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Diabetes is a global health problem that is caused by impaired insulin production from pancreatic 𝛽-cells. Efforts to regenerate
𝛽-cells have been advancing rapidly in the past two decades with progress made towards identifying new agents that induce 𝛽-
cells regeneration. ANGPTL8, also named betatrophin, has been recently identified as a hormone capable of inducing 𝛽-cells
proliferation and increasing 𝛽-cells mass in rodents. Its discovery has been cherished as a breakthrough and a game changer in
the field of 𝛽-cells regeneration. Initially, ANGPTL8 has been identified as atypical member of the angiopoietin-like protein family
as a regulator of triglyceride in plasma through its interaction with ANGPTL3 and its regulation of lipoprotein lipase activity. In this
review, we will review literature on the proposed role of ANGPTL8 in 𝛽-cells proliferation, the controversy regarding this role, and
the emerging data questioning its involvement in 𝛽-cells proliferation. Additionally we will discuss new clinical data that describes
its role in diabetes and the putative therapeutic targeting of this protein.

1. Introduction

In the past decade, diabetes has reached an epidemic stage
affecting millions of people worldwide [1]. The majority of
people are affected by type 2 diabetes (T2D) that is caused by
impaired insulin secretion and/or insulin resistance that leads
to improper blood glucose metabolism. Obesity associated
insulin resistance is one of the main causes behind the
progressive decline in insulin production by the pancreatic
𝛽-cells that ultimately leads to T2D [1–3]. Overall, insulin
resistance results in increased hepatic glucose production,
reduced muscle glucose uptake, and increased level of free
fatty acids in plasma under fasting conditions amongst many
more physiological changes [1, 3]. To combat insulin resis-
tance, 𝛽-cells increase their insulin production to cope with
the increased insulin demand before reaching a threshold,
where they will not be able to cope with further increase
in insulin demand. A myriad of factors are involved in
the 𝛽-cells failure including aging, oxidative stress, genetic
factors, lipotoxicity and glucotoxicity, and inflammation [1,
3]. Various types of medications are used to control plasma

glucose level by targeting a number of biochemical pathways
involved in decreasing hepatic glucose production, increasing
insulin production, and increasing insulin sensitivity or
direct insulin injection [1, 3]. In combination with lifestyle
intervention these drugs can help diabetic patients reach
a reasonable glycemic control; however, reaching a full
glycemic control similar to healthy 𝛽-cells is very difficult
to achieve [1, 2]. As a result, many studies are interested
in identifying new and novel mechanisms to induce 𝛽-
cell proliferation, which is valued as the ultimate treatment
for both type 1 and type 2 diabetes. Therefore, numerous
strategies and alternative cell sources have been utilized to
generate 𝛽-like cells.

2. Beta-Cell Regeneration and
the Identification of ANGPTL8

Current protocols for 𝛽-cell regeneration focus on the use of
directed differentiation of embryonic or induced pluripotent
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stem cells into insulin producing cells. Proliferation of exist-
ing 𝛽-cells, reprograming nonpancreatic, or dedifferentiation
of pancreatic non-beta-cells into beta-like cells approaches
are also being experimented [4–7]. Β-cell mass maintenance
is a dynamic process that keeps modifying depending on
the metabolic demand throughout life. Β-cell proliferation
rates progress during embryonic development, after that cells
expansion declines at postnatal stage followed by gradual
failing at maturity [4–7]. Interestingly, studies have detected
an increase in 𝛽-cell mass during pregnancy and obesity [8–
12], suggesting that new 𝛽-cells can form during adulthood.
Yet, the main question remains about the mechanism that
replenishes the 𝛽-cell reservoir; does it occur through pre-
existing beta-cells proliferation or through the existence of
progenitor cells? Current studies have detected an increase
in 𝛽-cell mitotic activity in response to pancreatic injury or
experimental conditioned 𝛽-cells genetic ablation suggests
that the replication process plays a central role inmaintaining
𝛽-cell mass [13–17]. In human, 𝛽-cell neogenesis is not
conclusive due to the fact that observations are drawn from
pancreatic autopsy and surgical resection [18–20]. However,
some experimental genetic lineage tracing and transgenic
animal model approaches indicate that the progenitor cells
are a subpopulation of the pancreatic duct epithelium [18]
and/or centroacinar cells [21, 22]. On the other hand, new
observations revealed that 𝛽-cell neogenesis is not decisive,
implying the need for further investigations in the field
[23–25]. On the other hand, in response to severe 𝛽-cell
loss, interconversion of pancreatic endocrine cells has been
reported in rodents [26, 27]. Several studies in rodents
confirm that alteration in glucagon signaling enhanced alpha-
cell regeneration, islets enlargement, and transdifferentiation
into insulin producing cells [28, 29]. Nevertheless, this
mechanism does not contribute to 𝛽-cell replenishment in
diabetic animal models suggesting a significant role, but not
limited, for glucagon in the transdifferentiation mechanism
that is yet to be fully clarified [27, 30–32].

