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Abstract
An important focus of community ecology, including invasion biology, is to investi-
gate functional trait diversity patterns to disentangle the effects of environmental 
and biotic interactions. However, a notable limitation is that studies usually rely on 
a small and easy-to-measure set of functional traits, which might not immediately 
reflect ongoing ecological responses to changing abiotic or biotic conditions, includ-
ing those that occur at a molecular or physiological level. We explored the potential 
of using the diversity of expressed genes—functional genomic diversity (FGD)—to 
understand ecological dynamics of a recent and ongoing alpine invasion. We quanti-
fied FGD based on transcriptomic data measured for 26 plant species occurring along 
adjacent invaded and pristine streambeds. We used an RNA-seq approach to summa-
rize the overall number of expressed transcripts and their annotations to functional 
categories, and contrasted this with functional trait diversity (FTD) measured from 
a suite of characters that have been traditionally considered in plant ecology. We 
found greater FGD and FTD in the invaded community, independent of differences 
in species richness. However, the magnitude of functional dispersion was greater 
from the perspective of FGD than from FTD. Comparing FGD between congeneric 
alien–native species pairs, we did not find many significant differences in the pro-
portion of genes whose annotations matched functional categories. Still, native spe-
cies with a greater relative abundance in the invaded community compared with the 
pristine tended to express a greater fraction of genes at significant levels in the in-
vaded community, suggesting that changes in FGD may relate to shifts in community 
composition. Comparisons of diversity patterns from the community to the species 
level offer complementary insights into processes and mechanisms driving invasion 
dynamics. FGD has the potential to illuminate cryptic changes in ecological diversity, 
and we foresee promising avenues for future extensions across taxonomic levels and 
macro-ecosystems.
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1  | INTRODUC TION

Species invasions have become an important study system for un-
derstanding community assembly (Pearson et  al.,  2018; Strauss 
et al., 2006) and eco-evolutionary feedbacks (Colautti et al., 2017; 
Strauss,  2014), due to the ubiquity, replication, and detailed re-
cords of invasions and invaded systems at different scales around 
the globe (Sax et al., 2007). Species invasions can also be used to 
test evolutionary hypotheses of trait evolution, because the en-
vironments selecting on traits, as well as sister lineages, are still 
present today (Lu-Irving et  al.,  2018). Both experimental (Pearson 
et al., 2012) and observational studies (Pyšek & Richardson, 2006; 
Rejmánek,  1996; Rejmanek & Richardson,  1996) have shown that 
alien species often differ from natives in phenotypic functional traits 
(van Kleunen et al., 2010; Pyšek & Richardson, 2008) and that spe-
cific functional traits are associated with invasive plants (Leishman 
et  al.,  2007; Pearson et  al.,  2012; Pyšek & Richardson,  2006; 
Rejmanek & Richardson, 1996). In particular, while similarity in traits 
with native species may in some cases promote the naturalization of 
alien species, distinct traits appear to promote invasiveness (Divíšek 
et  al.,  2018). For instance, specific leaf area, plant stature (height, 
canopy extent), and leaf nitrogen content are often invoked to sep-
arate species along a trade-off of resource acquisition versus stress 
resistance (e.g., Lavergne et al., 2003, 2004). Quantifiable measures 
of such functional trait diversity may be compared across ecosys-
tems (Petchey & Gaston, 2002) and have been increasingly used to 
identify generalizable processes promoting ecological diversity and 
ecosystem functioning (Cadotte et al., 2011; Carmona et al., 2016; 
McGill et al., 2006; Wilcox et al., 2018), as well as community assem-
bly (Chalmandrier et al., 2015, 2017; Mouchet et al., 2010; Pavoine 
& Bonsall, 2011).

Because it is impossible to measure all phenotypic traits across 
even a modest-sized community, studies of functional trait diversity 
have relied on a few measurable traits as a sufficient proxy for under-
lying and unmeasured functional diversity (Lavorel & Garnier, 2002; 
Westoby & Wright, 2006). For example, studies of trait-based plant 
ecology have primarily focused on quantifying vegetative traits, 
and reproductive or dispersal traits have much less frequently been 
measured and used to study functional diversity patterns (Lu-Irving 
et al., 2018). Yet, we know functional trait space is multidimensional 
and challenging to quantify (Laughlin, 2014; Maire et al., 2015; Violle 
et al., 2007), and it is not always clear which traits are ecologically 
relevant because functional relevance can be contingent on the en-
vironmental setting (Cooper et al., 2010; Forrestel et al., 2017; Gould 
et al., 1979). Additionally, niche differences that stabilize coexistence 
may result from specific combinations of traits (Kraft et al., 2015), so 
decisions to deduce a certain trait set could mislead interpretations 
of diversity patterns.

Here, we present the results of a pilot study intending to extend 
the examination of community diversity patterns across additional 
trait axes by quantifying community transcriptomic diversity (func-
tional genomic diversity, FGD). Transcriptomes describe the total 
diversity of expressed genes (transcripts) in any biological organ 
or individual, and can now be studied in nonmodel organisms in a 
given macro-ecosystem context (da Fonseca et  al.,  2016; Strickler 
et al., 2012). We posit that measuring FGD from transcriptomes has 
the potential to overcome many biases and assumptions of tradi-
tional measures of functional trait diversity described above. To con-
nect back with meaningful biological functions, transcripts can be 
assembled into orthologous genes (related by descent from a com-
mon ancestor) and annotated by comparison with curated genomes. 
These genes can then be assigned to protein functional categories 
(e.g., housekeeping, metabolic functions) using online repositories of 
gene ontologies and gene networks (Segata & Huttenhower, 2011). 
Annotations of transcribed genes that are unique to certain spe-
cies, clades, or habitats may identify unique functional diversity 
(unknown traits) important for a particular ecosystem at a specific 
point in time. For microbial taxa, transcribed gene products have 
long been used as “functional traits” to characterize communities 
(Damon et  al.,  2012; Urich et  al.,  2008). Such studies have paved 
the way toward a genetic perspective on diversity dynamics using 
environmental sequencing to catalog all the genes, or transcribed 
gene products, across ecosystems ranging from the human gut to 
arctic soils, illuminating the important products of ecosystem func-
tion, and defining healthy communities (Raes & Bork, 2008). While 
functional genomic approaches are frequently applied to microbial 
ecosystems (Morgan et al., 2013; Poole et al., 2012), application of 
these methods to macro-ecosystems remains largely unexplored 
(Lee et al., 2011; Zambrano et al., 2017). However, functional genes 
describe nearly all products of an organism in its environment and 
therefore may provide more accurate insights into the relevant phe-
notypes important for the ecological role or dynamics of a species—
such as its invasiveness (Neal Stewart et al., 2009). Also, quantifiable 
measures of functional genomic traits have the potential to be com-
pared across ecosystems—from plants to microbes—expanding be-
yond a few measurable functional traits to all underlying expressed 
diversity in the community. Here, we evaluate whether the exten-
sion of functional trait ecology into the measurements of functional 
genes allows progress toward a better understanding of invasion 
processes in a plant community.

