
cancers

Article

Machine-Learning Assisted Discrimination of Precancerous and
Cancerous from Healthy Oral Tissue Based on Multispectral
Autofluorescence Lifetime Imaging Endoscopy

Elvis Duran-Sierra 1 , Shuna Cheng 1, Rodrigo Cuenca 2, Beena Ahmed 3, Jim Ji 4, Vladislav V. Yakovlev 1 ,
Mathias Martinez 5, Moustafa Al-Khalil 5, Hussain Al-Enazi 6, Yi-Shing Lisa Cheng 7, John Wright 7,
Carlos Busso 8 and Javier A. Jo 2,*

����������
�������

Citation: Duran-Sierra, E.; Cheng, S.;

Cuenca, R.; Ahmed, B.; Ji, J.;

Yakovlev, V.V.; Martinez, M.;

Al-Khalil, M.; Al-Enazi, H.;

Cheng, Y.-S.L.; et al.

Machine-Learning Assisted

Discrimination of Precancerous and

Cancerous from Healthy Oral Tissue

Based on Multispectral

Autofluorescence Lifetime Imaging

Endoscopy. Cancers 2021, 13, 4751.

https://doi.org/10.3390/

cancers13194751

Academic Editors: Andreas

Stadlbauer, Anke Meyer-Baese

and Max Zimmermann

Received: 5 July 2021

Accepted: 15 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
eduran@tamu.edu (E.D.-S.); csncbmp@hotmail.com (S.C.); yakovlev@tamu.edu (V.V.Y.)

2 School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA;
rodrigo.cuenca@ou.edu

3 School of Electrical Engineering and Telecommunications, University of New South Wales,
Sydney 2052, Australia; beena.ahmed@unsw.edu.au

4 Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha 23874, Qatar;
jim.ji@qatar.tamu.edu

5 Department of Cranio-Maxillofacial Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
mcoronel@hamad.qa (M.M.); malkhalil@hamad.qa (M.A.-K.)

6 Department of Otorhinolaryngology Head and Neck Surgery, Hamad Medical Corporation,
Doha 3050, Qatar; halenazi@hamad.qa

7 College of Dentistry, Texas A&M University, Dallas, TX 75202, USA; YCheng@tamhsc.edu (Y.-S.L.C.);
JWright@tamhsc.edu (J.W.)

8 School of Electrical and Computer Engineering, The University of Texas at Dallas, Dallas, TX 75080, USA;
busso@utdallas.edu

* Correspondence: javierjo@ou.edu

Simple Summary: Complete resection of dysplastic and malignant tissue improves overall survival
and delays cancer recurrence in oral cancer patients; however, intraoperative surgical margin assess-
ment is limited to visual inspection and palpation, making it difficult to achieve total resection. There
is currently no tool capable of providing real-time, accurate, and continuous margin-assessment guid-
ance during oral cancer resection surgery. Multispectral autofluorescence lifetime imaging (maFLIM)
is a label-free imaging modality that enables quantifying a plurality of metabolic and compositional
autofluorescence biomarkers of oral dysplasia and cancer. We have developed and validated a
machine-learning assisted computer aided detection (CAD) system for automated discrimination of
dysplastic and cancerous from healthy oral tissue based on in vivo widefield maFLIM endoscopy
data. This CAD system can be potentially embedded into maFLIM endoscopes to enable continuous
in situ detection of positive margins during oral cancer resection surgery, thus facilitating maximal
tumor resection and improving surgical outcomes for oral cancer patients.

Abstract: Multispectral autofluorescence lifetime imaging (maFLIM) can be used to clinically image
a plurality of metabolic and biochemical autofluorescence biomarkers of oral epithelial dysplasia and
cancer. This study tested the hypothesis that maFLIM-derived autofluorescence biomarkers can be
used in machine-learning (ML) models to discriminate dysplastic and cancerous from healthy oral
tissue. Clinical widefield maFLIM endoscopy imaging of cancerous and dysplastic oral lesions was
performed at two clinical centers. Endoscopic maFLIM images from 34 patients acquired at one of
the clinical centers were used to optimize ML models for automated discrimination of dysplastic
and cancerous from healthy oral tissue. A computer-aided detection system was developed and
applied to a set of endoscopic maFLIM images from 23 patients acquired at the other clinical center,
and its performance was quantified in terms of the area under the receiver operating characteristic
curve (ROC-AUC). Discrimination of dysplastic and cancerous from healthy oral tissue was achieved
with an ROC-AUC of 0.81. This study demonstrates the capabilities of widefield maFLIM endoscopy
to clinically image autofluorescence biomarkers that can be used in ML models to discriminate
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dysplastic and cancerous from healthy oral tissue. Widefield maFLIM endoscopy thus holds potential
for automated in situ detection of oral dysplasia and cancer.

Keywords: oral cancer and dysplasia; positive surgical margin detection; multispectral autofluores-
cence lifetime imaging (maFLIM); autofluorescence biomarkers; machine learning

1. Introduction

Oral cancer is a significant global health threat with ~355,000 cases and over 177,000 deaths
each year, and one of the lowest five-year survival rates (~50%) among the major cancer
types [1]. This threat is greatly attributed to the difficulty in capturing all the cancer at
treatment. Oral cancer treatment is primarily surgical with the aim of achieving complete
tumor resection without leaving behind residual disease [2]. Positive surgical margins are
associated with significant increase in recurrence rate and decrease in survival rate [3];
unfortunately, the rate of oral cancer positive surgical margins can be as high as 40% [4].
Intraoperative oral cancer surgical margin assessment is limited to visual inspection and
palpation. When available, histopathological evaluation of intraoperative frozen sections
is also used [2,5], but it suffers from low sensitivity (as low as 15%) [6,7], and its positive
impact in clinical outcomes is unclear [8,9].

