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Abstract: Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between
osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system’s
receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the
transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation
modulates bone formation and bone resorption. Bone diseases are very common worldwide.
Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as
postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies.
Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas
CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated
to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone
cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but
it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a
useful pharmacological target in the prevention and treatment of bone diseases. More studies to better
investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed,
but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating
bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.
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1. Endocannabinoid/Endovanilloid (EC/EV) System in Bone

Despite its rigidity, bone can be defined as an extremely dynamic organ, in a constant remodeling
process by osteoblasts (OBs) and osteoclasts (OCs), key cells in maintaining bone homeostasis and in
answering to mechanical stresses [1,2]. Osteoclasts secrete acid and proteinases for cartilage resorption,
whereas osteoblasts replace new bone and also influence the osteoclast activity. Osteoblasts express
the receptor activator of nuclear factor Kappa-B ligand (RANK-L) which enhances osteoclastogenesis
by binding its specific receptor (RANK) onto the osteoclast precursors’ surface. The binding between
RANK receptor and its ligand leads to the recruitment of molecules, such as TNF receptor-associated
factor 6 (TRAF6), with the consequent activation of MAPK cascade, NF-kB, AKT/PKB, JNK, ERK
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downstream signaling pathways, and the final expression of genes involved in osteoclastogenesis [3].
Osteoblasts also release osteoprotegrin (OPG), a soluble glycoprotein that acts as a “decoy” receptor
binding to RANK-L and thus inhibiting osteoclast activation [4]. In 2016, Luo et al. identified a new
receptor for RANK-L, LGR4, that binds RANK-L and suppresses RANK signaling [5]. Considering its
crucial role in bone homeostasis, any deregulation in RANK/RANK-L signaling leads to pathological
processes such as postmenopausal osteoporosis or cancer-induced bone destruction [6–8].

The endocannabinoid (EC) system is composed of endogenous cannabinoid ligands (anandamide
(AEA) and 2-arachidonoylglycerol (2-AG)), their specific receptors, the cannabinoid receptor type 1
(CB1) and type 2 (CB2), and all the enzymes involved in their synthesis and degradation [9]. The
endocannabinoids physiologically interact with several kinds of receptors, one of them being the
transient receptor potential cation channel subfamily V member 1 (TRPV1) [10], a subfamily of Ca2+

permeable channel which constitutes the endovanilloid (EV) system. The EC/EV system is proven
to be involved in the regulation of several physiological processes, such as appetite control, energy
balance [11], pain perception [12], and immune response [13]. Moreover, it has been proposed as an
anticancer target by several studies [14,15]. The CB1 receptor is more expressed in the central nervous
system (CNS), whereas the CB2 receptor can be found predominantly in peripheral tissues [16], even
though there is growing evidences indicating that it is also present in the brain [17,18]. In 2017, Liu et al.
detected the CB2 receptor in various brain regions in a murine model with immunohistochemistry and
in situ hybridization [19]. TRPV1 is a nociceptor predominantly expressed on sensory nerve fibers of
the somatic and autonomic afferent neurons [20].