Overall, 𝛽-cell mass enrichment, through prolifera-
tion/neogenesis or interconversion, is regulated through a
network of internal and external biochemical pathways. Dur-
ing the past several decades, studies were directed towards
understanding the molecular mechanisms that influence 𝛽-
cell mass. Several hormones were reported to amplify 𝛽-
cell number including growth hormone [33], prolactin [34],
placental lactogen [35], serotonin [36], glucagon like peptide-
1 (GLP1) [37], insulin-like growth factor I (IGF-1) [38], and
their prospective receptors, best reviewed in [39]. During
pregnancy, the somatolactogenic hormonesmaintain normal
glucose hemostasis through tyrosine signaling cascade acti-
vation, which causes a rise in intracellular Ca2+ and enhance-
ment of insulin secretion [40]. On the other hand, GLP1
and IGF-1 increase cytosolic Ca2+ through protein kinase A
(PKA) and mitogen-activated protein kinase (MAPK) signal
transduction pathway, respectively [41, 42]. Recently, ghrelin
has been reported to enhance 𝛽-cell mass [43], despite its
antiapoptotic activity mediated by activated phosphatidyli-
nositol 3-kinase (PI3K)/Akt and ERK1/2 signaling [44]. The
epidermal growth factor betacellulin is also reported to

mediate 𝛽-cell neogenesis through the activation of ErbB-1
and ErbB-2 receptors and the upregulation of IRS1 [45].

One of the most recently identified inducers of 𝛽-cell
proliferation was a liver and adipose tissues secreted protein
named betatrophin. It increases 𝛽-cell replication and 𝛽-cell
mass in insulin resistance mouse model [49]. This hormone
was identified after the authors injected mice with S961
peptide, an insulin receptor antagonist, generating an insulin
resistance mouse model [49]. Using microarray technology
the authors were able to identify genes that were upregu-
lated as a result of this injection including betatrophin. Its
overexpression was found to increase 𝛽-cell proliferation and
mass [49]. Betatrophin is one of the names given to C19orf80,
which is also called Hepatocellular Carcinoma-Associated
Gene TD26, Refeeding Induced Fat and Liver (RIFL) [46],
Lipasin [54], and ANGPTL8 [48]. ANGPTL8 will be mostly
used hereafter in this review.