Preoperative positron emission tomography (PET), computed tomography (CT), and
magnetic resonance imaging (MRI) are routinely used in oral cancer staging and surgical
planning, but they are not useful for intraoperative surgical margin assessment [10,11].
Optical imaging modalities, which can provide simultaneous structural, functional, and
biochemical tissue characterization across multiple scales, are ideal for intraoperative surgi-
cal margin assessment. Grillone et al. performed an in vivo study on 34 patients, in which
elastic scattering spectroscopy (ESS) and a machine learning diagnostic algorithm were
used to distinguish healthy from abnormal (mild/moderate/severe dysplasia, carcinoma
in situ, and invasive cancer) oral tissue, with sensitivity ranging from 84% to 100% and
specificity ranging from 71% to 89%, depending on how the cutoff between healthy and
abnormal tissue was defined (i.e., mild, moderate, or severe dysplasia) [12]. In an ex
vivo study, Hamdoon et al. used optical coherence tomography (OCT) to scan tumor
margins from 28 oral squamous cell carcinoma (OSCC) patients following resection, and
they differentiated tumor-free from tumor-involved margins with levels of sensitivity and
specificity of 81.5% and 87%, respectively [13]. Jeng et al. used Raman spectroscopy (RS)
in an ex vivo study to image 44 tumor and 36 healthy oral tissue samples from patients
and implemented a quadratic discriminant analysis (QDA) classifier to discriminate tu-
mor from healthy oral tissue, resulting in levels of sensitivity and specificity of ~91% and
~83%, respectively [14]. Halicek et al. performed ex vivo hyperspectral imaging (HSI) on
20 patients and discriminated SCC margins from healthy oral tissue with 84% sensitivity
and 74% specificity using a convolutional neural network classifier [15]. Nayak et al. used
autofluorescence spectroscopy (AFS) and an artificial neural network to classify healthy
(n = 40) vs. premalignant (n = 6) and malignant (n = 37) oral tissue biopsies from patients
and reported levels of sensitivity and specificity of 96.5% and 100%, respectively [16].
Unfortunately, none of these technologies have been yet translated to the operating room;
thus, intraoperative image-guiding technologies that will facilitate complete oral tumor
resection are still urgently needed.

Two mitochondrial metabolic coenzymes, the reduced-form nicotinamide adenine din-
ucleotide (NADH) and flavin adenine dinucleotide (FAD), are used in multiple metabolic
processes, including glycolysis and oxidative phosphorylation, and are the main endoge-
nous fluorophores in the oral epithelial layer [17,18]. Increased cellular metabolic activity,
a hallmark of malignant epithelial cells, can be quantified by imaging the oral tissue aut-
ofluorescence originated from the metabolic cofactors NADH and FAD [17,19,20]. We
have recently demonstrated clinical label-free metabolic imaging of oral epithelial cancer



Cancers 2021, 13, 4751 3 of 17

based on multispectral autofluorescence lifetime imaging (maFLIM) endoscopy in patients
presenting oral malignant lesions and reported several autofluorescence biomarkers of oral
epithelial cancer [20].

These capabilities and its relatively inexpensive implementation cost make maFLIM a
promising imaging modality to enable continuous real-time margin-assessment guidance
during oral cancer resection surgery. However, for maFLIM to become an impactful image-
guided tool for oral cancer resection surgery, computer-aided detection (CAD) systems are
needed to enable in situ intraoperative, automated, objective, and accurate discrimination
and visualization of dysplastic and cancerous vs. healthy oral tissue during tumor resection
surgery. In this study, we report what is, to the best of our knowledge, the first indepen-
dently validated CAD system for automated clinical detection of dysplastic and cancerous
from healthy oral tissue based on in vivo widefield multispectral autofluorescence lifetime
imaging endoscopy.

2. Materials and Methods

A summary of the methods applied in this study, from the maFLIM data acquisition
to the final classification output, is shown in Figure 1 and described in detail in the
following sections.
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Figure 1. Summary of the methods used in this study. (1) In vivo clinical maFLIM images of both the lesions and healthy
tissue regions from oral cancer patients were acquired. (2,3) Raw maFLIM data were preprocessed to increase the signal
quality. (4) Autofluorescence spectral and time-resolved maFLIM features were computed per pixel. (5) Models for the
classification of precancer/cancer vs. healthy oral tissue at the pixel level were trained. (6) Pixel-level classification results
in a posterior probability map for each imaged oral tissue region. (7) An image-level score was computed from the posterior
probability map, and a threshold (T) on this score was optimized. (8) The image-level score threshold was applied to classify
the whole image as either precancer/cancer or healthy. Note. Modified from “Clinical label-free biochemical and metabolic
fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions,” by Duran-Sierra, E.; Cheng, S.;
Cuenca-Martinez, R.; Malik, B.; Maitland, K.C.; Lisa Cheng, Y.S.; Wright, J.; Ahmed, B.; Ji, J.; Martinez, M.; et al., 2020, Oral
Oncol, p. 2, doi:10.1016/j.oraloncology.2020.104635 [20].
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2.1. Clinical Endoscopic maFLIM Imaging of Oral Lesions
2.1.1. Training Set

