates phospholipase C,
which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2)
to diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 acts
as a second messenger to mobilize intracellular calcium stores.
DAG and calcium locally activate protein kinase C (PKC).

To the best of our knowledge, PAF’s mechanism of action
at the synapse has been limited to a few reports focusing on
its potentiation of LTP that have focused almost exclusively on
postsynaptic readouts of activity (Bito et al., 1992; Clark et al.,
1992; Wieraszko et al., 1993; Kato et al., 1994; Bellizzi et al.,
2005; Moriguchi et al., 2010). Although it has long been thought
that at least part of PAF’s LTP potentiation (physiological or
pathological) is due to presynaptic mechanisms because PAF
increases the frequency but not the amplitude of spontaneous
miniature excitatory postsynaptic potentials (Clark et al., 1992;
Kato et al., 1994), there has been little to no investigation into the

downstream signaling pathways or molecular events within the
presynaptic bouton mediating this up regulation of presynaptic
activity. In order to investigate whether PAF directly influences
neurotransmitter release and what intracellular mechanisms are
involved, we used optical assays of exocytosis that directly
measure presynaptic function. We show that PAF increases
presynaptic vesicle exocytosis through PKC activation and
elevated intracellular calcium within presynaptic boutons. PAF
increases the size or release kinetics of the readily releasable
pool (RRP) and total recycling pool of synaptic vesicles. We also
report increased phosphorylation of synapsin I at sites 1 and
3 and greater dispersion of synapsin I from synaptic vesicles
upon exposure to PAF. These findings provide mechanistic detail
on how PAF specifically alters neurotransmitter release which
has important implications both for normal physiology and
pathological conditions involving neuroinflammation.

MATERIALS AND METHODS

Cell Culture
Primary hippocampal cultures were prepared from embryonic
day 18 Sprague–Dawley rats. Animal care and use were carried
out in accordance with the recommendations of the Guide for
the Care and Use of Laboratory Animals and protocols were
approved by the University Committee on Animal Resources
at the University of Rochester. Hippocampi were dissected
out and dissociated in 0.05% trypsin (Life Technologies). Cells
were plated at a density of 330/mm2 onto poly-D-lysine coated
coverslips in neurobasal media supplemented with B27 with
antioxidants, GlutaMAX (all reagents from Life Technologies),
5% FBS (Atlanta Biological), and 25 μM glutamic acid
(Sigma). Cells were fed every 3–4 days with neurobasal media
supplemented with B27 without antioxidants and GlutaMAX.
At 7 days in vitro (DIV), cells were treated with 5-fluoro-
deoxyuridine (fUDR) at 20 mg/mL and uridine at 50 mg/mL to
limit glial growth. Cells were transfected at 14–15 DIV using a
calcium phosphate transfection kit (Clontech). All experiments
were performed at 18-21 DIV.

Immunofluorescence
Cells were fixed with 4% paraformaldyhyde in PBS for 10 min
and then treated with 100 mM glycine in PBS for 5 min. Cells
were permeabilized with 0.1% triton-X (Promega) in PBS for
5 min. After blocking with 4% normal goat serum (Vector
Laboratories) in PBS for 30 min, cells were incubated for
1.5 h using these primary antibodies: PAFR (Bioss bs-1478R),
vGlut (EMDMillipore #5905), PSD95 (NeuroMAB clone K28/43
cat#75-028), vGAT (Synaptic Systems #131 004), and Gephrin
(Synaptic Systems #147 021) in blocking buffer. Cells were
washed three times with PBS then incubated with alexa-488, 568,
and 657 conjugated secondary antibodies (Life Technologies)
for 1 h. After washing cells three times in PBS, cells were
mounted on glass slides using prolong gold with 4′,6-diamidino-
2-phenylindole (DAPI; Life Technologies). Images were acquired
using 0.2 μm z-steps on an Olympus BX-51 upright microscope
with Quioptic Optigrid optical sectioning hardware using a
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60x oil objective (NA 1.4) and a Hamamatsu ORCA-ER
camera. Images were analyzed in Volocity (PerkinElmer Life
and Analytical Sciences). Co-localization was determined using
an automatic threshold according to Costes et al. (2004); and
reported as Pearson’s co-localization coefficient. To quantify the
percent of vGlut or PSD95 puncta touching PAFR puncta we
used the find object function on flattened z stacks to select
PAFR, vGlut, or PSD95 puncta using a local contrast adjustment
with a 5 μm radius. The percent of vGlut or PSD95 puncta
touching PAFR puncta was then calculated. For figures, digital
image interpolation was used to increase resolution and enlarge
the images in order to reduce pixelation.

