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ABSTRACT

Objectives: To develop computed tomography (CT)-based models to increase the
prediction accuracy of spread through air spaces (STAS) in clinical-stage T1N0 lung
adenocarcinoma.

Methods: Three cohorts of patients with stage T1N0 lung adenocarcinoma
(n ¼ 1258) were analyzed retrospectively. Two models using radiomics and deep
neural networks (DNNs) were established to predict the lung adenocarcinoma
STAS status. For the radiomic models, features were extracted using PyRadiomics,
and 10 features with nonzero coefficients were selected using least absolute
shrinkage and selection operator regression to construct the models. For the
DNN models, a 2-stage (supervised contrastive learning and fine-tuning) deep-
learning model, MultiCL, was constructed using CT images and the STAS status
as training data. The area under the curve (AUC) was used to verify the predictive
ability of both model types for the STAS status.

Results: Among the radiomic models, the linear discriminant analysis model ex-
hibited the best performance, with AUC values of 0.8944 (95% confidence interval
[CI], 0.8241-0.9502) and 0.7796 (95% CI, 0.7089-0.8448) for predicting the STAS
status on the test and external validation cohorts, respectively. Among the DNN
models, MultiCL exhibited the best performance, with AUC values of 0.8434
(95% CI, 0.7580-0.9154) for the test cohort and 0.7686 (95% CI, 0.6991-0.8316)
for the external validation cohort.

Conclusions: CT-based imaging models (radiomics and DNNs) can accurately
identify the STAS status of clinical-stage T1N0 lung adenocarcinoma, potentially
guiding surgical decision making and improving patient outcomes. (JTCVS Open
2024;21:290-303)
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CENTRAL MESSAGE

CT imaging models accurately
predict STAS status in clinical-
stage T1N0 lung adenocarci-
noma, aid decision making
regarding the extent of anatomic
lung resection, and improve pa-
tient outcomes.
PERSPECTIVE
Current surgical approaches for clinical-stage
T1N0 lung adenocarcinoma with STAS require
refinement because of the worse prognosis asso-
ciated with sublobectomy compared to lobec-
tomy. Our CT-based radiomic and DNN models
improve prediction accuracy, guiding the surgical
extent and advancing personalized treatment
strategies.
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DNN ¼ deep neural network
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OR ¼ odds ratio
OS ¼ overall survival
RFS ¼ recurrence-free survival
STAS ¼ spread through air spaces
SZPH ¼ Shenzhen People’s Hospital
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Among the diverse histologic manifestations of lung cancer,
lung adenocarcinoma stands out as the most frequently
occurring subtype. Surgical excision is considered the
gold standard treatment for early-stage lung cancer
(T1N0M0, ninth edition tumor-node-metastasis stage) and
boasts a 5-year survival rate exceeding 80%.1 However,
studies have indicated that 13% to 23% of patients relapse
after surgery,2,3 which could be attributed to the distinctive
invasion pattern of the tumor.

In 2015, the World Health Organization formally intro-
duced spread through air spaces (STAS) as a novel lung
adenocarcinoma invasion mechanism.4 STAS refers to mi-
cropapillary clusters, solid nests, or single cells extending
past the tumor margin into the air spaces of the surrounding
lung parenchyma. Recent studies suggest that the presence
of STAS correlates with an unfavorable prognosis in early-
stage lung cancer, especially for patients in stage I; howev-
er, its prognostic value appears to be less significant for pa-
tients in stages II and III.5,6

According to results from the Japan Clinical Oncology
Group (JCOG 0804),7 JCOG 0802,8 JCOG 1211,9 and Can-
cer and Leukemia Group B 140503,10 an increasing number
of patients with early lung cancer involving tumors 1 to
3 cm in size (clinical stage T1N0) will undergo sublobec-
tomy. However, research suggests that patients with
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STAS-positive status experience a notably reduced
recurrence-free survival (RFS) rate when undergoing
sublobectomy compared to lobectomy.11-14 In clinical-
stage T1N0 lung adenocarcinoma, the STAS positivity
rate ranges from 11.6% to 39.5%.12,15-19 Preoperative or
intraoperative identification of STAS can optimize the
surgical modality and improve the prognosis for affected
patients. Although intraoperative frozen section detection
of STAS has limitations owing to its low sensitivity,20 the
pathologic diagnosis of STAS remains vital. At present,
STAS detection still relies on a postoperative paraffin bi-
opsy; therefore, noninvasive preoperative STAS identifica-
tion can facilitate the correct selection of patients eligible
for sublobectomy.
Computed tomography (CT) is a valuable noninvasive