In vivo clinical maFLIM endoscopy images of dysplastic and cancerous oral lesions
were acquired following an imaging protocol approved by the Institutional Review Board
at Hamad Medical Corporation (Doha, Qatar). In this study, 34 patients scheduled for
tissue biopsy examination of suspicious oral epithelial precancerous or cancerous lesions
were recruited. Following clinical examination of the patient’s oral cavity by an experi-
enced head and neck surgeon (M.M., M.A.K., H.A.E), maFLIM endoscopy images were
acquired from both the suspicious oral lesion and a clinically healthy-appearing area in
the corresponding contralateral anatomical side, using a maFLIM endoscope previously
reported in Cheng et al. [21]. Tissue autofluorescence excited with a pulsed laser (355 nm,
1 ns pulse width, ~1 µJ/pulse at the tissue) was imaged at the emission spectral bands of
390 ± 20 nm, 452 ± 22.5 nm, and >500 nm, which were selected to preferentially image
collagen, NADH, and FAD autofluorescence, respectively. The total energy deposited into
the patient’s oral mucosa (2.8 mJ) was set to at least an order of magnitude lower than
the maximum permissible exposure (MPE = 29.8 mJ) provided by the American National
Standards Institute (ANSI) [22]. Each maFLIM endoscopy image was acquired with a
circular field-of-view (FOV) of ~11 mm in diameter, lateral resolution of ~100 µm, and total
acquisition time of <3 s. The time-resolved autofluorescence intensity signal measured at
each pixel was digitally sampled at 4 GS/s. After acquiring the maFLIM endoscopy images
from the oral lesion biopsy region and corresponding contralateral healthy area determined
by the surgeon, the tissue biopsy examination procedure was performed following stan-
dard clinical protocols. All biopsies performed were incisional taken from the center of
the lesion and of different sizes based on the type and extension of lesion examined. The
imaged clinically healthy-appearing areas on the contralateral side of the lesions were not
biopsied. Each imaged lesion was then annotated based on the corresponding tissue biopsy
histopathological diagnosis (gold standard). The distribution of the 34 imaged oral lesions
based on both anatomical location and histopathological diagnosis is provided in Table 1,
and the demographic information of the 34 imaged patients is summarized in Table 2.

Table 1. Distribution of the 57 imaged oral lesions based in both anatomical location and histopathological diagnosis
(MiD: Mild Dysplasia; MoD: Moderate Dysplasia; HiD: High-Grade Dysplasia; SCC: Squamous Cell Carcinoma).

Lesion
Location

Histopathology Diagnosis
Total NumberDistribution of

Imaged Oral Lesions MiD MoD HiD SCC

Training Set

Buccal Mucosa 1 1 1 9 12
Tongue 0 0 0 12 12
Gingiva 0 0 2 3 5

Lip 0 0 0 2 2
Mandible 0 0 0 1 1
Maxilla 0 0 0 1 1

Floor of Mouth 0 0 0 1 1
Total Number 1 1 3 29 34

Testing Set

Tongue 6 1 0 6 13
Gingiva 1 0 0 5 6

Buccal Mucosa 0 1 0 2 3
Mandible 0 0 0 1 1

Total Number 7 2 0 14 23
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Table 2. Demographics of the two patient populations included in this study (MiD: Mild Dysplasia; MoD: Moderate
Dysplasia; HiD: High-Grade Dysplasia; SCC: Squamous Cell Carcinoma).

Training Set (Doha, Qatar) Testing Set (Dallas, Texas)

Patient # Race Age Gender Histopathology Patient # Race Age Gender Histopathology

1 Indian 34 M SCC 1 White 59 M SCC
2 Egyptian 67 M SCC 2 White 76 F SCC
3 Sri Lankan 52 M SCC 3 White N/A F SCC
4 Nepalese 47 M SCC 4 Asian N/A F SCC
5 Egyptian 42 M SCC 5 White 60 M SCC
6 Nepalese 35 M HiD 6 White N/A M MiD
7 Indian 50 M HiD 7 White 54 F MiD
8 Indian 51 M SCC 8 White 75 F MiD
9 Indian 43 M MoD 9 Asian 58 M MiD
10 Bangladeshi 59 M SCC 10 Asian N/A M MiD
11 Sri Lankan 55 M MiD 11 White 55 F MiD
12 Nepalese 31 M SCC 12 White N/A M MiD
13 Nepalese 39 M SCC 13 White N/A M MoD
14 Indian 36 M SCC 14 White 62 F SCC
15 Pakistani 36 M SCC 15 White 59 M SCC
16 Qatari 55 M SCC 16 White N/A M SCC
17 Indian 48 M SCC 17 Asian 52 F SCC
18 Nepalese 36 M SCC 18 White 83 F SCC
19 Indian 36 M SCC 19 White 55 M SCC
20 Pakistani 60 M SCC 20 Black N/A F MoD
21 Sudanese 61 F SCC 21 White N/A M SCC
22 Sudanese 60 F SCC 22 White 68 M SCC
23 Iranian 68 M SCC 23 N/A 47 F SCC
24 Indian 41 M SCC
25 Indian 49 M SCC
26 Nepalese 45 N/A SCC
27 Somali 60 M SCC
28 Indian 50 M SCC
29 Indian 61 M SCC
30 Indian 34 F SCC
31 Nepalese 30 M HiD
32 Filipino 49 F SCC
33 Iranian 59 M SCC
34 Pakistani 69 M SCC

2.1.2. Testing Set

Additional in vivo clinical maFLIM endoscopy images of oral lesions and healthy
oral tissue were acquired from 23 patients from the Texas A&M University College of
Dentistry (Dallas, TX, USA), following a similar imaging protocol approved by the Institu-
tional Review Board at Texas A&M University (College Station, TX, USA). The maFLIM
endoscopy system used to image this cohort of patients had the same characteristics as the
one previously described and reported in Cheng et al. [21], except for the sampling rate,
which was 6.25 GS/s. The distribution of these additional 23 imaged oral lesions based in
both anatomical location and histopathological diagnosis is also provided in Table 1, and
the demographic information of the 23 imaged patients is summarized in Table 2.

2.2. maFLIM Feature Extraction

In order to generate a maFLIM feature pool, the endoscopic maFLIM images were
processed as follows. The maFLIM data are composed of fluorescence intensity temporal
decay signals, yλ(x, y, t), measured at each emission spectral band (λ) and at each spatial
location or image pixel (x, y). Each maFLIM dataset was first preprocessed as follows. First,
offset and background subtraction was applied to the temporal signal at each pixel of
the maFLIM image. Second, pixels presenting temporal signal saturation were detected
by setting a threshold on the maximum signal amplitude, and masked. Third, spatial
averaging (order 5 × 5) was applied to increase the temporal signal-to-noise ratio (SNR) at
each spatial location. Fourth, pixel masking based on SNR was also performed with an
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SNR threshold value of 15 decibels. Finally, additional pixels were manually masked from
regions where tooth areas were observed in the intensity images.