Bone cells express CB1 and CB2 receptors and TRPV1 channels and locally produce the
endocannabinoids AEA and 2-AG and the enzymes involved in their synthesis and degradation [21–24].
The pharmacological modulation of these receptors contributes to the maintenance of bone mass by
stimulating stromal cells and osteoblasts and by inhibiting monocytes and osteoclasts [25,26] (Figure 1).
In particular, the inactivation of CB1 by its inverse agonist, AM251, or its genetic deletion, inhibits
OBs’ differentiation from the bone marrow-derived cells, reducing a specific osteoblast transcription
factor, runt-related transcription factor 2 (RUNX2) [27]. In addition, TRPV1 stimulation by its selective
agonist, resiniferatoxin (RTX), reduces RUNX2, OPG, and alkaline phosphatase (ALP), inhibiting
calcium deposition by osteoblasts. Conversely, CB2 stimulation by its selective agonist, JWH-133,
inhibits the release of RANK-L, consequently reducing osteoclasts’ number and differentiation and
leading to mineral deposition [23]. CB2 receptor stimulation acts as inductor of bone matrix deposition,
whereas the TRPV1 receptor stimulation acts as inhibitor of osteogenic signaling. Moreover, RTX,
in in vitro osteoclasts, is able to increase the expression and the activity of two important osteoclast
biomarkers, tartrate-resistant acid phosphatase (TRAP) and cathepsin K. In particular, the very first
evidence of TRPV1 expression in human osteoclasts was formulated in 2009, when the co-expression
of TRPV1 and cannabinoid receptors in these cells was demonstrated [22]. While their co-expression in
neuronal [28,29] and non-neuronal cells, such as HEK cells and mice osteoclasts and osteoblasts [10,30],
had already been proven, it has never been proven before in human bone primary cells. The
co-expression of these receptors and the fact that they can be stimulated by the same ligands give
evidence of a cross-talk between EC and EV receptors. This interaction, especially between CB2
and TRPV1, is also evident in bone tissue where they oppositely modulate osteoblast and osteoclast
activity [23,31].

The important evidence that cannabinoid and vanilloid receptors are co-expressed in mouse and
human bone suggests that they might act together to balance the bone mineralization and resorption
by different actions of AEA on TRPV1 and cannabinoid receptors.

On this basis, pharmacological modulation of the EC/EV system may be a valid approach in the
prevention and treatment of bone diseases.
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Figure 1. Signaling molecules involved in bone mass maintenance. The cannabinoid receptor type
1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel
subfamily V member 1 (TRPV1) contribute to the maintenance of bone mass. CB2 receptor acts as
inductor of bone matrix deposition, whereas the TRPV1 and CB1 receptors act as inhibitor of osteogenic
signaling. M-CSF, Macrophage colony stimulating factor.

2. Endocannabinoid/Endovanilloid System in Osteoporosis

The EV/EC system plays a pivotal role in regulating bone cell activity even though the conclusions
in the literature about its role have been discordant for long time. CB1 and TRPV1 stimulation activates
osteoclasts [21,31–35], while CB2 represents the counterpart for bone mineralization and remodeling
via osteoclast inhibition [26,36] (Figure 2). In 2005, Idris et al. observed that selective agonists at CB2
receptor (HU308 and JWH-133) induce RANK-L-mediated osteoclast formation [35], while in 2008,
Bab et al. demonstrated that CB2-deficient mice have a normal phenotype at birth, but they undergo
a bone mass reduction over time, suggesting a progressive age-related bone loss [37]. Since then,
several papers have reported that the activation of CB2 enhances bone formation and limits bone
resorption [24]. For example, a CB2-selective agonist (HU308) causes the inhibition of RANK-L-induced
osteoclast formation in RAW 264.7 culture in vitro [33].

In 2005, Karsak et al. demonstrated that a polymorphism in the CNR2 gene, which encodes the
CB2 receptor, is strongly associated with bone mineral density in a population of postmenopausal
OP patients [38]. This polymorphism, a missense variant (Gln63Arg), that affects CNR2 expression
and activity is significantly associated with the most severe form of OP [38,39]. Thus, a reduced
expression or efficacy of CB2 signaling results in a lower bone density and even osteoporosis (OP). OP
represents the most common metabolic bone disease with the highest impact on public health with
relative costs [40,41]. It is characterized by decreased bone mineral density, reduced bone strength,
and consequent increase in skeletal fragility and the occurrence of fractures [42,43]. A dysregulation of
bone homeostasis with a decreased activity of osteoblasts and osteocytes and an enhanced osteoclast
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activity (Figure 3A,B), generally, characterize OP [44]. In postmenopausal OP, the most frequent type of
primary OP, the gonad function interruption seems to retard osteoclastic but not osteoblastic apoptosis,
inducing a progressive bone mass loss that, surprisingly, does not benefit from hormonal replacement
treatment [45–47]. To completely restore the bone balance in OP, a successful therapy should increase
osteoblast activity and at the same time decrease the osteoclast activity. However, many available
therapies affect only the catabolic osteoclast activity [48]. Postmenopausal OP is the most common
metabolic bone disease, but secondary factors such as drugs, iron overload, and pathological conditions
may significantly increase the risk of bone loss and skeletal fragility [49].