3. ANGPTL8 Role in Lipid Metabolism

Prior to its identification as a hormone involved in 𝛽-
cell proliferation, ANGPTL8 was identified by a number of
groups as a nutrient and heat regulated protein as well as
a regulator of lipid metabolism [46, 48, 54, 55]. Ren et al.
were one of the first to show that ANGPTL8 or RIFL, as they
referred to it, was induced in 3T3-L1 cells during adipogenesis
and its knockdown leads to reduction in adipogenesis [46].
A summary of selected studies is given in Table 1. ANGPTL8
effect on adipogenesis was also shown in primary mouse and
human adipocytes [46]. They further looked at its transcript
expression level in differentmouse tissues showing its highest
expression level in white and brown adipose tissues as well
as the liver similar to what was later shown by the other
groups [46, 48, 54, 55]. ANGPTL8 expression was induced
in both adipose tissues and liver by feeding as well as insulin
treatment [46]. Similarly, its level was higher in ob/ob obesity
mouse model compared to wild type [46]. Quagliarini et al.
gave this protein the name ANGPTL8 based on its sequence
similarity to members of the angiopoietin-like protein family
and showed that it interacted with ANGPTL3 and regulated
TG plasma level in mice [48]. They also showed that a
nonsynonymous SNP (R59W)was associatedwith lower LDL
and HDL cholesterol without affecting the TG level [48]. We
have recently reported that this variant was associated with
increased fasting plasma glucose in an Arab population [56].
Concomitantly, Zhang showed that ANGPTL8 had sequence
similarity to members of the angiopoietin-like protein family
and referred to it as Lipasin due to its inhibition of lipoprotein
lipase (LPL) activity [54]. Collectively, the previous studies
demonstrated that ANGPTL8 was involved in regulating TG
plasma level through its interaction with ANGPTL3 and
inhibition of LPL activity [46, 48, 54, 55].

4. Role of ANGPTL8 in 𝛽-Cell Proliferation

The identification of ANGPTL8 or betatrophin as a novel 𝛽-
cell mitogen by Yi et al. has attracted tremendous attention
from the scientific community as well as the media. It was
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Table 1: Selected early studies investigating the role of ANGPTL8 in obesity and diabetes.

Study design Findings Refs

Study was designed to identify new genes involved in lipid
metabolism based on Lexicon-Genentech knockout database of
genes that was generated for 3T3-L1 in vitro adipogenesis.

One of the first reports to study the role of ANGPTL8 or RIFL
as they called it in lipid metabolism and highlighted its role in
adipocyte differentiation and its similarity to ANGPTL3. They
also showed that RIFL was induced by insulin.

[46]

Identification of lipid metabolism genes using transcriptomic
analysis on liver and fat tissues extracted from mice treated with
a high-fat diet or fasting using RNA-seq experiments.

ANGPTL8 or Lipasin was identified as a nutritionally regulated
protein produced by the liver that regulates plasma lipid
contents by affecting lipoprotein lipase activity.

[47]

Investigation of the ANGPTL8 role in lipid metabolism and
identification of its variant in humans.

Identification of ANGPTL8 as a regulator of triglyceride in
plasma through its interaction with ANGPTL3 that regulates
the activity of lipoprotein lipase activity. They also identified an
ANGPTL8 variant that was associated with reduced LDL and
HDL levels.

[48]

Identification of insulin resistance related genes by inducing
insulin resistance via treatment with S961 insulin receptor
antagonist.

Identification of betatrophin as insulin resistance induced genes
in the liver and white and brown adipose tissues in mice and
humans. Its expression was increased over threefold in the liver
of both ob/ob and db/dbmice. It was also demonstrated to
increase beta-cell proliferation and mass.

[49]

Use ANGPTL8 knockout model to investigate the role of this
protein in beta-cell proliferation and glucose metabolism.

Based on their data they concluded that ANGPTL8 was not
involved in controlling beta-cell growth in mice unlike what has
been previously reported by Yi et al. [49].

[50]

Study the plasma level of ANGPTL8 in 33 people with T1D and
their controls. ANGPTL8 was increased in subjects with T1D. [51]

Investigate changes in the level of ANGPTL8 in a large cohort of
1049 nondiabetic people and 556 people with T2D.

Increased ANGPTL8 in obese and T2D people. ANGPTL8 was
positively associated with fasting blood glucose, HOMA-IR, and
duration of diabetes.

[52]

Compare plasma level of ANGPTL8 in normal people with
various glycemic indices as well as T2D people with their proper
controls.