After data preprocessing, absolute and normalized multispectral fluorescence intensity
values were computed for each pixel as follows. The absolute multispectral fluorescence
intensity Iλ(x, y) was computed by numerically integrating the fluorescence intensity
temporal decay signal (Equation (1)).

Iλ(x, y) =
∫

yλ(x, y, t)dt (1)

The normalized multispectral fluorescence intensity Iλ, n(x, y) was computed from
the absolute multispectral fluorescence intensities Iλ(x, y) using Equation (2).

Iλ,n(x, y) =
Iλ(x, y)

∑λ Iλ(x, y)
(2)

From the multispectral absolute fluorescence intensities, six intensity ratios were com-
puted at each spatial location. Three quantify the relative autofluorescence intensities between
single spectral channels: I390(x, y)/I452(x, y), I390(x, y)/I500(x, y), and I452(x, y)/I500(x, y);
and three quantify the combined autofluorescence intensity of two spectral channels rel-
ative to the third one: (I452(x, y) + I500(x, y))/I390(x, y), (I390(x, y) + I500(x, y))/I452(x, y),
and (I390(x, y) + I452(x, y))/I500(x, y).

In the context of time-domain maFLIM data analysis, the fluorescence decay yλ(x, y, t)
measured at each spatial location (x, y) can be modeled as the convolution of the fluo-
rescence impulse response (FIR) hλ(x, y, t) of the sample and the measured instrument
response function (IRF) uλ(t) as shown in Equation (3).

yλ(x, y, t) = uλ(t) ∗ hλ(x, y, t) (3)

Therefore, to estimate the sample FIR hλ(x, y, t), the measured IRF uλ(t) needs to
be temporally deconvolved from the measured fluorescence decay yλ(x, y, t). In this
work, temporal deconvolution was performed using a nonlinear least-squares iterative
reconvolution algorithm [23], in which the FIR was modeled as a multiexponential decay.
The model order (number of exponential components) was determined based on the model-
fitting mean-squared error (MSE); since the addition of a third component did not reduce
the MSE, a bi-exponential model (order of two) was selected (Equation (4)).

hλ(x, y, t) = α f ast,λ(x, y)e−t/τf ast,λ(x,y) + αslow,λ(x, y)e−t/τslow,λ(x,y) (4)

Here, τf ast,λ(x, y) and τslow,λ(x, y) represent the time-constant (lifetime) of the fast
and slow decay components, respectively; while α f ast,λ(x, y) and αslow,λ(x, y) represent
the relative contribution of the fast and slow decay components, respectively. Finally, the
average fluorescence lifetime (τavg,λ(x, y)) for each pixel and emission spectral band were
estimated from the FIR hλ(x, y, t) using Equation (5) [23]:

τavg,λ(x, y) =
∫

thλ(x, y, t)dt∫
hλ(x, y, t)dt

(5)

In summary, a total of 21 maFLIM-derived features were computed per pixel as
summarized in Table 3.
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Table 3. Summary of maFLIM-Derived Features Computed Per Pixel.

maFLIM Feature Category
Spectral Band

Total Number
390 ± 20 nm 452 ± 22.5 nm >500 nm

Normalized Intensity I390,n(x, y) I452,n(x, y) I500,n(x, y) 3

Absolute Intensity Ratio

I390(x, y)/I452(x, y)

6

I390(x, y)/I500(x, y)

I452(x, y)/I500(x, y)

(I452(x, y) + I500(x, y))/I390(x, y)

(I390(x, y) + I500(x, y))/I452(x, y)

(I390(x, y) + I452(x, y))/I500(x, y)

Time-Resolved

τf ast,390(x, y) τf ast,452(x, y) τf ast,500(x, y)

12
τslow,390(x, y) τslow,452(x, y) τslow,500(x, y)

α f ast,390(x, y) α f ast,452(x, y) α f ast,500(x, y)

τavg,390(x, y) τavg,452(x, y) τavg,500(x, y)

Total Number 21

2.3. Classification Model Optimization Using the Training Set

Four traditional ML classification models were evaluated with the computational
framework depicted in Figure 1: Linear Discriminant Analysis (LDA) [24], Quadratic
Discriminant Analysis (QDA) [25], linear Support Vector Machines (SVM; L2-regularization;
C = 100) [26], and Logistic Regression (LOGREG) [27]. First, a trained classification model
was applied at the pixel level resulting in a posterior probability map, from which an image-
level score was computed consisting in the average of the squared pixel-level posterior
probabilities, similar to the Brier score [28]. Then, ROC analysis was performed on the
image-level scores, and an image-level score threshold was optimized by selecting the
point on the ROC curve with maximum sensitivity within the (1-specificity) range of 0–30%.
Finally, the whole image was classified as positive (dysplasia/cancer) if the image-level
score was greater than or equal to the threshold, or as negative (healthy) otherwise.

To identify optimal classification models for each feature pool evaluated (spectral-only
and time-resolved-only), the dataset of 34 multiparametric maFLIM images of oral lesions
and 34 paired contralateral healthy images was analyzed following a 7-fold cross-validation
strategy. The dataset consisting in a total of 68 maFLIM images was divided in seven folds,
six of them containing 10 maFLIM images (5 lesion and 5 paired healthy images) each, and
one containing 8 maFLIM images (4 lesion and 4 paired healthy images). At every iteration,
six folds were used for training and one for validation. First, the six training folds entered
a sequential forward search feature selection stage [29,30], in which feature sets containing
up to three features were generated by iteratively adding one feature at a time based on
the maximum receiver operating characteristic area under the curve (ROC-AUC) obtained
from the training fold classification. At the end of this stage, three classification models
with either one, two, or three features were identified, and their corresponding ROC-AUC
values were recorded. The optimal classification model (and corresponding optimal feature
set and image score threshold) was selected based on the largest ROC-AUC value. The
selected optimal classification model was then applied to the validation fold. Finally, the
whole process was repeated until each of the seven folds was used as the validation fold.