The few studies beginning to explore transcriptomes of invasive 
plants have focused on the qualities of specific successful invaders 
(Broz et  al., 2008, 2009), comparisons of several invasive species 
within a particular family (Lai et  al.,  2008), introduced and native 
populations of a single invasive species across its range (Dlugosch 
et  al.,  2013; Guggisberg et  al.,  2013; Hodgins et  al.,  2013; Lai 
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et  al.,  2008), or comparisons of expression profiles between alien 
species and native congeners (Guo et al., 2018). Notable findings in-
clude differential expression of stimulus and stress response genes 
between aliens and natives (Guo et  al.,  2018), introduced popula-
tions with reduced expression of transcripts related to constitutive 
defense relative to native counterparts (Broz et al., 2009), and differ-
ential expression of transcripts specific to competitor species (Broz 
et al., 2008). However, most of this work has been restricted to a 
few plant lineages (mostly within the Asteraceae family) and never 
applied to a whole community context. Yet, by measuring transcrip-
tomic diversity of both alien and native species occurring across an 
invaded landscape, it is also possible to test controversial hypothe-
ses on the mechanisms through which alien species invade commu-
nities and affect native species (Table 1).

To begin to test hypotheses of mechanisms important for in-
vasion success (Table 1a), in this pilot study, we first broadly char-
acterized and described community-level functional trait diversity 
(FTD) and functional genomic diversity (FGD) between an invaded 
and an uninvaded (i.e., pristine) alpine streambed plant community. 
We quantified FTD and FGD for each species sampled in both plots 
to have replication at the species level for comparison of trait and 
transcriptomic analyses. As with community assembly in general, a 
number of mechanistic hypotheses have been proposed to explain 
invasions (MacDougall et al., 2009; Tilman, 2004), leading us to ex-
pect three alternative patterns. First, the hypothesis of niche parti-
tioning (stabilizing differences) stipulates that species coexistence 
is due to niche differences (Chesson, 2000) and promotes invasions 
when colonizing species exhibit novel functions and fill available 
niche space (Ricklefs, 2010). Under this hypothesis, we expect in-
creased functional diversity in the invaded compared with the pris-
tine community, as alien species should add to, and thereby elevate, 
trait diversity in the community overall. Alternatively, mechanisms 
of fitness dominance may drive competitive exclusion, allowing cer-
tain introduced species to locally extirpate one or several native 
species. In this case, we expect comparatively decreased diversity 
in the invaded community compared with the pristine as alien spe-
cies decrease functional diversity through local native species ex-
tinction. Finally, stable functional diversity may result from matched 
species replacement, where one alien species replaces one native 
that is functionally equivalent (Hubbell, 2005; Young et al., 2007), 
which would result in similar functional profiles in both communities.

Congeneric species pair comparisons (Table  1b) enable direct 
measurement of the evolutionary stasis or divergence of traits com-
pared with a recent common ancestor (Ackerly,  2003). Therefore, 
finer functional comparisons between congeneric alien–native pairs 
offer insights into mechanisms driving alien success (van Kleunen 
et al., 2010; Ordonez et al., 2010). We may expect phenotypic di-
vergence between alien and native congeners if communities are 
assembled through a limiting similarity mechanism (Macarthur & 
Levins,  1967). Under this scenario, successful alien species differ 
functionally from native species, because this dissimilarity would 
allow establishment or coexistence, and we should thus expect 

unique functional profiles in the alien congener. Alternatively, we 
may expect phenotypic convergence between alien and native con-
geners if communities are assembled through a mechanism of habi-
tat filtering (e.g., pre-adaptation to stress tolerance; Diaz et al., 1998; 
Keddy, 1992; Li et al., 2018) or a mechanism of self-organized similar-
ity along a niche access that can result from the competition if niche 
differences are the dominant coexistence mechanism (Scheffer & 
van Nes, 2006). This leads to the prediction that successful aliens 
should be functionally similar to the native species. Of course, there 
is more likely to be a combination of both scenarios, and FGD pro-
files may highlight nuanced dynamics of functional (dis)similarity 
across different functional genomic categories.

Experimental studies have shown that the magnitude of gene ex-
pression patterns can be altered in response to both abiotic (Shimizu-
Inatsugi et al., 2017) and biotic (Geisler et al., 2013) changes in the 
environment. Comparisons of differential gene expression between 
native species occurring in both communities may enable us to as-
sess the degree to which native species respond to the local pres-
ence of alien species and how this relates to community composition 
(Table 1c)—a unique axis of functional diversity that is only recently 
becoming possible to explore. We hypothesized that if aliens are 
impacting gene expression of other species in the community, we 
would observe a change in gene expression (i.e., differential expres-
sion, DE) of native species, depending on whether they co-occur 
with alien species. We also hypothesized that this change in DE 
for native species would correlate with the change in their relative 
abundance between invaded and pristine habitats. A relationship 
(positive or negative) between DE and change in relative abundance 
from the invaded to the pristine community would indicate that vari-
ation in FGD resulting from the presence of alien species can shape 
local native community structure.