One of the only studies to show that ANGPTL8 level was
decreased in obese people as well as people with T2D.This study
used a different ELISA kit to measure plasma level of ANGPTL8
than what has been used by the other studies.

[53].

hailed as a next-generation drug for diabetes. In their paper,
Yi and his coworkers showed that S961 induced insulin resis-
tance and was able to upregulate the expression of ANGPTL8
gene in the liver and adipose tissue. This upregulation of
ANGPTL8 expression by insulin resistance was hypothesized
to be a mechanism to increase insulin production through
increasing 𝛽-cell proliferation. Overexpression of ANGPTL8
resulted in a 17-fold increase in 𝛽-cell proliferation and a
threefold increase in 𝛽-cell mass [49]. As a result, mice
overexpressing ANGPTL8 had improved glucose tolerance
and lower fasting blood glucose [49]. ANGPTL8 level was
also increased in ob/ob and db/dbmouse models and during
gestation in mice. Accordingly, it has been concluded by the
authors that ANGPTL8 was capable of inducing 𝛽-cell mass
and improving glucose tolerance and potentially augmenting
or replacing insulin injections [49]. Even though the data
was very promising, further validation such as testing the
regenerative effect of betatrophin on aged and diabetic mice
and human studies demonstrating the beneficial effect of
ANGPTL8 on human pancreatic 𝛽-cells are deemed neces-
sary [57, 58].

These conclusions were questioned by other studies that
showed mice lacking ANGPTL8 had normal glucose and
insulin tolerance [59]. Using ANGPTL8 knockout mouse
model, Wang et al. showed that ANGPTL8 was required to

direct free fatty acid into adipose tissue for storage after food
intake through regulating the activity of LPL. However, lack
of ANGPTL8 did not affect glucose and insulin tolerance and
did not show significant changes in glucose homeostasis [59].
Even though their data failed to show a role for ANGPTL8
in glucose homeostasis they did not rule out the possibility
that supraphysiological concentrations of ANGPTL8 might
be able to induce 𝛽-cell proliferation at the potential cost of
inducing hypertriglyceridemia [59].

In order to test the effect of ANGPTL8 on human 𝛽-cells,
Jiao et al. treated immune-deficient NOD-Scid mice with
S961 to induce insulin resistance and ANGPTL8 expression
[60]. Treating these mice with S961 resulted in a significant
increase in ANGPTL8 expression as well as 𝛽-cell replica-
tion in the native as well as the ectopically transplanted
mice islets under the kidney capsule. However, treatment
did not cause any increase in 𝛽-cell proliferation using
human transplanted islets [60]. Even though they did not
address whether mouse produced ANGPTL8 was capable
of binding to its unidentified receptor on the human 𝛽-
cells, they showed that the increased ANGPTL8 level was
not capable of inducing 𝛽-cell proliferation in humans [60].
Furthermore, Gusarova et al. tested the effect of ANGPTL8
knockout on 𝛽-cell proliferation and reported that 𝛽-cell
proliferation was not affected by the lack of ANGPTL8
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in response to diet induced insulin resistance or the S961
insulin receptor antagonist treatment. They also showed that
increased ANGPTL8 expression did not increase 𝛽-cell mass
or improved glucose homeostasis [50]. However, they further
confirmed that TG level was reduced in knockout mice and
increased by ANGPTL8 overexpression [50]. Later on, Yi
et al. have showed that they were not able to reproduce
their original data and cited huge variation of the effect
of ANGPTL8 injection on 𝛽-cell proliferation. In conclu-
sion, it has been shown that ANGPTL8 induction of 𝛽-cell
proliferation in mice was not reproducible and its deletion
did not affect 𝛽-cell proliferation as suggested earlier. These
reports raise major concerns regarding new inducers of 𝛽-
cell proliferation and ask for more stringent measures to
ensure their accuracy. Some of thesemeasures include testing
these mitogenic substances on human islets to test for 𝛽-
cell proliferation. Additionally, therapeutically relevant levels
of human 𝛽-cell proliferation ought to be achieved before
rushing into conclusions as previously suggested [61].