The discriminatory power of the spectral and time-resolved feature pools combined
was also investigated through the implementation of an ensemble classifier. After the
optimal classification models with spectral-only and time-resolved-only features were
identified, the 7-fold cross-validation strategy was applied to optimize an ensemble clas-
sifier combining the best performing spectral-only and time-resolved-only classification
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models. In this cross-validation strategy, the training folds were used to train the previously
identified optimal models with their three most frequent either spectral or time-resolved
features, respectively, and the weighted sum of their resulting posterior probability maps
was computed. No additional feature selection was performed in this process. The image
level-scores were then computed from the weighted sum of the posterior probability maps
and used to optimize an image-level threshold for the ensemble model. The trained en-
semble classifier and optimized image-level threshold were then applied to the validation
fold. The weights used to compute the sum of the two posterior probability maps were
normalized as w1 + w2 = 1 and optimized by repeating the 7-fold cross-validation process
for every value of w1 between 0 and 1 with an increment of 0.1.

For each model, a confusion matrix was generated after completing the 7-fold cross-
validation, and the resulting sensitivity, specificity, and F1-score were computed using
Equations (6)–(8), respectively.

Sensitivity =
TP

TP + FN
(6)

Speci f icity =
TN

TN + FP
(7)

F1 =
TP

TP + 1
2 (FP + FN)

(8)

where TP, FN, TN, and FP represent the number of true positives, false negatives, true
negatives, and false positives, respectively.

3. Results
3.1. Classification Model Optimization Using the Training Set

Table 4 summarizes the results of the 7-fold-cross-validation strategy applied to
each combination of maFLIM feature pools (spectral-only vs. time-resolved-only) and
classification models (LDA, QDA, SVM, LOGREG). The best performing classification
model using spectral-only features was SVM, while QDA was the best performing model
using time-resolved-only features. It should be noticed that at each cross-validation fold,
a different subset of features can be selected; thus, there is no unique optimal subset of
features. To identify the most relevant features, the frequency of the three most selected
maFLIM features in the seven folds for each classification model evaluated is presented in
Figure 2.

For the ensemble classifier, the SVM model was retrained with the top three spectral
features (I390,n, I390/I500, I452,n), and the QDA model was retrained with the top three
time-resolved features (τavg, 390, α f ast,452, τf ast,452). An optimal weight of w1 = 0.4 was
selected, as it maximized sensitivity (Equation (6)) and F1-score (Equation (8)) without
decrementing too much specificity (Equation (7)). The best performance of the SVM-QDA
ensemble classifier (with w1 = 0.4) and the performance of the SVM and QDA models
alone retrained with their corresponding top three features are also reported in Table 4.

The confusion matrices resulting from the 7-fold cross-validation for the best per-
forming classification models are shown in Table 5, where the image-level classification
model predictions are compared against the true histopathological classification (gold stan-
dard). The ensemble SVM-QDA classification model produced the highest cross-validation
sensitivity (94%), specificity (74%), and F1-score (0.85).
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Table 4. Cross-Validation Classification Performance On the Training Set For Each maFLIM Feature Pool and Classifica-
tion model.

maFLIM Feature Pool Classification Model F1-Score Sensitivity Specificity

Spectral

LDA 0.78 82% 71%

QDA 0.74 76% 71%

SVM 0.79 82% 74%

LOGREG 0.79 85% 71%

Time-Resolved

LDA 0.75 79% 68%

QDA 0.83 91% 71%

SVM 0.73 76% 68%

LOGREG 0.76 79% 71%

Top three Spectral SVM 0.76 79% 71%

Top three Time-Resolved QDA 0.82 91% 68%

Ensemble
(Top three Spectral

and Time-Resolved)
SVM-QDA 0.85 94% 74%Cancers 2021, 13, x  9 of 16 

 

 

 
Figure 2. Frequency of the top three maFLIM features selected for each feature pool and classification model. 

For the ensemble classifier, the SVM model was retrained with the top three spectral 
features ( , , / , , ), and the QDA model was retrained with the top three 
time-resolved features ( , , , , , ). An optimal weight of  = 0.4 was selected, as it maximized sensitivity (Equation (6)) and F1-score (Equation (8)) 
without decrementing too much specificity (Equation (7)). The best performance of the 
SVM-QDA ensemble classifier (with  =  0.4) and the performance of the SVM and 
QDA models alone retrained with their corresponding top three features are also reported 
in Table 4. 

The confusion matrices resulting from the 7-fold cross-validation for the best per-
forming classification models are shown in Table 5, where the image-level classification 
model predictions are compared against the true histopathological classification (gold 
standard). The ensemble SVM-QDA classification model produced the highest cross-val-
idation sensitivity (94%), specificity (74%), and F1-score (0.85).  

Table 5. Confusion matrices from the 7-fold cross-validation using the optimal model for each maFLIM feature pool (MiD: 
Mild Dysplasia; MoD: Moderate Dysplasia; HiD: High-Grade Dysplasia, SCC: Squamous Cell Carcinoma). 