2  | MATERIAL S AND METHODS

2.1 | Species selection

The Jardin Alpin du Lautaret, France, is an alpine botanic garden 
located at 2,100  m and manages a living garden of more than 
2,000 species from mountain areas around the world. Several 
plant species introduced into the garden have escaped cultiva-
tion and subsequently invaded one stream flowing out of the gar-
den (first observations of escapes in 1920 just after the garden 
was established), while another stream (about 150 m away) does 
not flow out from the garden and remains pristine (Figure  1a). 
Besides invasion, these two riparian sites are perfectly identical in 
all characteristics including altitude, slope, aspect, soil type, and 
grazing management, and no fertilizer or other treatment is used 
in the garden that may promote colonization of the outflowing 
streambed.

In June 2014, along each invaded and pristine riparian com-
munity we performed 20 replicated botanical survey plots of 1 m² 
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organized along an approximately 50-m linear transect. In each plot, 
every species was given a score corresponding to its relative spatial 
cover. Within the pristine and invaded communities, transect abun-
dances were summed across plots for all species. Locally abundant 
(>10%–25% cover) species were selected for comparisons of func-
tional trait and genomic diversity. Relative abundances for the 28 
sampled species were calculated in relation to the other sampled 
species in each community.

2.2 | Functional trait diversity (FTD) measurements

For this study, we chose to consider functional traits that have 
been used previously in explorations of community assembly in 
invaded systems (Carboni et al., 2016; Marx et al., 2016; Schaefer 
et al., 2011), and are more generally considered to depict species' 
ecological strategies along environmental gradients in an alpine 
context (e.g., Bello et  al.,  2013). For each species, we recorded 

F I G U R E  1   Photographs of the invaded and pristine communities sampled at the Jardin Alpin du Lautaret, France. (a) Venn diagram 
comparing the observed species richness between the invaded and pristine communities. (b) Venn diagram comparing the functional 
genomic diversity (FGD) measured by the total number of unigenes from all species sampled from the invaded (N = 20; 7 alien and 13 native) 
and the pristine community (N = 16; 10 shared with the invaded community). Species are separated by provenance in the invaded or pristine 
community to illustrate differences between aliens and natives. (c) The number of distinct unigenes (and gene models) matching each 
functional GO slim category within the biological process, cellular component, and molecular function aspects recovered from the invaded 
(pink) or blue (pristine) communities

8 alien
12 native 16 native 23 native

Jardin Alpin du Lautaret, France
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maximum height (m) and leaf number in the field from ten distinct 
individuals sampled along study transects. These same individuals 
were collected to measure specific leaf area (SLA), leaf dry matter 
content (LDMC), and leaf nitrogen content (LNC). Total leaf area 
(LA; mm2) was quantified from scans using ImageJ (version 1.51), 
and fresh mass (g) and dry mass (mg) were recorded from the same 
leaf. SLA was quantified as the ratio of leaf area (mm2) to dry mass 
(mg), and LDMC (with petioles) was quantified as the ratio of oven 
dry mass (mg) to water-saturated wet mass (g). LNC was measured 
as the mass-based percentage of nitrogen within leaf tissues (% 
dry-leaf mass). To do so, we measured leaf N and C concentrations 
using classical procedures on an elemental analyzer (Flash EA1112; 
Thermo Scientific), based on dried and ground leaf material. All 
measurements were taken following the standardized protocols 
for functional traits (Pérez-Harguindeguy et  al.,  2013). Average 
values across the ten individuals were used as species-level phe-
notypic functional traits.

2.3 | Functional genomic diversity (FGD) 
measurements

For the same locally abundant species considered for FTD in the in-
vaded and pristine communities, an apparently healthy mature indi-
vidual, growing in approximately “average” conditions (i.e., not too 
shaded, infected by pests), was chosen for RNA sampling and FGD 
analyses. This individual was not included in the FTD measurements 
due to the destructive nature of sampling leaf tissue required for 
FGD data. Leaf tissue was collected from focal species across both 
communities over the course of four days following the field pro-
tocol for phylotranscriptomic studies detailed in Yang et al. (2017). 
Using nitrile gloves changed between each collection, approximately 
0.1 g of tissue from mature leaves of a single individual was sam-
pled, immediately placed in a 2-μl Safe-Lock Eppendorf Biopur tube 
(Eppendorf AG), then flash-frozen in a thermos of liquid nitrogen 
in the field until samples could be stored at −80°C. For congeneric 
alien–native species pairs and native species found in both com-
munities, leaf material was collected as close to the same time of 
day as possible to control for temporal variation. Otherwise, sam-
pling across the invaded and pristine plots was random across time 
of day and date sampled. After all FTD and FGD sampling, one ad-
ditional individual representing each focal species was pressed in 
the field, dried (Blanco et al., 2006), and deposited as a voucher in 
the Stillinger Herbarium at the University of Idaho (see Table S1 for 
voucher information and Table  S2 for RNA sampling information). 
These vouchers represent each species sampled in our study, but 
they are not included in the analyses because FTD and FGD meas-
urements required tissue destruction.

RNA extractions were conducted at the Laboratoire d'Ecologie 
Alpine (LECA) in France using a protocol developed for plants from 
diverse taxonomic groups (Yockteng et al., 2013). After removal of 
DNA with a Turbo DNA-free Kit (1907M; Ambion Life Technologies), 
samples were shipped on dry ice to the University of Idaho (USA). 

A nanodrop was used for an initial general assessment of RNA ex-
traction. For samples that were positively extracted, a Qubit flu-
orometer was used for more precise quantification of RNA, and a 
Fragment Analyzer (Advanced Analytical Technologies) was used to 
assess quality. Using the RNA extraction with the highest quality, 
RNA-seq libraries were prepared with a KAPA Stranded mRNA-Seq 
Kit (KR0969, v. 3.15) and a 200 (base pair)-bp insert size. Paired-end 
100-bp RNA-seq was performed on Illumina HiSeq 4000 platform 
at the Vincent J. Coates Genomics Sequencing Laboratory (GSL) at 
the University of California, Berkeley, with each sample split across 
two sequencing lanes. RNA-seq reads were demultiplexed, and low-
quality reads (phred score <20) were removed using the SnowWhite 
pipeline (Barker et al., 2010; Dlugosch et al., 2013).