Live Cell Imaging and Field Stimulation
Neurons were imaged using an Olympus IX70 inverted
microscope with a 60x 1.4NA objective or 40x 0.85NA objective
with 1.5x Optivar. Images were acquired with a CCD camera
(Q imaging Retiga Exi Fast). Coverslips were mounted in a
custommade 75μl volume, field stimulation chamber containing
a modified Tyrode buffer consisting of: 124 mM NaCl; 5 mM
KCl; 2 mM MgCl2; 2 mM CaCl2; 25 mM HEPES (pH 7.4);
30 mM glucose; and included 10 μM CNQX (Enzo Life
Sciences) and 50 μM APV (Tocris) to block recurrent AMPA
and NMDA receptor-mediated activity, respectively. Stimulus
trains consisting of 1ms pulses at 30 mA were applied across
parallel platinum electrodes spaced 8mm apart using a SIU-102
stimulator (Warner Instruments). Experiments were performed
at room temperature. Somatic regions were excluded from all
synapse measurements. For experiments with NH4Cl treatment,
50 mMNaCl of modified Tyrode buffer was replaced with 50mM
NH4Cl (buffered to pH 7.4). When indicated, neurons were
treated with 1 μM cPAF (a non-hydrolyzable form of PAF used
to eliminate potential confounds from PAF catabolism due to
endogenous acetylhydrolases; from Sigma or Enzo Life Sciences)
or vehicle. cPAF was dissolved in modified Tyrode buffer for all
experiments except those involving FM1-43 where it was first
dissolved in ethanol then further diluted in modified Tyrode
buffer. Final ethanol concentration for the FM1-43 experiments
was 0.01%.

Syn-pHluorin
Neurons were transfected with plasmids for farnesylated-
Tdtomato (kind gift of Marc Halterman; University of
Rochester) and pcDNA3-Syn-pHluorin 4x (a gift from Stephen
Heinemann, Salk Institute for Biological Studies and Yonling
Zhu, Northwestern University; Addgene plasmid 37005; Zhu
et al., 2009). Neurons were stimulated two times with 100 pulses
at 10 Hz separated by 3 or 5 min then treated with vehicle or
cPAF for 2 or 20 min followed by two additional 100 pulse
stimuli at 10 Hz. Images were taken every 2 s for 1 min intervals
with the 100 pulse stimuli, beginning after six baseline images.
Finally NH4Cl was added to raise internal vesicle pH, unmasking
the total pHluorin fluorescence. In some experiments, cells were
pretreated 25 min with 10 μM of a cell-permeable PKCα/β
inhibitor peptide 20–28 (Myr-N-FARKGALRQ-NH2, referred
to as PKCi; EMD Millipore) or 10 μM PAFR antagonist (BN
52021; Santa Cruz Biotechnology). Image stacks were analyzed

in ImageJ and regions of interest (ROI) were drawn manually
around NH4Cl responsive puncta. For each ROI, the average
value of the first six baseline images before each stimulus was
subtracted to calculate the �F. All fluorescence measurements
from each bouton were normalized to the maximal NH4Cl
response. An NH4Cl minimum response threshold was set at
�F > 50 (arbitrary fluorescence units) to ensure there was
enough dynamic range for measurement of Syn-pHluorin
response to small stimuli. Additionally, boutons that showed
peak fluorescence’s greater than 2.5X the baseline’s standard
deviation during all four 100 pulse stimuli were included in the
data set. Separately, silent boutons were defined as those where
the response to the 100 pulse stimuli was smaller than 2.5X the
baseline’s standard deviation. Synapses under this threshold were
then manually inspected to confirm no discernable increase in
pHluorin fluorescence above noise after stimulation. Percent
change values were calculated as the mean peak �F/�FNH4Cl
values for the two stimuli after treatment minus the mean
peak �F/�FNH4Cl values for the two stimuli before treatment
divided by the mean peak �F/�FNH4Cl values for the two stimuli
before treatment (�F �F/�FNH4Cl (after treatment) – �F/�FNH4Cl
(before treatment))/�F/�FNH4Cl(before treatment)).�F/�FNH4Cl traces
were analyzed using Prism: Graph Pad and fit to a single
exponential function.

To measure the total recycling pool using Syn-pHluorin,
primary neuronal cells expressing Syn-pHluorin 4x were treated
20 min with 1 μM cPAF or vehicle followed by addition of
0.5 μM bafilomycin (EMD Millipore). Images were taken every
2 s with a 1000 pulse stimuli at 10 Hz given after 10 baseline
images. Finally NH4Cl was added to reveal the total pHluorin
fluorescence. Image stacks were analyzed in ImageJ and Prism as
outlined above.

Styryl Dye Recycling (FM1-43)
Presynaptic terminals were labeled with 10 μM FM1-43FX (Life
Technologies) in modified Tyrode buffer using a stimulus train
of 40 pulses at 20 Hz or 900 pulses at 10 Hz. FM dye was
applied to cells 5 s before stimulation and was removed 30 s after
the stimulus train ended. Neurons were washed with 500 μM
Advasep-7 (Biotium) in modified Tyrode buffer for 30 s then
washed by perfusion of modified Tyrode buffer for 3 min before
imaging. Destaining was performed by stimulation with 900
pulses at 10 Hz. After one load and unload cycle, neurons
were treated for 20 min with 1 μM cPAF or vehicle. FM dye
was then loaded and unloaded two more times. Background
correction was performed in ImageJ with the rolling ball
algorithm (20 pixel radius), which is designed to correct for
unevenly illuminated background. Image stacks were analyzed
in Volocity. A maximally loaded image (after 900 pulse load)
was used to identify FM positive synaptic puncta using the Find
Spot function. This function identifies local intensity maxima
above a set threshold within a radius of 0.75 μm. A circular
ROI, 1 μm in diameter, was placed around each identified spot
to track fluorescent changes for that puncta over time. Only
puncta whose fluorescence after the 900 pulse load decreased
by 50% or more after an unload cycle were included in the
data set.
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Calcium Measurements
Cells transfected with plasmids for Synaptophysin-GCaMP2
(CMV::ratSyGCaMP2 was a gift from Leon Lagnado, University
of Sussex; Addgene plasmid # 26124; Dreosti et al., 2009) and
farnesylated Tdtomato were mounted in a custom-designed
chamber onto the microscope. After establishing baseline
fluorescent measurements for 1–1.5 min (imaging every 10 s),
2 μM cPAF in was delivered locally onto the field of view using
a 4-channel drug delivery system (ALA Scientific Instruments)
and cells were imaged for another 5 min. For measurements of
calcium influx evoked by a stimulus of 10 pulses at 10 Hz, images
were obtained at a frequency of 1 Hz. Image stacks were analyzed
using ImageJ software. ROI were manually drawn around Syn-
GCaMP2 puncta and average fluorescence was measured at each
time point using the time series analyzer plugin (created by J.
Balaji). A local background measurement was taken adjacent
to each puncta and then subtracted from the selected puncta’s
fluorescent value. In many samples there were small diminutions
in fluorescence over time during baseline measurements. To
correct for this, we fit a straight line to the baseline measurements
as a function of time and used the slope to correct all F
measurements before and after vehicle or PAF treatment. The
�F/F0 of each puncta was calculated as the difference between
F at each time point (Ft) and the baseline F (F0) (average F
from 10–15 frames before treatment) divided by the average
baseline F (F0).