Confusion Matrices for Best Performing Mod-
els  

Predicted 
SVM  

(Spectral) 
QDA  

(Time-Resolved) 
SVM-QDA 
(Ensemble) 

( ) (+) ( ) (+) ( ) (+) 

True 

Healthy (n = 34) 25 9 24 10 25 9 
MiD (n = 1) 1 0 0 1 0 1 
MoD (n = 1) 0 1 0 1 0 1 
HiD (n = 3) 1 2 0 3 0 3 

SCC (n = 29) 4 25 3 26 2 27 
 Total  31 37 27 41 27 41 

3.2. Independent Classification Performance Quantification in the Testing Set 
The identified optimal classification models (Table 4) were retrained using all the 

maFLIM images acquired from the patient population at Hamad Medical Corporation in 
Doha-Qatar (training set, n = 34). These classification models were then ‘locked’ and ap-
plied without any further modification to all the acquired maFLIM images from the pa-
tient population at the Texas A&M University, College of Dentistry in Dallas, TX (testing 
set, n = 23).  

Representative cases from the testing set independently classified are shown in Fig-
ure 3. The first case corresponds to a patient presenting a red, inflamed lesion of approxi-
mately 5 × 1 cm2 in the left maxillary gingiva (Figure 3A). Histological examination of an 

Figure 2. Frequency of the top three maFLIM features selected for each feature pool and classification model.

Table 5. Confusion matrices from the 7-fold cross-validation using the optimal model for each maFLIM feature pool
(MiD: Mild Dysplasia; MoD: Moderate Dysplasia; HiD: High-Grade Dysplasia, SCC: Squamous Cell Carcinoma).

Confusion Matrices for Best
Performing Models

Predicted

SVM
(Spectral)

QDA
(Time-Resolved)

SVM-QDA
(Ensemble)

(−) (+) (−) (+) (−) (+)

True

Healthy (n = 34) 25 9 24 10 25 9

MiD (n = 1) 1 0 0 1 0 1

MoD (n = 1) 0 1 0 1 0 1

HiD (n = 3) 1 2 0 3 0 3

SCC (n = 29) 4 25 3 26 2 27

Total 31 37 27 41 27 41
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3.2. Independent Classification Performance Quantification in the Testing Set

The identified optimal classification models (Table 4) were retrained using all the
maFLIM images acquired from the patient population at Hamad Medical Corporation
in Doha-Qatar (training set, n = 34). These classification models were then ‘locked’ and
applied without any further modification to all the acquired maFLIM images from the
patient population at the Texas A&M University, College of Dentistry in Dallas, TX (testing
set, n = 23).

Representative cases from the testing set independently classified are shown in
Figure 3. The first case corresponds to a patient presenting a red, inflamed lesion of approx-
imately 5 × 1 cm2 in the left maxillary gingiva (Figure 3A). Histological examination of
an incisional biopsy taken from the affected gingiva revealed moderately differentiated
squamous carcinoma (SCC) with a maximum depth of invasion of 2.4 mm (Figure 3B). The
CAD system generates precancer/cancer posterior probability maps produced by applying
the optimized classification model to each pixel of a maFLIM image. For visualization, the
posterior probability map (red intensity scale) is superposed over the total fluorescence
intensity map (grey intensity scale). The SVM-QDA ensemble classifier posterior probabil-
ity map of the SCC lesion showed homogeneous probability values greater than 0.5 in the
region corresponding to the gingiva tissue; the white areas corresponded to teeth regions
(Figure 3C).
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Figure 3. Representative imaged, diagnosed, and classified cancerous and precancerous oral lesions from the testing
set. Top: (A) Red, inflamed lesion in left maxillary buccal gingiva (black circle indicates approximate location of the
acquired maFLIM image FOV). (B) Histological examination of an incisional biopsy revealed moderately differentiated
squamous cell carcinoma (SCC) (Scalebar: 1 mm). (C) Posterior probability map (red intensity scale) superposed on the
total fluorescence intensity map (grey intensity scale) of the gingiva lesion obtained from the SVM-QDA ensemble classifier
(Scalebar: 2 mm). Bottom: (D) White plaques in left lateral ventral tongue. (E) Histological examination of an incisional
biopsy revealed mild-to-moderate epithelial dysplasia (MoD) (Scalebar: 1 mm). (F) Posterior probability map (red intensity
scale) superposed on the total fluorescence intensity map (grey intensity scale) of the tongue lesion obtained from the
SVM-QDA ensemble classifier (Scalebar: 2 mm).

The second case corresponds to a patient presenting scattered white plaques on the left
lateral ventral tongue (Figure 3D). Histological examination of an incisional biopsy taken
from the affected tongue area revealed mild-to-moderate epithelial dysplasia with overlying
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hyperparakeratosis (Figure 3E). The corresponding SVM-QDA ensemble classifier posterior
probability map showed two regions, one with probability values greater than 0.5, and
another with probability values less than 0.5 (Figure 3F). The posterior probability maps
generated by the SVM-QDA ensemble classification model for all maFLIM images included
in the testing set are presented in Figure S1 in the Supplemental Materials.

The classification performance of each optimal classifier was independently quantified
from the testing set classification results in terms of the ROC-AUC. The ROC curves from
the complete testing set classification results for each classification model are presented
in Figure 4. The ensemble classifier, combining both spectral and time-resolved features,
showed the highest ROC-AUC (0.81). The confusion matrices resulting from the application
of the optimal classification models (SVM, QDA, and SVM-QDA ensemble) to the testing
set are presented in Table S1 in the Supplemental Materials.
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4. Discussion

In this study, clinical widefield label-free metabolic imaging of cancerous and dys-
plastic oral lesions was successfully performed at two clinical centers using previously
developed multispectral autofluorescence lifetime imaging (maFLIM) endoscopic instru-
ments [21]. The maFLIM metabolic images from 34 patients acquired at one of the clinical
centers (Hamad Medical Corporation, Doha, Qatar) were used to optimize and train statis-
tical classification models for automated detection of dysplastic and cancerous oral lesions.
A CAD system was then developed based on the optimized classification models and
applied to an independent set of maFLIM metabolic images from 23 patients acquired at
the other clinical center (Texas A&M College of Dentistry, Dallas, TX, USA).