From cleaned RNA-seq reads of each individual sample, tran-
scripts were assembled using SOAPdenovo-Trans v. 1.04 (Xie 
et  al.,  2014) with kmer  =  57 (Marx et  al.,  2021). For the differen-
tial expression (DE) analyses (DE of natives growing in the invaded 
versus. pristine community), the native species collected from each 
community were pooled to assemble a reference transcriptome 
(N = 2 samples) using the same assembly tools. De novo transcrip-
tomic assembly quality was assessed with basic alignment sum-
mary metrics (e.g., number of scaffolds, mean scaffold length, N50), 
by mapping raw reads to each assembly with bowtie2 v. 2.3.4.2 
(Langmead & Salzberg, 2012) to quantify raw read support, and by 
blasting each transcriptome to universal single-copy orthologs for 
embryophyta (embryophyta_odb9) using the program BUSCO v. 3 
(Simão et al., 2015) to quantify completeness (creation date: 2016-
02-13, number of species: 30, and total number of BUSCO groups 
searched: 1,440).

To determine the putative biological functions of expressed 
genes, each sample transcriptome was annotated to curated gene 
ontologies. Scaffolds of unigenes were blasted against annotated 
Arabidopsis thaliana transcripts from the Araport11 blastset (201606) 
downloaded from TAIR (Swarbreck et al., 2008) following the pipeline 
outlined in Mandáková et al. (2017). The best hit for each unigene to 
an Arabidopsis gene model was retained. These unigene annotations 
were then compared with a database of functional annotations for 
Arabidopsis genes (Berardini et al., 2004; Harris et al., 2004) (updated 
10 February 2020) to incorporate terms from the Gene Ontology 
Consortium controlled vocabulary (Harris et al., 2004), including 47 
Gene Ontology (GO) slim categories. GO slim categories provide a 
standardized classification of the biological function of gene prod-
ucts derived from the more detailed gene product attributes defined 
by the Gene Ontology, and these fall within three broad aspects: 
biological processes, cellular components, and molecular functions.

Functional genomic diversity was then measured in a few ways. 
First, we quantified the overall number of distinct unigenes (including 
gene models) recovered from each sample. Second, we summarized 
the total number of unigenes matching each functional GO slim cate-
gory. Third, for the natives found in both communities we quantified 
differential expression (DE) of genes when growing in the invaded 
community compared with the pristine community (i.e., occurring 
with and without the presence of alien species) using the Tuxedo 
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pipeline (Trapnell et  al.,  2012) with default parameters as follows: 
Scaffold sequences from the de novo reference transcriptome were 
indexed with bowtie2-build (Langmead & Salzberg, 2012). Cleaned 
read pairs from each sample community (invaded or pristine) for a 
native species were synchronized using fastq-pair v. 0.3 (Edwards 
& Edwards,  2019) and mapped to the native species reference 
transcriptome with TopHat2 v. 2.1.1 (Kim et al., 2013). Novel tran-
scripts were assembled from reads with Cufflinks v. 2.2.1 (Trapnell 
et al., 2010). Finally, Cuffdiff v. 2.2.1 (Trapnell et al., 2013) was used 
to quantify DE by first mapping and then quantifying the abundance 
of RNA-seq reads distributed across transcripts (which can include 
isoforms from alternative splicing). Within-sample feature lengths 
and library size effects were normalized by fragments per kilobase 
of exon model per million mapped reads (FPKM), and log 2 fold dif-
ferences in normalized read counts between the samples from the 
invaded and pristine communities were quantified. Only loci with 
>10 read alignments were considered (--min-alignment-count), and 
read counts were fit to a negative binomial distribution with a blind 
dispersion method (i.e., each sample was treated as a replicate of the 
global expression for a species) to specify expected variation at each 
locus. Significantly differentially expressed transcripts would have 
greater variance in one of the communities than expected if they 
were from the same community. A t test was used to calculate a p-
value, which was adjusted to maintain a false discovery rate of 0.05.

Differential expression (DE) of unigenes between the invaded 
and the pristine community was summarized by (1) the median abso-
lute value of log 2 fold change in unigene expression with singularly 
expressed transcripts removed, and (2) the fraction of significantly 
differentially expressed unigenes (number of significantly differen-
tially expressed unigenes/total unigenes recovered). DE was visual-
ized with the R package cummeRbund (Goff et al., 2013).

2.4 | Statistical analyses of diversity patterns

We used principal component analysis (PCA) to compare the general 
distinction between alien and native species provenance and es-
tablish overall variation within functional space. Within phenotypic 
trait functional space (FTD), we compared the variance of measured 
trait values across species. Within genomic functional space (FGD), 
we compared the variance of the total number of distinct unigenes 
matching each functional GO slim category. PCAs of FGD were also 
conducted separately for the three GO slim aspects, namely bio-
logical processes, cellular components, and molecular functions, and 
combined with tests of multivariate analyses of variance (MANOVA) 
to assess whether alien and native species showed distinct patterns 
of FTD and FGD.

To assess differences in functional diversity patterns at the 
community level, we inferred a classical estimator of functional 
dispersion for phenotypic and genomic traits separately. This esti-
mator quantifies the average distance between distinct species in 
a PCoA space based on Euclidean distances computed between all 
species (Laliberté & Legendre, 2010), using phenotypic trait values 

and unigene counts for the 47 GO slims as input traits. Functional 
dispersion (FDis) thus describes the average of functional distances 
between all species and accounts for abundance by shifting the dis-
tance centroid toward more abundant species. It is also important 
to note that this estimator is by construction unaffected by species 
richness. The rationale of this estimator is to compute functional 
diversity in multivariate space defined by nonredundant functional 
axes (as produced by the PCoA). These estimators of FTD and FGD 
were computed with the R package FD (Laliberté & Legendre, 2010) 
separately for the pristine and invaded communities. FGD estimates 
were also produced for each GO slim aspect separately, again for the 
whole pristine and the whole invaded community separately.