diagnostic tool for various cancers, including lung adeno-
carcinoma, enabling accurate diagnosis, staging, and moni-
toring. CT imaging offers detailed visualizations of tumor
tissue, capturing morphologic and textural details,21

including many computational features not perceived by
the human eye.22 This suggests the possibility of preopera-
tive identification of stage IA adenocarcinoma STAS from a
radiomic perspective.23,24 Two primary STAS recognition
methods using CT images are currently available, one based
on the construction of a radiomic model for STAS identifi-
cation25-28 and the other involving the use of a 3D
convolutional neural network model.29 In addition to CT
models, nomograms30 based on clinical characteristics
and radiologic features have been used for STAS prediction;
however, these models lack effective STAS status identifica-
tion in clinical-stage T1N0 lung adenocarcinoma, external
validation efficacy, and the prospect of widespread clinical
use. Accordingly, an accurate, noninvasive, and easy-to-use
preoperative STAS recognition model is needed.
The objective of the present study was to develop novel

approaches using CT image-based models (radiomics and
deep neural networks [DNNs]) for increasing the predictive
accuracy of clinical-stage T1N0 lung adenocarcinoma
STAS status. The noninvasiveness and discovery of imaging
features invisible to the human eye are advantages of both
methods, contributing to better preoperative STAS status
identification.
MATERIALS AND METHODS
Patient Selection

In compliance with the Declaration of Helsinki and applicable

local laws, this study was approved by the Scientific Research Ethics
Dongmen North Rd, Luohu District, Shenzhen, China (E-mail: 13798314779@

163.com).
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Primary cohort
Model construction

Pathological IA stage patients from SZPH
assessed for eligibility between March 2014

and June 2022 (N = 1070)

Exclusion

Lack of CT images (N = 101)
Preoperative neoadjuvant
therapy (N = 10)
Lack of pathological sections for
STAS detection (N = 8)
Incomplete follow-up datas
(N = 18)

Patients ultimately included in the study
(N = 933)

4 : 1

Training cohort (N = 747) Testing cohort (N = 186)

External validation cohort

Pathological IA stage patients from
GDPH assessed for eligibility between

January 2015 and November 2019
(N = 510)

Exclusion
Lack of CT images (N = 168)
Lack of pathological sections
for STAS detection (N = 10)
Incomplete follow-up datas
(N = 7)

Patients ultimately included in the study
(N = 325)

FIGURE 1. Recruitment flowchart for owed in this study.
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Committees of both Shenzhen People’s Hospital (SZPH) (LL-KY-

2021916-01) and Guangdong Provincial People’s Hospital (GDPH)

(GDRHEC2019726H). Additionally, informed consent was secured from

exempted subjects from the Ethics Committee. Only nonidentifiable infor-

mation was used in this study.

The primary cohort comprised 933 patients who underwent curative sur-

gical procedures at SZPH between March 2014 and June 2022. An inde-

pendent validation cohort of 325 patients treated at GDPH between

January 2015 and November 2019 was identified. Figure 1 illustrates the

recruitment process for this study. Inclusion criteria were (1) existence of

postoperative pathology indicating a primary lung malignancy, (2) postop-

erative pathologic diagnosis of lung adenocarcinoma, (3) postoperative

pathological T stage of pT1 (P � 3 cm), and (4) age>18 years. Exclusion

criteria included (1) postoperative pathology, including lymph node metas-

tasis and metastasis from other sites; (2) incomplete clinical pathologic

data or follow-up; (3) preoperative neoadjuvant therapy or postoperative

adjuvant therapy; (4) history of other malignant tumors within 5 years;

and (5) no tumor slices available for review.
FIGURE 2. Definition of STAS-positive in histologic examination:

STAS-positive was defined as the presence of tumor cells in the lung space

beyond the margin of the primary tumor (310 objective lens,310 magni-

fication). A, STAS-positive case (blue box, 380 magnification) and B,

STAS-negative.
Histopathologic Evaluation and Clinical
Characteristics

After surgical resection, all specimens were embedded in paraffin, fully

fixed with a 4% formaldehyde solution, and then processed into conven-

tional pathologic staining sections through dehydration, embedding,

sectioning, and staining. Two pathologists (Drs You and Peng) reviewed

all tumor biopsies. In cases of disagreement, a third pathologist (Dr

Wen) was consulted. All pathologists had>3 years of expertise. Their as-

sessments adhered to the STAS definition of theWorld Health Organization

to determine a consensus STAS status; additional details are provided in the

Online Data Supplement. Representative histopathologic samples illus-

trating STAS (þ) and STAS (�) nodules are presented in Figure 2.