Figure 2. Altered homeostasis in osteoporosis. Activated osteoclasts (OCs) in patients with osteoporosis
express low levels of CB2 receptor and high levels of CB1 and TRPV1. CB1 and TRPV1 stimulation
activates osteoclasts, while CB2 represents the counterpart for bone mineralization and remodeling via
osteoclast inhibition.

Figure 3. Representation of the multinucleated tartrate-resistant acid phosphatase (TRAP) (+) osteoclasts
obtained by colorimetric assay (TRAP assay). The figure shows that osteoclasts (in purple) derived
from (B) a postmenopausal woman with osteoporosis and from (C) an osteosarcoma patient are more
active, as shown by the more intense staining and the larger size, with respect to osteoclasts derived
from (A) a healthy donor.

Accordingly, it has been demonstrated that CB2 receptor is differently expressed in osteoclasts
from menopausal women with or without OP and that the CB2 stimulation inhibits activity and
differentiation of osteoclasts from osteoporotic postmenopausal women [50]. In post-menopause,
estrogen withdrawal seems to delay osteoclast apoptosis inducing a lower bone mass density [47,51,52].
Several studies report that estrogens are able to modulate cannabinoid receptor expression both in rats
and in humans [53–55]. Interestingly, the 17-β-estradiol induces an increase in CB2 expression through
the recruitment of a putative estrogen responsive element in the CB2 encoding for gene, suggesting the
possibility of acting on this receptor instead of adopting a hormonal therapy to reduce bone resorption
in postmenopausal OP [55]. CB2 receptor acts also on osteoblasts and their precursors, promoting bone
formation [26,56]. Scutt and Williamson demonstrated that the administration of cannabinoids in vivo
stimulates the recruitment of MSCs from the bone marrow through CB2 receptor activation [56]. Ofek
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et al. revealed that the bone marrow stromal cells derived from CB2-deficient mice lack bone deposition
under osteogenic stimuli [26]. According to this evidence, it has been demonstrated, for the first time
in 2015, that CB2 receptor is expressed on human osteoblasts differentiated from bone marrows of
healthy donors and that CB2 stimulation increases human osteoblast activity [23]. These studies prove
that peripheral CB2 receptors have a protective role in bone metabolism and, therefore, targeting
these receptors may represent a novel approach for the treatment of bone-related disorders, such as
postmenopausal OP.

Furthermore, CB1 receptor is known to modulate both osteoblast and osteoclast activity [35,57,58].
In detail, CB1 exerts age-dependent effects on bone mass by regulating the differentiation of osteoclasts
and MSCs into osteoblasts and adipocytes. Idris et al. were the first ones to report that genetic
inactivation of CB1 receptor results in higher bone mass in young mice [35,57,58]. In particular,
mice with CB1 deficiency present increased bone mass already at three months of age, but develop
age-related OP associated with the accumulation of adipocytes in bone marrow [35]. Accordingly,
Gimble et al. demonstrated that MSCs from elderly subjects have a reduced capacity to differentiate into
osteoblasts and an increased capacity to differentiate into adipocytes, which implies the accumulation
of fat in the bone marrow with aging [59]. Therefore, CB1 ligands may be used to enhance bone mass
and prevent age-related OP.

Moreover, several in vitro and in vivo studies [35,60] have demonstrated the direct effects of CB1
on osteoclast differentiation. In particular, Samir and Malek demonstrated a reduction of RANK-L gene
expression and an increase in OPG expression in young rats upon CB1 inhibition [60], and Idris et al.
suggested that the defective osteoclast differentiation in CB1-deficient mice is caused by a reduced
RANK-L expression which impairs the ability of osteoblast to support the osteoclast differentiation [35].
A similar result has been observed in vitro using inverse agonists (AM251 and SR141716A) at CB1 that
cause osteoclast apoptosis and a reduction in their differentiation [33,36]. Therefore, CB1 and CB2
have distinct roles in bone homeostasis and their individual blockage may be harmful, however their
combined inhibition may be beneficial in preventing age-related bone loss [61].