For comparison of FGD profiles between the five alien–native 
congeneric pairs in the invaded community, we quantified the num-
ber of unigenes (i.e., uniquely assembled gene transcripts, including 
isoforms) that were annotated to the three biologically meaningful 
GO slim functional categories (biological processes, cellular com-
ponents, and molecular functions) for each species, and compared 
the proportion of unigenes expressed in each category between 
the alien and native congeneric species pairs. Fisher's exact test of 
contingency tables was used to identify GO slim aspects that had 
significantly different proportions of unigenes.

For native species shared between the two communities, linear 
regression was used to test whether changes in measures of DE (log 
2 fold change in unigene expression or the fraction of significantly 
differentially expressed unigenes) correlated with the difference in 
relative abundance of each native species in the invaded community 
compared with the pristine community. All statistical analyses were 
conducted in R version 3.5.1 (R Core Team, 2018).

3  | RESULTS

A total of 59 species were encountered across both communities. 
The pristine community had a greater observed species richness 
(N = 39) than the invaded community (N = 36; 28 native and 8 alien), 
and there were 16 native species shared between communities 
(Figure 1a). However, many of the species in the pristine community 
were locally rare, so we focused on dominant species for functional 
diversity analyses. This resulted in 17 species sampled from the pris-
tine community and 21 from the invaded community (28 total spe-
cies and 10 shared native species; Table S1). The sampled species 
covered more than 60% species cumulative abundances in both the 
invaded and the pristine communities.

A total of 330 Gb of RNA-seq reads were sequenced. On aver-
age, 16.73 million raw paired-end reads were recovered per sample 
and cleaning resulted in an average depth of 14 million read pairs 
(Table S2). Sample transcriptomes had on average 70,123 scaffolds 
and mean length of 417  bp. An average of 93.30% of raw reads 
aligned to each sample transcriptome assembly. One sample from 
the invaded community (Deschampsia caespitosa I4_160) and one 
sample from the pristine community (Pinguicula vulgaris P2_47) as-
sembled poorly based on scaffold statistics and BUSCO summaries 
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(Figure S1a) and were removed from downstream analyses. This left 
a total of 26 unique species sampled for functional and genomic 
diversity comparisons: 20 species (7 alien and 13 native) from the 
invaded community and 16 species from the pristine community, 
including five congeneric alien–native species pairs and 10 native 
species shared between the two study communities.

After annotation, 28,063 distinct unigenes were found in both 
communities (Figure 1b). Following the greater species richness in 
the invaded community, we found greater FGD in the invaded com-
munity, with 3,103 distinct unigenes compared with 2,053 in the 
pristine community (Figure 1b; Table S3). There was also a greater 
diversity of unigenes within each GO slim in the invaded commu-
nity (Figure  1c). Separating the alien species from the natives in 
the invaded community, we see that most of the unique functional 
genomic diversity was contributed by native species (1,600 uni-
genes) rather than aliens (807 unigenes) in the invaded community 
(Figure 1b; Table S3).

Overall, measurements of FTD showed that alien and native spe-
cies were phenotypically different (MANOVA test p-value =  .005). 
Alien species were generally taller, had more leaves, and had greater 
total leaf area than native species across the community (Figure S3a; 
Table S4). The PCA showed phenotypic traits (FTD) discriminate be-
tween aliens and natives on the first three planes (axis 1 = 35.82%, 
axis 2 = 27.75%, and axis 3 = 18.08%; Figure 2a). Compared directly 
with their native congener, alien species were also generally taller, 
with more leaves and greater leaf area (Figure S3b). Alien congeners 
did have lower SLA than their native congeners, except for the intro-
duced Heracleum mantegazzianum, which had a greater SLA than its 

native pair (Heracleum sphondylium). Otherwise, LDMC and LNC did 
not differ between provenance or congeneric alien–native species.

A PCA of FGD data (number of total unigenes matching each 
functional GO slim category) for each species did not show any 
batch effect resulting from variation introduced from sampling date 
or time separating either community type (invaded or pristine) or 
species provenance (Figure  S2). However, there was also no ap-
parent difference in FGD between alien and native species (axis 
1  =  95.2%; Figure  2b). Within the invaded community, FGD also 
does not discriminate between aliens and natives (axis 1 = 94.8%; 
Figure S4b) nor between alien and native species in congeneric pairs 
(Figure S5a,b). Within separate GO aspects, MANOVA tests suggest 
that there are a slight but not significant cryptic difference between 
FGD of aliens and natives for transcripts annotating to the “cellular 
components” aspect (p-value = .2367; Figure S6b), and a significant 
difference for transcripts annotating to the “molecular function” as-
pect (p-value = .003; Figure S6c; Table S5).

We found consistently greater functional dispersion from the 
perspective of both FTD and FGD in the invaded community rela-
tive to the pristine community (Figure 3a). This result was consistent 
across all three GO aspects for FGD (Figure 3b). GO slim categories 
additionally showed how FGD compared between species in alien–
native congeneric pairs (Figure 4). There were significant differences 
in the proportion of distinct unigenes within GO aspects between 
the alien and native Caltha congeners (Figure  4). In general, the 
alien species showed greater diversity of unigenes for the genera 
Alchemilla and Ranunculus, and the native species showed greater 
diversity for the genera Caltha and Heracleum (Table S6).