Synapsin I Dispersion
Once a field of view was identified with synapses expressing
Synapsin I-GFP (gift of Timothy Ryan, Weill Cornell Medical
College) and farnesylated Tdtomato, cells were treated with
vehicle or 1 μM cPAF and images were obtained every 5 s.
After 2 min (time 0), a 900 pulse stimulus train at 10 Hz was
given. Background correction was done using ImageJ with the
rolling ball algorithm (20 pixel radius). ROI weremanually drawn
around Synapsin I-GFP-expressing puncta. The �F/F0 of each
Synapsin I-GFP puncta was calculated as the difference between
F at each time point (Ft) and F at time 0 (F0), then normalized
to F0.

Western Blots
Cells were treated for 0, 2, or 20min with 1μMcPAF dissolved in
modified Tyrode buffer and diluted in cell media. Some cultures
were also treated for a total of 30 min with 10 μM CNQX
and 50 μM APV. Cells were then rinsed in ice cold PBS before
being scraped into RIPA lysis buffer containing protease and
phosphatase inhibitor cocktails (Sigma, Cat. # P8340 and EMD
Millipore: Calbiochem, SetV, respectively). The cell lysate was
kept on ice with periodic vortexing for 30 min then centrifuged
at 13,000 rpm for 10 min. The supernatant was mixed with
loading dye, heated at 95◦C for 5min, ran on a 4–15% SDS-PAGE
gel, and transferred to nitrocellulose. Membranes were blocked
with 5% milk in TBSt for 30 min and probed with primary
antibodies (phospho-synapsin Ser9 (Cell Signaling Technologies
#2311), phospho-synapsin I Ser603 (Rockland 612-401-C95), and
GAPDH (EMD Millipore: Calbiochem CB1001) in 3% BSA in

TBSt at 4◦ overnight. Membranes were washed three times in
TBSt and then incubated with HRP secondary antibodies for 1 h
in 5% milk in TBSt. After washing we applied ECL substrate
(Pierce) and exposed and developed membranes on film.

RESULTS

The PAFR is Located at Synapses
In order to better understand the functions of PAF signaling
in neurons, we first investigated the subcellular localization of
the PAFR. We immunolabeled primary hippocampal neurons
with antibodies to the PAFR and presynaptic (vGlut) and
postsynaptic (PSD95) markers (Figures 1A,B). We observed
that PAFR puncta were located throughout the cell body and
neuronal processes and were also found in glia (Figure 1A;
Supplementary Figure S1A). A second PAFR antibody targeting
a separate epitope showed a similar staining pattern in
neurons (Supplementary Figures S1B–D). We also noted strong
association of PAFR puncta with glutamatergic synapses. 53%
of vGlut puncta contacted PAFR puncta (Pearson’s correlation
coefficient for co-localization: 0.20 ± .01) and 69% of PSD95
puncta contacted PAFR puncta (Pearson’s correlation coefficient
for co-localization: 0.22 ± .04; Figures 1C,D). When evaluating
synapses that are positive for both vGlut and PSD95, 73% of
synapses contacted PAFR puncta and 67% of PAFR puncta
contacted vGlut+/PSD95+ synapses (Figure 1E). Some of the
remaining PAFR puncta co-localized with inhibitory synapses
(vGAT+/gephrin+) (Figure 1F) and some were likely non-
synaptic.