5. ANGPTL8 Role in Diabetes

Irrespective of its role in 𝛽-cell proliferation, initial studies
on ANGPTL8 reported that it was induced by insulin [46,
49]. Other human studies also showed that ANGPTL8 was
positively associated with insulin [52, 62–64]. On the other
hand, its plasma level in diabetes has been measured in
multiple cohorts [51–53, 62, 64–72]. Initial mice studies
showed that ANGPTL8 level was increased in ob/ob mice as
well as the diabetic mouse model db/db [49]. In humans,
Espes et al. showed that circulation level of ANGPTL8 was
increased in T1D subjects [51]. Nonetheless, ANGPTL8 level
did not correlate with an increase in C-peptide level in T1D
[51]. Similarly, in another study, Espes et al. also showed that
ANGPTL8 level was increased in T2D subjects. Other studies
showed that ANGPTL8 level was increased in T2D as well
[64, 67, 68, 70].

Using a large sample set of T2D and normal subjects, we
have recently reported that ANGPTL8 was increased in T2D
subjects [52]. Comparing the level of ANGPTL8 in 556 T2D
subjects with that of 1047 nondiabetic subjects we showed
that ANGPTL8 level was more than three times higher in
T2D subjects [52]. ANGPTL8 level was associated with blood
glucose, insulin, and insulin resistance asmeasured by home-
ostatic model assessment-insulin resistance (HOMA-IR) in
the nondiabetic subjects only. No association was observed
with these factors in the T2D subjects [52]. Furthermore,
we have showed that ANGPTL8 level was associated with
increased C-peptide level in the nondiabetic subjects but
not the T2D subjects. Taken together, our data revealed
that the increase in ANGPTL8 in T2D was not increasing
insulin production in the T2D subjects [62]. On the other
hand, other studies showed that ANGPTL8was not increased
in T2D subject and rather decreased [53, 63]. Recently, Li
et al. have published a meta-analysis that investigated the
association between ANGPTL8 level and T2D based on a
total of nine studies [73]. Based on their analysis, ANGPTL8
level was significantly higher in subjects with T2D compared

to nondiabetics [73]. Similarly, ANGPTL8 expression level
was increased in subjects with gestational diabetes [74–77].
ANGPTL8 level was also found to be increased in subjects
with metabolic syndrome [71]. One of the main causes for
differences in these results has been suggested to be the
ELISA kits used. Fu et al. tested both full length ELISA
kit from Wuhan EIAAB Science Co. (catalogue number
E1164H) and C-terminal ELISA kit recognizing the region
from 139 to 198 amino acids from Phoenix Pharmaceuticals
(catalogue number EK-051-55) [78]. Both kits were found
to be accurate at measuring plasma level of ANGPTL8 and
showed high correlation [78]. However, the studies showing
decreased plasma level in diabetes used a third kit from
ELISA kit manufactured by CUSABIO/Aviscera Bioscience
whichmight have been the cause for the discrepancy [53, 63].

6. Conclusion

Overall, ANGPTL8 role in lipid metabolism is well estab-
lished, through its interaction with ANGPTL3 and regulation
of LPL activity to maintain blood TG content. It is also well
established that ANGPTL8 does not play a major role in 𝛽-
cell proliferation as proposed initially. Its role in diabetes
and obesity however remains elusive and further studies are
still required to understand its involvement in metabolic
diseases. New data is emerging to link ANGPTL8 to other
diseases such as cancer and polycystic ovary syndrome [79]
will increase our knowledge of the functional role of this
hormone. In conclusion, 𝛽-cell regeneration remains an ulti-
mate goal in diabetes treatment and detailed understanding
of their biology and agents that manipulate their function
is required. Nonetheless, human studies as well as more
rigorous experimental design are required to test for new
agents associated with 𝛽-cell regeneration to avoid further
setbacks similar to what has been observed with betatrophin.
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