We have previously demonstrated that clinical widefield maFLIM endoscopy enables
to image a plurality of autofluorescence metabolic and compositional biomarkers of oral
epithelial dysplasia and cancer [20]. Our current findings indicate that six of these maFLIM-
derived autofluorescence biomarkers are particularly relevant in the discrimination of
dysplastic and cancerous vs. healthy oral tissue: I390,n, I452,n, I390/I500, τavg,390, τf ast,452,
and α f ast,452 (Figure 2). Collagen in the lamina propria is the main contributor to the oral
tissue autofluorescence induced by a 355 nm excitation wavelength and measured at the
390 ± 20 nm emission spectral band. Previous studies have reported lower normalized
autofluorescence intensity measured at this band in cancerous and precancerous (↓ I390,n ),
relative to healthy, oral tissue associated to the breakdown of collagen crosslinks in the



Cancers 2021, 13, 4751 12 of 17

connective tissue [31,32] and increased epithelial thickness and tissue optical scattering,
which are characteristic of premalignant and malignant oral tissue transformation [33].
We previously reported for the first time a faster average fluorescence lifetime measured
at the 390 ± 20 nm emission spectral band in cancerous and dysplastic (↓ τavg,390) vs.
healthy oral tissue [20]. Because of the spectral overlap of collagen and NADH at this band,
this observation likely reflects a faster NADH autofluorescence temporal response signal
resulting from decreased slower-decaying collagen signal in dysplastic and cancerous tissue.
NADH within oral epithelial cells is the main contributor to the oral tissue autofluorescence
induced by a 355 nm excitation wavelength and measured at the 452 ± 22.5 nm emission
spectral band. Neoplastic cells are characterized by increased use of glycolysis in addition
to oxidative phosphorylation [34], which reduces NAD+ into NADH, resulting in increased
NADH/NAD+ ratio and quenched NADH autofluorescence [35]. This can be translated
into increased normalized autofluorescence intensity (↑ I452,n ) and shorter autofluorescence
lifetime (↓ τf ast,452 , ↑ α f ast,452 ) measured at the emission spectral band of 452 ± 22.5 nm in
cancerous and dysplastic vs. healthy oral tissue. FAD within oral epithelial cells is the main
contributor to the oral tissue autofluorescence induced by a 355 nm excitation wavelength
and measured at the > 500 nm emission spectral band. Oxidative phosphorylation requires
the oxidation of FADH2 into FAD, resulting in a higher concentration of mitochondrial FAD
in neoplastic cells [35]. Hence, a decrease in the ratio of the autofluorescence intensities
measured at the 390 ± 20 nm and > 500 nm spectral bands in cancerous and dysplastic oral
lesions (↓ I390/I500 ) compared to healthy oral tissue, which predominantly quantifies the
contribution of collagen signal relative to that of FAD, could potentially represent a novel
autofluorescence biomarker of oral cancer.

Several in vivo human studies have evaluated the potentials of autofluorescence spec-
troscopy or imaging for the discrimination of precancerous and cancerous from healthy
oral tissue. De Veld et al. performed autofluorescence spectroscopy at six UV–vis excitation
wavelengths in healthy volunteers (n = 95) and patients presenting either premalignant
(n = 21) or malignant (n = 20) oral lesions [36]. Discrimination between healthy vs. cancer-
ous oral lesions was performed with a Karhunen–Loeve linear classification model (KLLC)
using features computed as ratios of intensities at specific emission wavelengths, and
the performance was quantified in terms of ROC-AUC (> 0.9) following a leave-one-out
cross-validation strategy. Discrimination between healthy and dysplastic lesions, on the
other hand, was not achieved (ROC-AUC < 0.6). Kumar et al. performed autofluorescence
spectroscopy at 405 nm excitation in healthy volunteers (n = 36) and patients presenting
either premalignant (n = 38) or malignant (n = 67) oral lesions [37]. The data were divided
into training and testing sets. Principal component analysis (PCA) was applied for feature
extraction, and Mahalanobis-distance classification models were trained to discriminate
autofluorescence spectra corresponding to either cancerous, precancerous, or healthy oral
tissue. The classification performance was quantified in terms of sensitivity (70–100%)
and specificity (86–100%). One limitation of this study was the use of multiple spectra per
subject as independent datasets, resulting in not truly independent training and testing
sets. Huang et al. performed autofluorescence imaging of NADH and FAD in healthy
volunteers (n = 77) and patients presenting either premalignant (n = 34) or malignant
(n = 49) oral lesions [38]. Different QDA classification models were trained to discriminate
a manually selected region of interest (ROI) as either cancerous, precancerous, or healthy
oral tissue using the ROI mean and standard deviation of the NADH and FAD emission
intensities and their ratio as features. These models classified healthy vs. cancerous oral
tissue ROIs with 94.6% sensitivity and 85.7% specificity, and healthy vs. precancerous oral
tissue ROIs with 97.4% sensitivity and 38.2% specificity. One limitation of this study was
the use of the same data for both training and validation. Jeng et al. performed autofluores-
cence imaging using the VELscope instrument (LED Dental, Vancouver-Canada) in healthy
volunteers (n = 22) and patients presenting either premalignant (n = 31) or malignant
(n = 16) oral lesions [39]. The data were divided into training and testing sets, the average
and standard deviation of the autofluorescence intensity within ROIs were computed as
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features, and LDA and QDA models were trained for the discrimination among cancerous,
precancerous, and healthy oral tissues. The classification performance was quantified in
terms of ROC-AUC (0.8–0.97). One limitation of this study was the use of multiple (5)
images per subject as independent datasets, resulting in not truly independent training
and testing sets. Marsden et al. performed time-resolved autofluorescence spectroscopy
(TRFS) in 53 patients undergoing upper aerodigestive oncologic surgery [40]. Different
classification models were trained to discriminate an ROI as either cancerous or healthy
oral tissue based on the classification of point-spectroscopy measurements taken within the
ROI. The best leave-one-out cross-validation performance was obtained using a Random
Forest model (ROC-AUC: 0.79–0.88). An independent validation performed on TRFS
point measurements collected from nine patients excluded from the training stage resulted
in significantly lower classification performance (ROC-AUC: 0.44–0.85). Discrimination
between precancerous vs. healthy oral tissue was not achieved.