cPAF Enhances Presynaptic Vesicle
Exocytosis
To determine whether PAF exposure alters presynaptic vesicle
release and organization of vesicles within different synaptic
vesicle pools, we used optical monitoring of the presynaptic
vesicle protein synaptophysin labeled on its luminal side with
four tandem pH sensitive GFPs (Syn-pHluorin). Syn-pHluorin
fluorescence is quenched by the low pH inside synaptic vesicles
but fluoresces strongly when it encounters neutral pH at the
cell surface during exocytosis. Endocytosis of Syn-pHluorin
and reacidification of the vesicle returns Syn-pHluorin to a
quenched state. We measured the changes in Syn-pHluorin
fluorescence at individual synaptic boutons evoked by 100 pulse
stimuli at 10 Hz before and after cPAF or vehicle treatment
(Figure 2). All fluorescence values were normalized to the change
in fluorescence resulting from exposure to NH4Cl which rapidly
raises the pH of internal vesicles revealing the total pool of labeled
vesicles in order to correct for possible variation in expression
levels. A 20 minute cPAF treatment caused a significant increase
in the peak amplitude of Syn-pHluorin fluorescence in response
to 100 pulse stimuli (Figures 2B,E,G); Average peak amplitude
before cPAF 0.136 ± 0.008; after cPAF 0.174 ± 0.009; Average
peak amplitude before vehicle 0.152 ± 0.005; after vehicle
0.153 ± 0.005). cPAF did not affect the fluorescence decay rate
revealing that endocytosis was not significantly changed by cPAF
treatment (Figure 2F). Thus the rise in peak amplitude due to
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FIGURE 1 | The PAFR co-localizes to synapses. (A,B) Immunofluorescence of hippocampal neuronal cultures 21 days in vivo (DIV). PAFR (green); presynaptic
marker vGlut (blue); postsynaptic marker PSD95 (red). (A) Boxed region is shown with 3× magnification in left corner and further magnified in (B). Scale bars
A = 20 μm, B = 3 μm. Arrows highlight PAFR puncta touching vGlut+/PSD95+ synapses. (C) Colocalization of PAFR, PSD95, and vGlut calculated as Pearsons
correlation coefficient. (D) Quantification of the percent of PSD95 or vGlut puncta touching PAFR puncta. (E) Quantification of the percent of PAFR puncta that
contact vGut+/PSD95+ synapses and the percent of vGlut+/PSD95+ synapses that contact PAFR puncta. Error bars represent ±SEM. (F) Immunofluorescence of
hippocampal neuronal cultures. PAFR (green); inhibitory presynaptic marker vGAT (red); inhibitory postsynaptic marker Gephrin (blue). Scale bar = 3μm. Arrows
highlight PAFR puncta touching vGAT+/Gephrin+ synapses.

cPAF treatment (a 43.4 ± 5.4 % increase; Figure 2H) is likely
due primarily to enhanced exocytosis. Boutons treated with cPAF
for a much shorter time period, 2 min, showed a smaller, yet
significant increase in peak amplitude (26.2 ± 2.8%) as opposed
to vehicle treated boutons. (16.0 ± 2.5%) (Figure 2I).

cPAF Increases Vesicle Release by
Signaling Through the PAFR and PKC
We next tested whether cPAF’s enhanced vesicle release was
receptor specific and whether it involves PKC by using
pharmacological inhibitors. Pretreatment with a PAFR antagonist
(BN52021) prevented the cPAF induced increase in Syn-
pHluorin amplitude (Figure 2I). The cPAF induced potentiation

was also prevented in the presence of a peptide PKC inhibitor
(PKCi; Figure 2I) indicating that PAFR signaling enhances
synaptic vesicle exocytosis by activating PKC downstream of the
PAFR.

cPAF Activates Presynaptically Silent
Synapses
Because cPAF can potentiate exocytosis from active boutons,
we next looked at whether cPAF could activate presynaptically
silent synapses (i.e., those releasing no vesicles after an action
potential). In our Syn-pHluorin experiments about 4% percent
of synapses gave no measurable response to the 100-pulse stimuli
despite the fact that NH4Cl treatment revealed the presence of a
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FIGURE 2 | cPAF enhances presynaptic vesicle exocytosis. (A–D) The Syn-pHluorin fluorescence (F) at single boutons (from primary hippocampal cultures
transfected with Syn-pHluorin) increases after each 100 pulse stimuli at 10 Hz as a portion of labeled vesicles are exocytosed and then returns to baseline as
synaptic vesicles are internalized. Treatment with NH4Cl raises the pH of all internal vesicle and results in maximal pHluorin fluorescence representative of the total
vesicle pool. All Syn-pHluorin measurements are normalized to the �F with NH4Cl. (A) Representative fluorescence images of single boutons treated with 1 μM
cPAF or vehicle. Images are 4.3 μm × 4.3 μm. (B) Examples of individual traces (�F/�FNH4Cl) from representative boutons treated with 1 μM cPAF. (C) Traces
show the average Syn-pHluorin �F/�FNH4Cl over time for all boutons treated with 1 μM cPAF or vehicle. Vehicle, 20 min: 263 boutons from seven coverslips; cPAF,
20 min: 120 boutons from five coverslips. (D) Average �F/�FNH4Cl response to the two before treatment 100 pulse stimuli shown overlapping the average response
to the two 100 pulse stimuli given after 1 μM cPAF or vehicle treatment. (E) Scatter plot of the average peak amplitude of �F/�FNH4Cl induced by 100 pulse stimuli
before and after 20 min treatment with vehicle or 1 μM cPAF. (F) Non-linear regression of decay part of �F/�FNH4Cl trace (in D) was used to quantitate the
endocytic decay constant (k) followed by testing the null hypothesis of one rate for all data sets (p = 0.807). (G) Average peak amplitude of �F/�FNH4Cl induced by
100 pulse stimuli before and after 20 min treatment with vehicle or 1 μM cPAF. Statistical analysis was performed using two-way ANOVA with repeated measures
followed by Sidak’s multiple comparison tests. (H) Quantification of the % change in peak amplitude due to 20 min treatment of vehicle or 1 μM cPAF. Statistical
analysis used paired Student’s t-test. (I) Quantification of the % change in peak amplitude due to 2 min treatment of vehicle or 1 μM cPAF. Some samples were also
pretreated 30 min with BN52021 (a PAFR inhibitor) or PKCi (a PKC inhibitor). Statistical analysis used one-way ANOVA with Sidak’s multiple comparison tests. For all
graphs statistical significance is indicated by the following markings: ∗p < 0.1; ∗∗p < 0.01; ∗∗∗p < 0.001; ns = not significant. Error bars are ±SEM.
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FIGURE 3 | cPAF activates silent presynaptic boutons. (A) Images show
average peak �F of Syn-pHluorin upon stimulation of 100 pulses at 10 Hz or
NH4Cl treatment. A small percentage of synapses show no measurable
exocytosis following stimulation, although acidification of all vesicles by NH4Cl
shows Syn-pHluorin is present in these boutons (example highlighted by white
arrow). Note that after cPAF treatment (20 min) all boutons imaged show
potentiation due to cPAF and the previously silent boutons are now robustly
active. Scale bar 5 μm. (B) Representative Syn-pHluorin �F/�FNH4Cl traces
of silent boutons that were activated by 1 μM cPAF (20 min). The first trace
corresponds to the bouton in (A) highlighted by the white arrow.