Patient medical records were reviewed to gather clinical characteristics,

including age, sex, smoking status, pathologic staging, location, tumor size,

histologic type, lung adenocarcinoma grade, micropapillary/solid �1%,

surgical method, STAS status, and recurrence/metastasis. The lung adeno-

carcinoma grade31 is classified as follows: grade 1, lepidic predominant tu-

mor; grade 2, acinar or papillary predominant tumor, both with no or<20%

high-grade patterns; or grade 3, any tumor with �20% high-grade pattern

(solid, micropapillary, or complex gland).
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CTAcquisition and Segmentation
The CT image acquisition process and the intraobserver (reader1 twice)

and interobserver (reader1 vs reader2) reproducibility evaluations are

described in the Online Data Supplement.

Data Preprocessing and Splitting
The thoracic CT images were reconstructed into a 512 3 5123 N ma-

trix, with N denoting the total number of image slices. This reconstruction

strategy resulted in variable pixel spacing and slice thickness among pa-

tients. B-spline interpolation was applied to standardize the spacing along
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the 3 dimensions, resulting in a fixed resolution of 1 3 1 3 1 mm3. This

approach mitigates the effects of differing scales on the classification per-

formance. Multiple 3D nodule image blocks of different sizes were

sampled around the tumor center, including 16 3 16 3 16,

32 3 32 3 32, and 48 3 48 3 48 mm3, to extract both the local features

of the tumor and the global features of its surrounding area. All images

were uniformly resized to a fixed size of 32 3 32 3 32 voxels and served

as the neural network input.

The primary cohort was randomly partitioned into training and testing

cohorts at a 4:1 ratio, ensuring a consistent proportion of STAS-negative

and STAS-positive patients across both cohorts. The external validation

cohort consisted of an independent cohort of 325 patients sourced from

GDPH.

STAS Status Prediction with Radiomics and DNNs
The comprehensive structure for building the radiomic model, as illus-

trated in Figure 3, A, encompassed feature extraction, feature selection,

model training, and model evaluation. In addition to radiomics, we propose

a 2-stage training strategy, MultiCL, which includes a supervised contras-

tive learning stage and a fine-tuning stage. The general scheme for these 2

stages is depicted in Figure 3, B. The STAS prediction process using the

radiomic and DNN models is presented in the Online Data Supplement.

Statistical Analysis
Statistical analyses were conducted using R version 3.6.3 (R Foundation

for Statistical Computing) and Python version 3.7 (https://www.python.

org/). Continuous variables are expressed as mean � standard deviation

and range, and qualitative variables are expressed as raw number, propor-

tion, and percentage. The Kolmogorov-Smirnov test was used to assess the

normality of the continuous variables. If the variable followed a normal dis-

tribution, the t test was used; otherwise, theMann-WhitneyU test was used.

The c2 test was applied to the qualitative variables. The receiver operating

characteristic curve and area under the curve (AUC) were computed to

assess the model performance.

The RFS and overall survival (OS) curves were derived from all avail-

able follow-up data utilizing Kaplan-Meier estimates. These curves were

subsequently compared using a log-rank test. Logistic regression analysis

was conducted for both univariate andmultivariate analyses. The follow-up

data and endpoints are presented in the Online Data Supplement.
RESULTS
Patient Baseline Characteristics

This study included 933 patients with pathologically
confirmed stage T1N0 lung adenocarcinoma at SZPH.
Among them, 838 patients had no STAS and 95 had
STAS. The basic clinical data for the training and testing co-
horts are presented in Table 1. Notably, the testing cohort
and training cohort exhibited comparable baseline
characteristics.