TRPV1 is another potential target for preventing OP: TRPV1-/- mice in fact have higher bone
mass density (BMI) than wild-type (WT) animals [62,63]. The underlying reasons are still unclear,
but in 2017, He et al. gave a first evidence in TRPV1 -/- mice that the osteoclast precursors present
a reduction in calcium levels after stimulation with RANK-L; specifically, they poorly answered to
osteoclastogenic stimulus [32]. Indeed, RANK-L signaling leads to Ca2+ oscillations that are responsible
for a Ca2+/calcineurin-dependent osteoclast differentiation. According to these studies, the TRPV1
genetic ablation or pharmacological inhibition protects against ovariectomy-induced bone loss by
affecting osteoclast activity. Moreover, TRPV1 pharmacological inhibition with agents like capsazepine
prevents bone loss, thereby enhancing osteoblast differentiation. Taken together, the evidence from
these studies suggests that TRPV1 deletion or inhibition could influence the bone remodeling process,
by affecting osteoclast and osteoblast differentiation and in particular promoting new bone formation.
Based on all this evidence, an enhanced activation of TRPV1 and CB1 may be responsible for osteoclast
activation and for bone resorption in osteoporosis. Accordingly, in osteoclasts from osteoporotic
patients, TRPV1 channels are upregulated, differently localized, and rapidly responsive to activation
and, in turn, to desensitization. In effect, in these cells, the stimulation of the channel with the agonist
RTX causes immediate activation and desensitization leading to the same effect of TRPV1 antagonism.
Moreover, TRPV1 stimulation induces an overexpression of CB2 receptors providing evidence of a
functional cross-talk between CB2 and TRPV1 receptors in OP [50].

The EV/EC system is also dysregulated in a secondary form of OP, such as the
glucocorticoid-induced OP. Wang et al. demonstrated that bone tissue responds to supra-physiologic
levels of glucocorticoids (GCs) with decreased bone formation [64,65], and Samir et al. and McLaughlin
et al. reported that glucocorticoids promote osteoclastogenesis by increasing RANK-L and decreasing
OPG expression [60,66].
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The glucocorticoid-induced OP is the most common form of secondary OP [67]. Glucocorticoids,
widely used for inflammatory and autoimmune disease treatment, affect both directly and indirectly
the bone cell activity leading to a bone mass reduction that occurs, independently of sex and age,
in 30–50% of treated patients [64–66]. Several studies have demonstrated that a chronic glucocorticoid
therapy is strongly associated with a low bone mineral density (BMD) and a high susceptibility of
fractures [68–71]. Sosa et al. and Migliaccio et al. demonstrated that prednisolone treatment induces
apoptosis of osteoblasts and osteocytes that leads to the reduction of bone formation [70,71].

Modulating the EC/EV system can limit GC side effects on BMD. When they are co-administered
with CB1 antagonists, they induce an improvement of BMD in young rats, while leading to its decrease
in old ones, thus confirming the role of CB1 receptor antagonists in age-related bone turnover [60].
These studies suggest that CB1 antagonist can be used to prevent glucocorticoid-induced OP in youth
but should be avoided in old age. It has also been demonstrated that methylprednisolone inhibits CB2
and increases TRPV1 signaling in human osteoclasts, suggesting that pharmacological compounds
stimulating CB2 or inhibiting TRPV1 might reduce, probably inhibiting protein kinase C beta II, also
the methylprednisolone-induced osteoclast over-activation [62,72].