significant cluster of Syn-pHluorin (Figure 3A). cPAF treatment
robustly activated a large percent of these silent synapses (60%
with 2 min vs. 75% with 20 min cPAF treatment) (Figure 3B).
Thus cPAF PAF treatment enhances presynaptic activity by
both increasing the number of vesicles released from individual
terminals and by increasing the number of active boutons.

cPAF Enhances Presynaptic Activity by
Increasing the Size or Release of the
RRP
As cPAF enhances exocytosis induced by a 100-pulse stimuli
(10 s at 10 Hz), we were interested in whether cPAF may
influence the distribution of vesicles to different synaptic vesicle
pools within presynaptic boutons. Synaptic vesicles within a
presynaptic terminal can be subdivided into three functional

pools. The RRP consisting of vesicles that are docked and primed
at the active zone; the recycling pool of vesicles that replenish the
RRP and are released upon continued stimulation; and the resting
pool that are resistant to release. The RRP and the recycling pool
together make up the total recycling pool. The size of the RRP
and recycling pool or the efficiency in which the RRP refills from
the recycling pool plays an important role in presynaptic strength
(Alabi and Tsien, 2012).

To test whether cPAF alters the size of the RRP and the
total recycling pool we switched experimental methods to use
field stimulation to load FM1-43 dye into presynaptic boutons.
Fluorescent FM styryl dyes bind reversibly to cellular membranes
and can be loaded and unloaded from synaptic vesicles upon
stimulated vesicle cycling. After applying FM1-43 to neuronal
cultures, a 40 pulse stimulus train at 20 Hz (a stimulation protocol
often used to estimate the size of the RRP; Li et al., 2005) was
given to stimulate synaptic vesicle exocytosis with compensatory
endocytosis. After extensive washing, the fluorescence intensity
from dye trapped within endocytosed synaptic vesicles provided
an estimate of baseline RRP size (load 1). After unloading the
dye and treating the neurons for 20 min with 1 μM cPAF or
vehicle, the RRP of the same population of boutons was reloaded
with FM1-43 (load 2). Following unloading, a final maximal load
and unload cycle, each using a 900 pulse stimulus train was
used to confirm the location of active boutons and measure the
size of the total recycling pool (Figure 4A). Exposure to cPAF
resulted in a significantly larger % increase in FM fluorescence
during load 2 of the RRP compared to load 1 than exposure
to vehicle (cPAF: 69.7 ± 2.1%; vehicle: 40 ± 2.3%; p<0.0001;
Figures 4B–D). A small increase is expected as background
fluorescence increases upon each exposure to FM dye. The
distribution of FM fluorescence in individual boutons from load
1 to load 2 clearly shows a strong increase in FM loading after
cPAF treatment, with boutons that have a low loading capacity
showing the largest increase in relative fluorescence (Figure 4F).
These data demonstrate that cPAF increases the quantity of
synaptic vesicles released following the 40 pulses stimuli which
is consistent with an increase in the size of the RRP or an increase
in vesicles’ probability of release. cPAF also resulted in an increase
in the size of the total recycling pool (Figure 4E).