The basic clinical characteristics of stage T1N0 lung
adenocarcinoma regarding STAS status are presented in
Table 2. According to the Kaplan-Meier method and log-
rank test in the survival analysis, the RFS rate was 98.7%
and the OS rate was 99.7% for the entire primary cohort.
The 5-year RFS rate was statistically significantly higher
for the STAS-negative group compared to the STAS-
positive group (97.2% vs 91.4%; P<.001). Similarly, the
5-year OS rate was statistically significantly higher in the
STAS-negative group (100% vs 94.7%; P<.001). In the
validation cohort, the RFS rate was 96.0% and the OS
rate was 97.8%. Analogously, the 5-year RFS rate was sta-
tistically significantly higher for the STAS-negative group
compared to the STAS-positive group (98.1% vs 84.8%;
P< .001), as was the 5-year OS rate (99.3% vs 88.7%;
P < .001). The survival analysis results are shown in
Figure 4.
The results of the univariate analyses based on logistic

regression show that sex, age, smoking status, tumor size,
lung adenocarcinoma grade, and micropapillary/solid
�1% were significantly correlated with the STAS-
positive condition (P<.01). Onmultivariate analysis, tumor
size, lung adenocarcinoma grade, and micropapillary/solid
�1% were correlated with the STAS-positive condition
(P<.01). The results of the univariate and multivariate an-
alyses are presented in Online Data Supplement.

Predictive Performance of Radiomic Models for
STAS Status
The diagnostic efficiencies of the 9 machine learning

models are presented in Online Data Supplement. The
AUCs for the training, testing, and external validation co-
horts were calculated, as shown in Figure 5, A. The Ada-
Boost model achieved the highest diagnostic efficiency in
the training cohort, with an AUC of 0.9678 (95% CI,
0.9466-0.9848). The linear discriminant analysis (LDA)
model achieved the highest diagnostic efficiency among
the 9 machine learning models in the testing and external
validation cohorts. The AUC values of the LDA model for
the testing and external validation cohorts were 0.8944
(95% CI, 0.8241-0.9502) and 0.7796 (95% CI, 0.7089-
0.8448), respectively.

Predictive Performance of DNN-Based Models for
STAS Status
The diagnostic efficiencies of the DNN-based models are

presented in Online Data Supplement. The MultiCL model
achieved the highest diagnostic efficiency, with AUC values
of 0.9995 (95% CI, 0.9986-1.0000) for the training cohort,
0.8434 (95% CI, 0.7580-0.9154) for the testing cohort, and
0.7686 (95% CI, 0.6991-0.8316) for the external validation
cohort, as shown in Figure 5, B.

Clinical Application
The results of decision curve analysis conducted for the

LDA and MultiCL models (Online Data Supplement) indi-
cate that when the threshold probability exceeded 5%, the
MultiCL model was advantageous for STAS prediction
compared to treating all or none of the patients within
certain risk threshold ranges.

DISCUSSION
In this study, we developed novel approaches using 2

machine learning models—radiomics and DNNs—for
JTCVS Open c Volume 21, Number C 293
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TABLE 1. Basic clinical characteristics of the training and testing cohorts

Characteristic All patients (N ¼ 933) Training cohort (N ¼ 747) Testing cohort (N ¼ 186) P value

Age, y, mean � SD 53.14 � 13.00 53.02 � 12.93 53.60 � 13.23 .589

Sex, n (%)

Male 359 (38.48) 290 (38.82) 69 (37.10) .665

Female 574 (61.52) 457 (61.18) 117 (62.90)

Smoking status, n (%)

Yes 133 (14.26) 106 (14.19) 27 (14.52) .909

No 800 (85.75) 641 (85.81) 159 (85.49)

Pathological staging, n (%)*

Tis 107 (11.47) 20 (10.75) 87 (11.64) .707

T1mi 157 (16.83) 36 (19.35) 121 (16.20)

T1a 300 (32.15) 53 (28.50) 247 (33.07)

T1b 307 (32.91) 64 (34.41) 243 (32.53)

T1c 62 (6.64) 13 (6.99) 49 (6.56)

Location, n (%)

LUL 244 (26.15) 201 (26.91) 43 (23.12) .339

LLL 132 (14.15) 105 (14.06) 27 (14.52)

RUL 320 (34.29) 250 (33.47) 70 (37.63)

RML 73 (7.82) 54 (7.23) 19 (10.22)

RLL 164 (17.58) 137 (18.34) 27 (14.52)

Tumor size, n (%)

�1 cm 548 (58.74) 443 (59.30) 105 (56.45) .779

1-2 cm 323 (34.62) 255 (34.14) 68 (36.56)

>2-3 cm 62 (6.65) 49 (6.56) 13 (6.99)

Histologic type, n (%) .007

AIS 107 (11.47) 87 (11.65) 20 (10.75)

IAC 521 (55.84) 423 (56.63) 98 (52.69)

MIA 300 (32.16) 236 (31.59) 64 (34.41)

MPA 5 (0.53) 1 (0.13) 4 (2.15)

Lung adenocarcinoma grade, n

(%)