Studies have reported that iron is also an important risk factor for OP [73,74]. Iron overload is
generally a consequence of chronic blood transfusions that are necessary in disorders such as beta
thalassemia major (TM), hereditary hemochromatosis, and sickle cell anemia [75]. In vivo and in vitro
studies suggest that iron excess directly influences bone formation and remodeling [73,76].

Tsay et al. suggested the importance of iron-induced ROS on bone metabolism, demonstrating
that iron overload in mice results in increased bone resorption and oxidative stress, leading to changes
in bone microarchitecture and bone loss [73]. Balogh et al. demonstrated, both in vitro and in vivo,
that iron is able to directly inhibit osteogenic commitment and bone marrow stromal cell (BMSC)
differentiation [76]. However, the mechanism through which iron induces bone loss is still unknown.

The dysregulation of the EV/EC system, which might be triggered by iron overload, is likely
to represent one of the molecular events underlying the development of beta thalassemia major
(TM)-induced OP. As demonstrated in postmenopausal OP, the osteoclast hyperactivity in TM patients
is strongly associated with a dysregulation of EV/EC receptor expression: TRPV1 and CB1 are
upregulated, whereas the protective CB2 receptor is downregulated. The TRPV1 pharmacological
desensitization causes the increase in CB2 receptor expression. Therefore, TRPV1 stimulation does not
alter TRAP levels, demonstrating that the channel activation and desensitization are iron dependent [77].
Finally, considering the central role of the EV/EC system in the regulation of bone formation and
resorption balance, its pharmacological modulation could revert all the pro-osteoporotic effects induced
by estrogen withdrawal in menopause, by glucocorticoids in glucocorticoid-induced OP, and by iron
overload in thalassemia major.

Bone is also commonly affected in cancer. Cancer-induced bone disease can result from the primary
disease itself or from therapies, such as adjuvant chemotherapy, administered to treat the primary
condition. In the former case, bone loss can be related to tumor-produced circulating hormones and
cytokines that compromise the local bone formation [78]. Moreover, OP and fractures are frequently
present in long-term cancer survivors [79], therefore early identification and treatment of OP in cancer
patients could prevent bone fractures, thereby improving quality of life.

3. Endocannabinoid/Endovanilloid System in Bone Cancer

The EC/EV system has a crucial role in many physiological processes as well as in pathological
conditions [12,80,81], such as inflammation, analgesia, immunoregulation, and also in cancer. Munson
et al. (1975) and Carchman et al. (1976) observed for the first time a reduction in lung adenocarcinoma
cell growth, both in vivo and in vitro, after the administration of D9-tetrahydrocannabinol (D9-THC),
pointing out the anti-proliferative properties of this system [82,83]. D9-THC is a metabolite, specifically
a phytocannabinoid, produced by Cannabis sativa and acting as agonist at CB1 and CB2 receptor
level, even though its observed effects are principally mediated by the first one [84]. Although the
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biochemical mechanisms underlying the anticancer capacities require further investigation, it is already
known that the activation of EC receptors induces the synthesis of ceramides, lipids present in the
cellular membranes, whose production activates the MAPK signaling cascade and leads to consequent
apoptosis and cell cycle arrest [85–88]. In addition, the activation of TRPV1 receptor with a classical
agonist, such as capsaicin, can induce cell death through the increase in intracellular H2O2 and Ca2+

that leads, for example, to a depolarization of mitochondrial membrane [89,90]. Tumor cell death can
occur by apoptosis or by necrosis, depending on the cellular context [91]. In osteosarcoma-like G292
cells, capsaicin causes apoptosis [89] as well as in breast cancer cells when it is used both alone and in
combination with other modulators (i.e., MRS1477) and the chemotherapy cisplatin [92].