F I G U R E  2   Overall comparison of phenotypic functional trait and functional genomic trait differences for alien (pink) and native (blue) 
species. Principal component analysis (PCA) showing dispersion of (a) functional phenotypic traits (FTD), and (b) functional genomic traits 
(FGD), defined by the number of unigenes associated with each GO slim category
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F I G U R E  3   Patterns of functional 
dispersion (y-axis; unitless) calculated 
according to Laliberté and Legendre 
(2010) within the invaded (pink) and 
pristine (blue) community from (a) 
the perspective of different types of 
functional data, transcribed genes (FGD), 
and phenotypic traits (FTD), and (b) of 
transcribed genes within each GO aspect
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F I G U R E  4   FGD profiles for alien–native congeneric species pairs showing the proportion of distinct unigenes identified within each 
GO slim category (a-c): Alchemilla mollis (alien)–Alchemilla xanthochlora (native); Caltha fistulosa (alien)–Caltha palustris (native); Heracleum 
mantegazzianum (alien)–Heracleum sphondylium (native); Ranunculus caucasicus (alien)–Ranunculus aconitifolius (native); and Ranunculus 
caucasicus (alien)–Ranunculus acris (native). Results from Fisher's exact test for significant differences between the proportion of unigenes in 
native versus alien congeners are reported to the left of each panel (NS = not significant; *p-value < .05)
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Reference transcriptomes assembled for DE of native species 
sampled in both communities had an average of 129,955 scaffolds, 
mean scaffold length of 382 bp, and 95.46% alignment rate for raw 
reads (Table S7). More than 50% of BUSCOs were complete or par-
tial for all species except for Carex capillaris (Figure S1b). Although 
not significant, different trends emerged for the two different 
measures of DE for native species occurring in both communities 
(Figure 5). The magnitude in shift of log 2 fold change in DE tended 
to be lower for natives with a greater relative abundance in the in-
vaded community compared with the pristine community (Figure 5a; 
y  =  −0.0106x  −  0.0249, adj. R2  =  −0.1125, p-value  =  .7717). 
However, the fraction of significant DE gene transcripts was posi-
tively correlated with the difference in relative abundance between 
communities (Figure 5b; y = 1.4504x − 0.0896, adj. R2 = 0.1152, p-
value =  .1787). Removal of the outliers (Ranunculus acris and Carex 
capillaris for log 2 fold change and C. capillaris for the fraction of 
significant DE) did not alter results qualitatively (Figure S7; log 2 fold 
change: y = −0.1411x + 0.1068, adj. R2 = 0.0285, p-value =  .3144; 
fraction of significant DE: y = 0.1394x − 0.0238, adj. R2 = −0.1380, 
p-value = .8672).

4  | DISCUSSION

Biological invasions are one of the most visible signatures of human-
mediated impact (Essl et al., 2011; Seebens et al., 2017; Simberloff 
et al., 2013), and in the face of accelerating global change, it is of 
both ecological and economic importance to predict which spe-
cies are most likely to become invasive and their potential for fu-
ture spread (Bellard et al., 2013). In this study, we aimed to explore 
transcriptomic diversity for understanding invasion dynamics in 
an alpine streambed ecosystem. Transcriptomes assembled from 
RNA-seq data have the capacity to provide a detailed perspective 
on functional genomic diversity (FGD) by investigating patterns of 
the number of distinct transcribed genes (unigenes) and their an-
notations to biologically meaningful functional (GO slim) categories, 
or the magnitude of differential gene expression. When used in the 
comparative framework that has been established for phenotypic 

functional trait diversity (FTD) in invasion biology, we anticipated 
this novel axis of biodiversity could illuminate underlying traits that 
are cryptic or challenging to detect and measure at the phenotypic 
level. Such an approach is still in its infancy, and the purpose of the 
present work was to present a proof of concept through a pilot study. 
Below, we discuss how our findings provide interesting insights into 
the naturalization and spread of alien species into an alpine riparian 
community, considering the current limitations of community tran-
scriptomics and how these can be advanced with future research.

It is necessary to keep in mind that while the sampled species 
richness of the pristine community was lower than the invaded com-
munity, the initial survey of the pristine plot showed a greater spe-
cies richness. However, this richness was driven by many locally rare 
species at low abundance that we could not destructively sample for 
this study. Therefore, conclusions of results used to assess hypothe-
ses of invasion dynamics in this system follow from the dominant (in 
terms of abundance) members of both communities.

4.1 | Alien species contribute functional diversity 
at the community level

A primary result of our study is that the naturalization of introduced 
alien species has not caused a decrease in functional diversity in 
the invaded community compared with the pristine, as would be 
expected under a scenario of super dominance of highly competi-
tive species (Mayfield & Levine, 2010). We found greater functional 
dispersion in the invaded plot (in terms of both FTD and FGD) when 
accounting for species abundances (Figure  3a), which held for all 
different gene categories within plant transcriptomes (Figure  3b). 
Mirroring the functional dispersion results, we found more expressed 
unigenes in the invaded than the pristine community (Figure 1b), in-
dependently of differences of species richness between the com-
munities. Comparing FGD in the invaded alpine community between 
provenance categories showed that aliens are adding new traits or 
trait combinations: specifically, 807 additional unigenes that were 
not expressed in native species from either community (Figure 1b). 
Removing the addition of FGD from the alien species, the invaded 

F I G U R E  5   Relationship between 
differential expression (DE) measured 
by (a) the absolute value of median log 
2 fold change in unigene expression 
(y = −0.01062x − 0.02486, adj. 
R2 = −0.1125, p-value = .7717) 
or (b) the fraction of significantly 
differentially expressed unigenes 
(y = 1.45037x − 0.08958, adj. R2 = 0.1152, 
p-value = .1787), and the difference in 
relative abundance of each native species 
grown in the invaded versus pristine 
communities
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community still had slightly more distinct unigenes than the pristine 
community (N  =  243; Figure  1b), reflecting functional differences 
across the native community itself. Overall, alien species increased 
the species richness along with the functional diversity of the com-
munity, suggesting these species introduced novel traits with differ-
ent functions.