cPAF Increases the Rate of Exocytosis of
the Total Recycling Pool
We next used Syn-pHluorin as a second method to measure
the size of the total recycling pool. Normally the Syn-pHluorin
fluorescence signal during extended stimulation is a balance
of exocytosis, endocytosis, and reacidifcation of the newly
internalized vesicles. However, extended stimulation in the
presence of bafilomycin, a proton pump inhibitor that prevents
reacidification, causes the Syn-pHluorin signal to plateau because
all vesicles that can undergo exocytosis have been released at
least once and remain at neutral pH trapping pHluorin in its
fluorescent state even though endocytosis and vesicle cycling
is still continuing. The plateau fluorescence represents the size
of total recycling pool. Following the stimulus, exposure of the
boutons to NH4Cl neutralizes all internal vesicles and reveals
the presence of any Syn-pHluorin containing vesicles in the
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FIGURE 4 | cPAF enhances the size or release probability of the readily
releasable pool (RRP) and the size of the total recycling pool as
determined by FM1-43 dye uptake. (A) Schematic of FM1-43 dye loading
protocol. Cells were stimulated with 40 pulses (2 s at 20 Hz) to load the RRP
(Load 1 = before treatment and Load 2 = after treatment). Cells were
stimulated with 900 pulses (90 s at 10 Hz) to load the recycling pool or to
unload FM dye. (B) Representative boutons from vehicle and cPAF treated
samples. Scale of images = 4 μm × 4.6 μm. (C) Quantification of the
average FM1-43 Fluorescence (±SEM) obtained for Load 1 and Load 2 of the
RRP from boutons treated 20 min with vehicle or 1 μM cPAF (vehicle
n = 2098 boutons from three coverslips; cPAF n = 3030 boutons from four
coverslips). Statistical analysis was performed using two-way ANOVA followed
by Sidak’s multiple comparison tests. (D) Quantification of the average %
change [(FLoad 2–FLoad 1)/FLoad 1) in FM1-43 fluorescence due to vehicle or
cPAF treatment. Statistical analysis was performed using Student’s t-test.
(E) Quantification of the total recycling pool as the average FM1-43
Fluorescence (±SEM) in boutons after a 900 pulse at 10 Hz stimulation for
neuronal cultures treated 20 min with vehicle or 1 μM cPAF. (F) Scatter plot of
FM1-43 fluorescence before (FLoad 1) and after (FLoad 2) cPAF or vehicle
treatment. For all graphs statistical significance is indicated by the following
marking: ∗∗∗p < 0.001. Error bars ±SEM.

resting pool that did not get released and thus remained in an
acidic state during the stimulus. Pretreatment of boutons to cPAF
resulted in a slight increase in the size of the total recycling pool

FIGURE 5 | cPAF increases the exocytosis rate of the total recycling
pool. (A,B) Cells, transfected with Syn-pHluorin, were stimulated with 1000
pulses at 10 Hz in the presence of bafilomycin (a proton pump inhibitor) to
induce the release of all synaptic vesicles in the total recycling pool while
preventing the reacidification of the vesicles after endocytosis that usually
quenches pHluorin fluorescence. Following the stimulation, cells were treated
with NH4Cl to measure the total pool of synaptic vesicles. (A) Average
Syn-pHluorin �F/�FNH4Cl traces from cells pretreated for 20 min with vehicle
or 1 μM cPAF. (Plateau values at end of 1000 pulse stimulus = total recycling
pool size: Vehicle 0.47 ± 0.01 (n = 534 synapses from seven coverslips;
cPAF 0.50 ± 0.01 (n = 558 synapses from seven coverslips). Student’s t-test
p = 0.09). (B) Syn-pHluorin �F/�FNH4Cl traces were fit with a single
exponential function by non-linear regression to determine the exocytosis rate
constant (k) for the total recycling pool followed by testing the null hypothesis
of one rate for all data. ∗∗p < 0.001 Error bars ±SEM.

compared to vehicle treatment (Figure 5A; cPAF 0.50 ± 0.01;
vehicle 0.47 ± 0.01; p = 0.090), in agreement with the FM1-
43 experiment (Figure 4E). However, cPAF more significantly
increased the kinetics of exocytosis (Figures 5A,B). The rate of
exocytosis of the recycling pool was significantly faster for cPAF
treated boutons than vehicle treated (cPAF k = 0.039 ± 0.001;
vehicle k = 0.053 ± 0.001; p < 0.001). Thus cPAF’s enhancement
of exocytosis is possibly controlled at multiple levels including
increased recycling pool and RRP size and enhancedmobilization
between pools.

cPAF Raises Intracellular Calcium Levels
Within Presynaptic Boutons
As cPAF, signaling through the PAFR, has been shown to
raise intracellular calcium levels in multiple cell types
through intracellular stores (Ishii and Shimizu, 2000), we
investigated whether cPAF specifically raises calcium levels in
presynaptic boutons. We used the genetically encoded calcium
indicator GCaMP2 attached to the cytoplasmic domain of
synaptophysin (Syn-GCaMP2) to measure relative calcium
levels within presynaptic boutons (Dreosti et al., 2009). cPAF
treatment resulted in a small but significant sustained increase
in intra-bouton calcium within 2–5 min (at 3 min cPAF:
�F/F0 = 0.06 ± 0.01; vehicle �F/F0 = 0.01 ± 0.01; Student’s
t-test p<0.001; Figures 6A–C). The response was heterogeneous
with some boutons showing little to no change and others
showing a much larger response (see example traces Figure 6B).
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FIGURE 6 | cPAF raises calcium levels in presynaptic boutons.
(A) Hippocampal neurons expressing Tdtomato (to view axons) and the
calcium indicator Syn-GCaMP2 before and after 5 min with 2 μM cPAF. Scale
is 4 μm. (B) Traces showing Syn-GCaMp2 % change in fluorescence (�F/F0 )
over time from boutons numbered in (A) that were treated with cPAF at time
0. Under each trace is a kymograph showing the Syn-GCaMP2 fluorescence
from a line scan through the same bouton. (C) Quantification of the average
Syn-GCaMP2 % change (�F/F0 ) of fluorescence over time from all boutons
treated with cPAF or vehicle. (cPAF: 71 boutons from five coverslips; vehicle:
59 boutons from three coverslips; Student’s t-test at 3 min p = 0.0010; Error
bars are ±SEM. (D) Quantification of the average % change in fluorescence
(�F/F0 ) over time evoked by a 10 Hz for 1 s field stimulus. (27 boutons from
two coverslips; Error bars are ±SEM) Kymograph under graph shows the
Syn-GCaMP2 fluorescence from a line scan through a representative bouton.
Error bars are ±SEM.