The most frequent primary cancers affecting bone are chondrosarcoma and osteosarcoma
(OS) [93]. In particular, OS is the most common bone tumor in children and adolescents that
preferentially affects areas of active growth [94] and is characterized by pain, limited movement, and
high rate of metastasis [95], the majority of which occurs in the lung. In physiological conditions,
the bone homeostasis is maintained by a balance between osteoclast-mediated bone resorption and
osteoblast-enhanced bone formation. In bone tumors, including OS, this balance is disrupted [94].
Our knowledge about bone malignancies derives from in vitro studies and from in vivo studies
on animal models, among which Danio rerio (zebrafish), which is a reliable model of human bone
tumor [80,96]. In the literature, several studies report a connection between inflammatory status
and tumor progression [97,98]. CB1 is known to promote inflammation [99], whereas CB2 regulates
the magnitude of the inflammation as observed in the neutrophils isolated from pro-inflammatory
phenotype CB2-/- mice that exhibit an enhanced migration and adhesive properties. These cell features
were inhibited once treated with a CB2 agonist [100]. TRPV1 reduces the release of pro-inflammatory
cytokines, such as TNF and IL-6, when stimulated with specific agonists (i.e., capsaicin and RTX) [101].
Hence, considering the influence of the EC/EV system on inflammation and the connection between
inflammation and tumor, it is worth investigating the therapeutic potential of the EC/EV system
in tumor. In 2017, it was demonstrated that CB2 and TRPV1 receptors can interfere with tumor
growth and invasion in several OS cell lines (MG-63, U-2 OS, MNNG/HOS, Saos-2, KHOS/NP, and
Hs888Lu) when stimulated, respectively, with JWH-133 and RTX, two selective agonists [102,103]. This
is strong evidence of the EC/EV system potential as therapeutic target in OS. The same research group
confirmed the possibility of using this system for OS management not only directly triggering the
EC/EV system, but also using it as co-adjuvant of a proteasome inhibitor already used as an anticancer
drug in other malignancies [104]. Indeed, they observed a synergic anticancer effect when bortezomib
(BTZ) is used together with selective agonists on the EC/EV system (JWH-133 and RTX) in the HOS
cell line, where both a BTZ-mediated inhibition of proteasome and an activation of CB2 and TRPV1
receptors are induced. An increase in apoptotic cell percentage, cell cycle arrest, and reduction in
cell migration in in vitro experiments were observed. In the same year, Roy et al. highlighted the
importance of a correct dietary regimen in OS therapy, in particular of omega-3 fatty acids, such as
docosahexaenoic acid (DHA) [97]. It is enzymatically converted into docosahexaenoylethanolamide
(DHEA), which is an endocannabinoid that suppresses tumor proliferation, migration, and also the
angiogenic process in a murine model of OS. This effect seems to be mediated from CB1 receptor in a
manner that must be deeply investigated. Another CB1-mediated effect was observed last year by
Hsu et al. when they treated MG-63 cell line with anandamide, an important endocannabinoid acting
as partial agonist of CB1 receptor and also as antagonist of TRPV1 [105]. They observed an increase
in intracellular calcium in the cited OS cell line with consequent phosphorylation of p38 MAPKs
(mitogen-activated protein kinases) and activation of the apoptosis effector protein caspase-3. As we
stated previously, CB2 receptor is also involved in tumor processes. Osteoclasts from OS patients have
reduced levels of this receptor compared with healthy subjects, and this condition is even more marked
when patients are undergoing chemotherapy (Figure 3A,C). The immediate consequence is a decrease
in bone mass density that could lead to osteoporosis over the years. Bellini et al. demonstrated that
the use of mifamurtide, during canonical chemotherapy, can improve this condition, counteracting
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the hyperactivity of OS osteoclasts and thus reducing the probability of developing osteoporosis in
OS patients [106]. Indeed, they observed that mifamurtide leads to a reduction of pro-osteoporotic
markers (TRAP, PKCβ2, and TRPV1) and to an increase in CB2 levels in healthy osteoclasts, whereas
in osteoclasts from OS patients, mifamurtide is able to revert the chemotherapy-induced effects
on bone resorption. Patients with primary bone cancer, like OS, and bone metastases commonly
acquire cancer-induced bone disease (CIBD), presenting several troubles such as bone pain, restricted
mobility, high rate of fractures, nerve compression, and hypercalcemia. It has been observed that
pharmacological and genetic manipulation of CB2 reduces the progression of CIBD [107]. In particular,
its activation with specific ligands acts directly on tumor-inducing apoptosis or necrosis in malignant
cells, but also on osteoclasts, inhibiting their formation and differentiation. CB2 activation is also
associated with a reduction in tumor angiogenesis, maybe due to an autocrine inhibition in vascular
endothelial growth factor (VEGF) production by the tumor itself. In 2013, Lozano-Ondoua et al. were
the first ones who, using the CB2-selective agonist JWH015, observed a reduction in the number of
breast cancer cell line 66.1 in the intramedullary cavity of mice after an injection that mimicked a bone
metastasis condition [108].