Our in vivo human study overcomes some limitations of the studies previously
summarized. For positive surgical margin assessment, the discrimination of oral tis-
sue in healthy volunteers from premalignant/malignant lesions in patients as performed
in [36–39] is less relevant than the discrimination of healthy vs. premalignant/malignant
oral tissue within the same patient as performed in [40] and our study. Point-spectroscopy
measurements as performed in [36,37,40] are intrinsically slow and, thus, less suitable for
surgical margin assessment than imaging approaches as in [38,39] and our study. The
potential to discriminate precancerous from healthy oral tissue, as demonstrated in [37,39]
and our study but not in [36,38,40], will be also relevant for surgical margin assessment.
Finally, a very important difference of our study is the quantification of the classification
performance in a totally independent testing set. The training and testing sets used in our
study were collected at two different clinical centers in two different countries and using
two different maFLIM endoscopic systems.

As previously discussed, automated detection of oral dysplasia and cancer based on
autofluorescence spectroscopy and/or imaging can be attempted based on spectral/intensity
and/or time-resolved autofluorescence features. Results from this study indicate that
classification models trained with only spectral/intensity autofluorescence features can
provide higher specificity but lower sensitivity than models trained with only time-resolved
autofluorescence features, while ensemble classification models trained with both spec-
tral/intensity and time-resolved features performed the best (Table 4, Figure 4). While
detection based on only spectral/intensity autofluorescence features can be implemented
with much simpler and significantly less costly instrumentation, our results indicate that
time-resolved autofluorescence features can provide complementary discriminatory in-
formation. We recently reported a versatile and cost-efficient frequency-domain FLIM
implementation that is being adopted in the design of novel multiwavelength-excitation
and multispectral-emission FLIM endoscopic systems [41]; these novel instruments will
further facilitate the clinical translation of maFLIM endoscopy.

The classification models explored in this study were limited to traditional ML mod-
els [24–27]. Even the optimal ML models identified during the training stage provided only
modest (<80%) levels of specificity (Table 4). It is expected that with a more comprehensive
training database and the adoption of more advanced ML models (e.g., deep learning
methods) [42–44], it will be possible to enable automated discrimination of dysplastic and
cancerous vs. healthy oral tissue with superior classification performance. Nevertheless,
the classification results obtained in the independent maFLIM images used as testing set
(ROC-AUC > 0.8, Figure 4) strongly support the potentials of an ML-enabled maFLIM-
based strategy for automated and unbiased discrimination of dysplastic and cancerous vs.
healthy oral tissue.

Study Limitations

Although the independently validated results of this study clearly demonstrate the
feasibility for ML-driven automated discrimination of dysplastic/cancerous from healthy



Cancers 2021, 13, 4751 14 of 17

oral tissue based on maFLIM endoscopy (ROC-AUC > 0.8), some study limitations were
identified. The small sample size of both the training (n = 34) and testing (n = 23) sets used
for developing and evaluating the performance of the CAD systems prevented the use
of better performing state-of-the-art classification models. The demographics of the two
different patient populations included in the training (Doha, Qatar) and testing (Dallas,
Texas) sets (Table 2) could impact the classification performance of the ML models. The
Qatar patient population mostly comprised Indian (35%) and Nepalese (21%) people
with a 7.25:1 male-to-female ratio and an average age of 49 ± 11 years, while the Dallas
patient population mostly comprised White people (77%) with a 1.09:1 male-to-female
ratio and an average age of 62 ± 10 years. In addition, lesions imaged in Doha were
clinically more advanced than those imaged in Dallas. These differences in race, gender,
and age between patient populations and in malignancy stage could potentially affect the
autofluorescence properties of the imaged oral tissues. Nevertheless, it was interesting to
observe encouraging performance of a classification model that was trained with data from
a particular patient/lesion population and independently tested on data from a distinct
patient/lesion population. The lack of histopathology-based assessment of the maFLIM
imaging data at the pixel-level and of images acquired specifically from lesion margins
prevented to specifically quantify the capabilities of maFLIM endoscopy as a tool for
discriminating negative vs. positive surgical margins. Finally, the current implementation
of the optimized CAD systems did not allow for real-time processing of maFLIM data.
Ongoing research efforts aiming to overcome these limitations include collecting maFLIM
endoscopy images from both premalignant/malignant lesions and their visible margins,
performing accurate pixel-level registration between the lesion maFLIM imaging data and
histopathology tissue sections, and implementing optimized CAD systems using FPGA
and GPU technologies for real-time maFLIM data processing, pixel-level classification, and
tissue mapping visualization.

5. Conclusions

The results of this study further demonstrate the capabilities of maFLIM endoscopy to
clinically image a plurality of metabolic and biochemical autofluorescence biomarkers of
oral epithelial dysplasia and cancer. Moreover, these autofluorescence biomarkers were
successfully used as features in machine-learning models optimized to discriminate dys-
plastic and cancerous from healthy oral tissue. Finally, this study demonstrates the first
independent validation of a maFLIM endoscopy-based CAD system for automated clinical
detection of dysplastic and cancerous oral lesions. Further developments in maFLIM instru-
mentation and image analysis methods could result in novel clinical tools for automated
intraoperative image-guided in situ detection of positive margins during head and neck
cancer resection surgery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194751/s1, Figure S1: Posterior probability maps of 23 dysplastic/cancerous oral
lesions and paired healthy oral tissues obtained from the SVM-QDA ensemble classifier, Table S1: Con-
fusion matrices resulting from the application of the optimal classification models to the testing set.
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