As for what this novel diversity looks like, mean values of phe-
notypic functional traits showed differences between provenance 
categories (Figure  S3) and PCA eigenvectors indicated FTD dis-
persion directed toward maximum height, total leaf area, and LNC 
traits (Figure 2a). FTD results suggest that novel phenotypes such as 
greater plant stature and larger total leaf area have favored the local 
invasion of alien species, in comparison with local native species; this 
pattern was particularly evident when focusing on congeneric pairs 
of alien–native species (Figure S3). Patterns of gene expression con-
firm functional space expansion in the invaded community. Genomic 
functional traits did not distinguish between provenance as clearly 
but there was still clustering between aliens and natives across the 
47 FGD GO slim features (Figure 2b), which was mainly driven by 
greater expression of genes related to molecular function (and less 
significantly cellular components; Figure  S6b). As far as we know, 
this is the first study to compare transcriptomic diversity across 
nonmodel native and alien plant species in a natural ecological com-
munity. However, our FTD results are in line with other studies in 
comparable community types. While at a global-scale communities 
postinvasion have shown mixed trends in patterns of species richness 
(Peng et al., 2019) and functional trait diversity (Pyšek et al., 2012), 
previous studies of European flora have found increased observed 
species richness following invasion (Winter et al., 2009) and func-
tional trait dispersion of alien species compared with native species 
(Divíšek et al., 2018; Hejda & de Bello, 2013) as we do here. In this 
system, we find invaders from different phylogenetic lineages bring-
ing novel phenotypes and functions, and gene expression patterns 
corroborate this with a greater diversity of genes. Therefore, pat-
terns of both FTD and FGD converge in suggesting that niche dif-
ferences, rather than only competitive fitness differences, are likely 
an important driver of plant naturalization in our study of an alpine 
streambed ecosystem.

4.2 | Congeneric species exhibit functional genomic 
similarity, but differences in certain phenotypic traits

Congeneric species pair comparisons of diversity within the invaded 
community have the potential to pinpoint critical functions driving 
invasion success. Overall, congeneric FTD mirrored differences in 
FTD between provenances—alien congeners were taller, had more 
leaves, and had a greater leaf area, while SLA, LDM, and LN were 
essentially equivalent (Figure S3b). Despite differences at the phe-
notypic level, largely similar FGD profiles found between alien and 
native congeners (Figure S8) show that species generally express the 
same set of genes. This would suggest that phenotypic convergence 
resulting from habitat filtering may be a primary mechanism for alien 

establishment success in this community. Some alien and native con-
generic species showed altered proportions of unigenes expressed 
within different biologically relevant aspects, but this was idiosyn-
cratic and significant shifts within GO aspects were only found be-
tween Caltha fistulosa (alien) and Caltha palustris (native; Figure 4). 
Other studies of transcriptomic profiles between congeneric plant 
species have found differences between alien and native counter-
parts. For instance, significant up-regulation of gene associated with 
photosynthesis, energy metabolism, protein modification, and stress 
response was found in the invasive Mikania micrantha (Asteraceae) 
compared with two native congeners (Guo et al., 2018), suggesting 
expression regulation may facilitate niche occupation or adaptation 
to novel environments in this invasive species.

It is important to acknowledge that for this type of transcrip-
tomic comparison between closely related alien and native species, 
our study only offers a very limited statistical power (with only five 
congeneric pairs) and should just be considered as a proof of con-
cept. We think more studies of this kind would be useful. Measuring 
and annotating transcriptomic diversity in congeneric native and 
alien species, with varying degrees of ecological dominance, and in a 
number of different ecological and evolutionary contexts, could pro-
vide novel insights into the functional differences between alien and 
native species, and into the adaptive genes driving invasive potential 
in introduced species.

4.3 | Differential expression of native species 
collected from each plot

We found two interesting trends when comparing gene expression 
patterns for native species occurring both in the invaded and in the 
pristine community with their difference in relative abundance. The 
magnitude of change in gene expression across the genome was 
not widely altered (Figure 5a). This could be expected for plant in-
dividuals experiencing novel and seemingly more competitive alien 
neighbors, as suggested by their taller stature and larger leaf canopy. 
However, while not significant, a positive trend was found between 
the difference in relative abundance and the fraction of significantly 
differentially expressed unigenes (Figure  5b). Native species that 
were less abundant in the invaded communities showed a low frac-
tion of significant DE. As the fraction of significant DE between com-
munities increased, abundances became comparatively greater in 
the invaded community, suggesting species that respond to invasion 
through altered gene expression are able to coexist with invaders, 
and even become more dominant, in the presence of alien species. 
This lends support to the hypothesis that trait-based processes 
(here seen through the lens of functional genomics) impact native 
community structure. But it is important to keep in mind that in this 
natural experiment, the species composition of the native commu-
nity is not completely equivalent between the invaded and pristine 
communities (i.e., certain native species are not represented in the 
invaded community), so we cannot definitely conclude that these 
patterns are driven only by the presence of the invaders. There is the 
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possibility that other native species unique to each community, or 
unmeasured environmental differences, could also be impacting dif-
ferential expression patterns observed in co-occurring natives. Still, 
there is a good chance that these changes in gene expression pat-
terns in native species are primarily driven by the local presence of 
alien species, as these are dominant in the invaded study community. 
In any case, native species did express different genes at different 
levels in the invaded community, and there was a positive (though 
not significant) trend with their relative abundance. This suggests an 
interesting mechanism: That the plasticity of gene expression in na-
tive plant species encourages persistence in the face of locally invad-
ing alien plants. Future work in a study designed within a controlled 
common garden could be used to corroborate our results and fur-
ther assess the relationship between FGD and community composi-
tion. It is tempting to propose that, as sequencing ease and capacity 
increases, the description of an organism's transcriptome could be 
routinely integrated into experimental studies of plant competition 
to determine the genetic basis of plastic phenotypic changes of plant 
species experiencing novel competitors.