4. EC/EV System in Bone Cancer Pain

The EC/EV system also plays a role in modulating bone cancer pain in mice models [109]. The
analgesic function of CB1 receptor is well known in the scientific community, however its stimulation
induces psychoactive effects which limit the therapeutic application of CB1R ligands [81]. The discovery
of the analgesic potential of CB2 stimulation is instead more recent [110–112]. In 2010, Curto-Reyes et
al. demonstrated that the selective stimulation of CB2 receptor, by means of AM1241, a CB2-selective
agonist extensively used in pre-clinical studies, inhibited tumor-derived pain in mice inoculated with
NCTC 2472 osteosarcoma cell line [113]. This is strong evidence of CB2’s role in alleviating pain in OS
animal models. The same year, Lozano-Ondoua et al. demonstrated that the administration of AM1241
in a murine model of osteolytic sarcoma inhibited bone cancer-induced pain as well as attenuated
cancer-induced bone degradation, suggesting a single therapy for cancer-induced bone pain, bone
loss, and bone fractures without inducing central nervous system side effects [114]. Considering that
opiates, widely used to trait this type of pain, can enhance bone destruction, CB2 agonists could be a
valid alternative. In addition, TRPV1 modulation is responsible for bone cancer pain alleviation, as Bao
et al. demonstrated in 2015 in a bone cancer animal model (Wistar rat) [115]. Indeed, its expression
levels are highly increased in bone cancer within dorsal root ganglion (DRG) neurons [116]. The topical
application of Xiaozheng Zhitong Paste (XZP) causes a decrease in expression levels of EV receptor and
the inhibition of PAR2 pathway, thus obtaining a reduction in cancer-induced pain. Moreover, Niiyama
et al. obtained a similar result after the i.p. administration of I-RTX, a potent TRPV1 antagonist, in mice
in whose femur they first implanted osteosarcoma cells [116].

5. Conclusions

Bone mass loss due to several reasons is still a striking health problem in today’s society.
Considering the involvement of EC/EV receptors in bone remodeling, one is likely to hypothesize

that their pharmacological modulation could restore bone balance in all pathological conditions where
an altered osteoblast/osteoclast activity is observed. The modulation of the EC/EV system seems to
revert all the pro-osteoporotic effects induced by estrogen withdrawal in menopause, by glucocorticoids
in glucocorticoid-induced OP, and by iron overload in thalassemia major.

Moreover, based on evidence from the most recent studies (e.g., CB2 and TRPV1 agonists have
anti-proliferative, pro-apoptotic, and anti-invasive effects in the most frequent primary cancer affecting
bone, namely, osteosarcoma), the EC/EV system could also be a very promising therapeutic target in
primary bone tumor and in chemotherapy-induced osteoporosis.

Furthermore, targeting TRPV1 receptors could also be beneficial in reducing cancer pain, due to
the well-known analgesic properties of TRPV1 stimulation in animal models with bone cancer pain.
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Therefore, pharmaceutical industries should consider investing in hybrid molecules able to stimulate
CB2 receptors and, at the same time, desensitize or antagonize TRPV1 channels. These molecules are
not psychoactive and therefore constitute a good therapeutic candidate in transitional studies that aim
to validate the clinical use of CB2 and TRPV1 agonists in osteoporosis treatment.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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