As a control comparison, calcium entry due to a 10 pulse stimuli
(1 s at 10 hz) in a separate set of boutons show calcium levels
increase significantly higher than the average response to cPAF
(�F/F0 = 0.30 ± 0.03; Figure 6D) but this calcium spike occurs
muchmore quickly and is much briefer in duration. These results
suggest that cPAF’s increase in presynaptic vesicle release involves
a small, but sustained elevation of calcium within presynaptic
boutons. As multiple forms of short-term presynaptic plasticity
rely upon a buildup of residual calcium in boutons after a burst
of action potentials (de Jong and Fioravante, 2014), this small
intracellular rise in calcium could act similarly to potentiate
vesicle release.

cPAF Increases Synapsin I Dispersion
and Phosphorylation
Next we wanted to look at potential downstream mediators
of cPAF’s enhancement of presynaptic activity. Synapsins are

a good candidate as synapsins limit the mobility of the
resting pool of synaptic vesicles and thus may be a major
player in determining the size or release kinetics of the total
recycling pool. Additionally, synapsin activity is controlled
by phosphorylation/dephosphorylation, often in a calcium
dependent manner (Chi et al., 2001, 2003; Cesca et al., 2010;
Kim and Ryan, 2010; Bykhovskaia, 2011; Orenbuch et al.,
2012; Verstegen et al., 2014). During extensive stimulation,
synapsin I dissociates from synaptic vesicles and disperses from
boutons freeing vesicles for release (Chi et al., 2001, 2003).
Thus, we asked if cPAF’s enhancement of presynaptic vesicle
release was associated with increased synapsin I dispersion.
Presynaptic boutons from neurons transfected with GFP-tagged
synapsin I and Tdtomato were stimulated with 900 pulses at
10Hz. Upon stimulation, the relative abundance of synapsin
I-GFP fluorescence drops in boutons as synapsin I quickly
disperses into neighboring axonal shafts and then slowly re-
clusters (Figures 7A–D; Chi et al., 2001). Boutons treated
with cPAF showed a much larger peak synapsin I dispersion
(39.1 ± 1.6%; decaying with τ = 31.22 s) than vehicle treated
boutons (31.3 ± 1.4%; decaying with τ = 23.14 s; Figure 7D).
As synapsin I dispersion is calcium sensitive and regulated by
phosphorylation of synapsin I (Chi et al., 2001, 2003; Cesca
et al., 2010), we examined whether cPAF altered the levels of
synapsin I phosphorylation at two sites known to be important
for synapsin I binding to synaptic vesicles (Site1-ser9 and Site
3-Ser 603). Indeed, cPAF increased the level of pSynapsin I at
site 1 and 3 in a time dependent manner (Figures 7E,F). This
occurred even in the presence of APV and CNQX used to block
recurrent excitatory glutamatergic transmission through NMDA
and AMPA receptors, respectively. Thus cPAF’s increase in
presynaptic vesicle release is associated with enhanced synapsin
I dispersion and phosphorylation.

DISCUSSION

In this work we specifically focused on PAF’s modulation of
synaptic vesicle release. Our study used optical readouts of
synaptic vesicle recycling and presynaptic calcium levels coupled
with inhibition of postsynaptic glutamate receptors. This allowed
us to isolate PAF’s effects within the presynaptic bouton without
having to infer presynaptic activity from postsynaptic potentials
or contend with the effects of recurrent activity. Our results
show that PAF treatment enhances presynaptic vesicle exocytosis,
raises calcium levels within the presynaptic bouton, and increases
synapsin I phosphorylation and dispersion.

We showed that PAF’s presynaptic enhancement of
neurotransmitter release was PKC dependent and that PAF
increases the size and/or release kinetics of the RRP and the total
recycling pools of synaptic vesicles. Other forms of presynaptic
potentiation have also been shown to be PKC dependent.
Specifically PKC has been implicated in increasing the size or
refilling of the RRP and increasing the probability of release after
high frequency stimulation (Korogod et al., 2007; Wierda et al.,
2007; Fioravante et al., 2011; Chu et al., 2012, 2014; Cijsouw et al.,
2014; Genc et al., 2014).
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FIGURE 7 | cPAF increases synapsin I phosphorylation and synapsin I dispersion from presynaptic boutons during stimulation. (A–D) Hippocampal
neurons expressing synapsin I-GFP and Tdtomato were treated with 1 μM cPAF for 2 min then stimulated with 900 pulses at 10 Hz. (A) Synapsin I-GFP (Syn-GFP)
is clustered at presynaptic boutons while tdtomato fills the entire axon. Scale bar = 2 μm. (B) Syn-GFP fluorescence at synapses decreases upon stimulation then
reclusters within the bouton. Scale bar = 2 μm. (C) Timelapse measurements of the change in Syn-GFP fluorescence intensity obtained from the boutons
numbered in (A) normalized to the fluorescence at time 0. (D) Average �F/F0 in syn-GFP fluorescence from all boutons treated with 1 μM cPAF or vehicle. Error
bars ±SEM (cPAF: 141 boutons from three coverslips; vehicle: 240 boutons from four coverslips;). Non-linear regression of decay part of synapsin I dispersion curve
followed by testing the null hypothesis of one curve for all data sets has p < 0.0001. Statistical analysis comparing cPAF to vehicle treated boutons at the end of
stimulation (1.5 min) was done using the Student’s t-test p = 0.0005. (E) Representative western blots showing phosphorylated synapsin I (pSynapsin) at Site 3
(Ser603) and Site 1 (Ser9) and GAPDH immunoreactivity from cell lysates obtained from primary hippocampal cultures that were treated 0, 2, or 20 min with 1 μM
cPAF. Blot on right was additionally treated for a total of 30 min with 50 μM APV and 10 μM CNQX to block glutamatergic neurotransmission. (F) pSynapsin/GAPDH
ratios calculated by densitometric scanning of the blots. Data are means ± SEM with n = 4 (two independent experiments each performed in duplicate). Statistical
analysis: one-way ANOVA followed by Dunnett’s multiple comparison test to 0 min control. ANOVA: Site 3, p = 0.098; Site 3 with APV/CNQX, p = 0.024; Site 1,
p = 0.211; Site 1 with APV/CNQX, p = 0.126. Dunnett’s multiplicity adjusted p-values (compared to 0 min control): ∗p < 0.1 ∗∗p < 0.05.