4.4 | Extending the axes of functional diversity

What was accomplished with the addition of FGD? Differences be-
tween provenances were established from both types of functional 
data, but genomic functional traits did not distinguish between prov-
enance as clearly as phenotypic functional traits, at least not at the 
coarse level of comparison used in this study. While FTD might be bi-
ased toward certain traits (Lu-Irving et al., 2018), there is a large body 
of literature supporting differences in key phenotypic traits, which 
have been widely used to capture and compare species' strategies 
along ecological forces structuring vegetation, namely stress, com-
petition, and disturbances (Lavorel & Garnier, 2002; Westoby, 1998; 
Westoby & Wright,  2006). It is much more challenging to discern 
biological meaning from the FGD dataset. Even after distilling tran-
scribed genes into 47 GO slim features, we were only able to vaguely 
say that differences in FGD between provenance categories seem to 
be largely driven by the expression of genes involved in molecular 
function.

Importantly, the results of FTD and FGD at the community level 
mirror each other, illustrating that FGD was useful for detecting the 
same patterns of diversity, while providing much richer information 
at certain levels. We found a greater overall magnitude of functional 
dispersion at the community level from the perspective of FGD than 
from FTD (Figure 2a) simply due to greater data dimensionality. The 
phenotypic traits used in this study focused mainly on vegetative 
characters, and reduced the dimensions of diversity to a handful of 
traits assumed to be relevant for survival or success in a particular 
ecosystem (in this case riparian alpine). With transcriptomes, we are 
potentially targeting many more functions (or functional genomic 
“traits”), and importantly, we are agnostic about functional relevance 
a priori. Nevertheless, it must be acknowledged that the perspective 
of community transcriptomics resides in how gene annotations will 

be improved in the future, thus potentially highlighting genes with 
most ecological importance. With the current state of gene anno-
tation libraries, it remains hard to pinpoint which gene expression 
levels most influence the outcome of biotic interactions.

Interestingly, our study may show some important directions 
toward resolving this problem. Transcriptomic differences may be 
related to the phenotypic differences we observed (e.g., alien spe-
cies have larger leaves and are taller), but observational biases at 
the phenotypic level were overcome through FGD. In this study, we 
limited our description of FGD to overall unigene counts and frac-
tions of unigenes that annotated to GO slim aspects to provide a 
very general illustration of the diversity of transcribed gene prod-
ucts. Besides unigene counts and differential expression, future 
studies could measure and summarize other physical details of FGD, 
such as gene regulatory pathways, gene network modifications, or 
gene duplications. To interpret these novel expressed functions 
further, more precise taxon-specific annotations and knowledge of 
the genetic pathways associated with physiological response would 
be helpful, but would require detailed experimentally controlled 
evo–devo and genome-wide association studies (GWAS), ideally 
across different tissue types and multiple developmental stages. 
Preliminary data gathered from natural surveys such as this set the 
stage to sort out these details of cryptic FGD in future work in order 
to provide a deeper understanding of invasion dynamics.

As the study of biodiversity enters a new era of big data (Cornwell 
et  al.,  2019), this comparative functional genomic approach holds 
promise for invasion biology, and community ecology more broadly 
(Swenson & Jones, 2017). Here, we illustrated how the addition of a 
novel axis of diversity at the level of functional genomics illuminated 
cryptic changes in functional composition within a natural commu-
nity. The use of transcriptomics to understand diversity dynamics 
in ecology and evolution is in its infancy—especially within a com-
munity context—and we anticipate functional genomics will provide 
important links between molecules and morphology in community 
ecology. Some extensions of the approach outlined here could in-
clude investigating the direction of DE patterns to identify signifi-
cantly up- or down-regulated genes between closely related species 
different in their competitive ability, or even between different pop-
ulations of a single species differing in their exposure to biotic or 
abiotic stressors. The nested and networked nature of gene families, 
pathways, and the phenotypes they produce allow for an explora-
tion of the effect of (functional genomic) trait scale on ecosystem 
functioning (Carmona et al., 2016). If these preliminary findings hold, 
the distribution of functional genomic profiles and how they change 
across landscapes could significantly advance our understanding of 
the genetic basis of dynamics within ecosystems.

We recognize there are notable challenges for quantifying and 
interpreting differential gene expression with RNA-seq data (Conesa 
et al., 2016; Finotello & Di Camillo, 2015) from both biological and 
technical perspectives (Fang & Cui,  2011; Han et  al.,  2015; Ward 
et al., 2012). For instance, the ability to accurately detect biological 
variation in DE is highly dependent on true biological replicates (Liu 
et al., 2014; Todd et al., 2016), in which due to the limits of study 
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design, we were not able to implement here. In this study, gene ex-
pression was quantified from leaf tissue, and patterns of FGD could 
differ depending on the organ or developmental stage sampled. As 
more cost-effective techniques for quantifying gene expression 
continue to become available, comparing expression profiles across 
multiple individuals of nonmodel organisms is becoming more fea-
sible (Marx et al., 2020). Interpretation of FGD patterns rests upon 
functional annotation of expressed unigenes, yet annotations are 
based on model organisms, so many taxon-specific, ecologically rel-
evant genes may not be determined (Todd et al., 2016). Additionally, 
there are many challenges for accurately annotating genes, such 
as distinguishing orthologous genes and gene families from paral-
ogs. Improvements upon annotation tools, including phylogenetic 
approaches to identify one-to-one orthologs among transcripts 
(Huerta-Cepas et  al.,  2016; Yang & Smith,  2014), are promising 
for making future comparisons of homologous functional changes 
in nonmodel species that could be comparable across diverse tax-
onomic scales, within and between ecosystems. Many different 
strategies have been developed for analyses of transcriptomes from 
RNA-seq data for nonmodel plants (e.g., da Fonseca et  al.,  2016; 
Unamba et al., 2015; Ward et al., 2012), and as more transcriptomes 
(e.g., One Thousand Plant Transcriptomes Initiative, 2019) and ge-
nomes (e.g., Kersey, 2019) are added to the toolbox along with their 
annotations, these approaches will only improve. We foresee that 
these recent and upcoming advances of functional genomics will 
open up new research avenues to explore the genetic basis of eco-
logical dynamics, such as biological invasions, response to climate 
change, adaptation to pollutants, or any other relevant force cur-
rently driving human impacts on the biosphere.
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