Our results show that PAF increases synapsin I dispersion
upon stimulation and increases phosphorylation at sites 1
and 3. Synapsin I is phosphorylated by multiple kinases
including CaMK I/II/IV, PKA, MAPK, Src, and Cdk1/5 and
dephosphorylated by the phosphatases PP2A/B and calcineurin.
These phosphorylation sites regulate trafficking of synaptic
vesicles between the RRP and the recycling/resting pools (Cesca
et al., 2010). Phosphorylation at sites 1 (PKA and CaMKI/IV)
and 3 (CaMKII) is associated with decreased binding of synapsin
I to synaptic vesicles and actin and increased neurotransmitter
release (Cesca et al., 2010). Mutation of sites 1 and 3 results
in decreased dispersion of GFP-Synapsin I (Chi et al., 2001,
2003) and prevents an increase in the RRP size after post-
tetanic potentiation (Valente et al., 2012). Phosphorylation of
site 1 by PKA counteracts presynaptic depression and increases
the recovery rate suggesting quicker movement of vesicles
from the recycling/resting pool into the RRP (Menegon et al.,
2006). Thus, PAF’s presynaptic potentiation coupled to increased

phosphorylation of synapsin I sites 1 and 3 is congruent with
other forms of presynaptic potentiation. These other studies also
suggest that the phosphorylation of synapsin I at sites 1 and 3 is an
important step to generating PAF’s enhanced presynaptic vesicle
release.

We further show that PAF activates silent presynaptic
boutons resulting in more synapses being active for the same
stimulus. Presynaptic silent synapses are reversible and occur
in several neurotransmitter systems (Crawford and Mennerick,
2012). Many signaling pathways that increase or decrease
neurotransmitter release or alter the priming or organization
of synaptic vesicle pools change the amount of silent synapses
(Moulder et al., 2006; Doussau et al., 2010; Kim and Ryan, 2010;
Crawford et al., 2012; Ramirez-Franco et al., 2014). Currently
the function of presynaptic silent synapses is unknown but they
may add an extra level of control for Hebbian plasticity or a
mechanism of protection against excitotoxicity (Crawford and
Mennerick, 2012).
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Finally, we show that PAF increases the number of synaptic
vesicles that are released from individual boutons due to a
specific stimulus. This increase in presynaptic strength is likely
beneficial for PAF’s putative physiological role in enhancing
LTP and learning and memory (Izquierdo et al., 1995; Aihara
et al., 2000). However, in neuroinflammatory diseases such as
HAND and multiple sclerosis, PAF produced from infiltrating
peripheral immune cells and activated microglia could amplify
the presynaptic activity of neighboring neurons to potentially
harmful levels. Our previous studies have shown that in the
presence of PAF, a physiological stimulus can cause excitotoxic
damage to postsynaptic dendrites leading to spine loss and
dendritic varicosities (Bellizzi et al., 2005). In addition to this
structural damage, PAF can impair further synaptic plasticity
as LTP induced by high frequency stimulation is occluded by
chronic PAF treatment (Wieraszko et al., 1993; Bellizzi et al., 2005;
Lu et al., 2007). The structural damage and impaired plasticity
connected to chronically elevated PAF likely contribute to
some cognitive impairment accompanying neuroinflammation.
Pharmacological or genetic inhibition of the PAFR in rodent
models of neuroinflammatory disease results in less neuronal
injury and inflammation (Kihara et al., 2005; Farooqui et al.,
2006; Belayev et al., 2008; Eggert et al., 2009; Musto and
Samii, 2011; Rodrigues et al., 2011; Okubo et al., 2012;
Motoyama et al., 2013) and better performance in a learning
and memory task (Liu et al., 2007). Thus, PAFR antagonism may
have positive disease-modifying outcomes in neuroinflammatory
diseases. Our investigation of the intracellular mechanisms
of PAF’s presynaptic enhancement provides novel insights
into how PAF alters neuronal communication at the synapse
that under pathological conditions may result in neuronal

injury, impaired cognition, and the feed forward cycle of
inflammation.
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