1 468 (50.16) 375 (50.20) 93 (50.00) .427

2 434 (46.52) 350 (46.85) 84 (45.16)

3 31 (3.32) 22 (2.95) 9 (4.84)

Micropapillary/solid�1%, n (%)

Yes 70 (7.50) 56 (7.50) 14 (7.53) .989

No 863 (92.50) 691 (92.50) 172 (92.47)

Surgical method, n (%)

Lobectomy 420 (45.02) 332 (44.44) 88 (47.31) .482

Sublobectomy 513 (54.98) 415 (55.56) 98 (52.69)

STAS, n (%)

Positive 95 (10.18) 76 (10.17) 19 (10.22) .987

Negative 838 (89.82) 671 (89.83) 167 (89.79)

Recurrence/metastasis, n (%)

Yes 12 (1.29) 10 (1.34) 2 (1.08) .775

No 921 (98.71) 737 (98.66) 184 (98.93)

Death, n (%)

Yes 3 (0.32) 2 (0.27) 1 (0.54) .561

No 930 (99.68) 745 (99.73) 185 (99.46)

LUL, Left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma;

MIA, minimally invasive adenocarcinoma;MPA, mucin-producing adenocarcinoma of the lung. *As assessed using the ninth edition of the tumor-node-metastasis staging system.
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TABLE 2. Characteristics of patients in the primary and validation cohorts

Characteristic

Primary cohort Validation cohort

STAS-negative

(N ¼ 838)

STAS-positive

(N ¼ 95) P value

STAS-negative

(N ¼ 266)

STAS-positive

(N ¼ 59) P value

Age, y, mean � SD 52.42 � 13.10 59.45 � 10.06 <.001 58.59 � 11.61 61.53 � 10.24 .075

Sex, n (%)

Male 304 (36.28) 55 (57.90) <.001 97 (36.47) 37 (62.71) <.001

Female 534 (63.72) 40 (42.11) 169 (63.53) 22 (37.29)

Smoking status, n (%)

Yes 108 (12.89) 25 (26.32) <.001 41 (15.41) 22 (37.29) <.001

No 730 (87.11) 70 (73.68) 225 (84.59) 37 (62.71)

Pathological staging, n (%)*

Tis 107 (12.77) 0 (0.00) 0 (0.00) 0 (0.00)

T1mi 300 (35.80) 0 (0.00) 0 (0.00) 0 (0.00)

T1a 158 (18.85) 13 (13.68) 34 (12.78) 1 (1.70)

T1b 234 (27.92) 59 (62.11) 151 (56.77) 28 (47.46)

T1c 39 (4.65) 23 (24.21) 81 (30.45) 30 (50.85)

Location, n (%)

LUL 222 (26.49) 22 (23.16) .076 64 (24.06) 15 (25.42) .45

LLL 114 (13.60) 18 (18.95) 35 (13.16) 10 (16.95)

RUL 293 (34.96) 27 (28.42) 101 (37.97) 17 (28.81)

RML 69 (8.23) 4 (4.21) 22 (8.27) 3 (5.09)

RLL 140 (16.71) 24 (25.26) 44 (16.54) 14 (23.73)

Tumor size, n (%)

�1 cm 535 (63.84) 13 (13.68) <.001 34 (12.78) 1 (1.70) .002

1-2 cm 264 (31.50) 59 (62.11) 151 (56.77) 28 (47.46)

>2-3 cm 39 (4.65) 23 (24.21) 81 (30.45) 30 (50.85)

Histologic type, n (%)

AIS 107 (12.77) 0 (0.00) 0 (0.00) 0 (0.00)

IAC 430 (51.31) 91 (95.79) 266 (100.00) 59 (100.00)

MIA 300 (35.80) 0 (0.00) 0 (0.00) 0 (0.00)

MPA 1 (0.12) 4 (4.21) 0 (0.00) 0 (0.00)

Lung adenocarcinoma grade,

n (%)

1 465 (55.49) 3 (3.16) <.001 64 (24.06) 3 (5.09) <.001

2 365 (43.56) 69 (72.63) 197 (74.06) 46 (77.97)

3 8 (0.96) 23 (24.21) 5 (1.88) 10 (16.95)

Micropapillary/solid �1%, n

(%)

Yes 15 (1.79) 55 (57.10) <.001 13 (4.89) 21 (35.59) <.001

No 823 (98.21) 40 (42.11) 253 (95.11) 38 (64.41)

Surgical method, n (%)

Lobectomy 359 (42.84) 61 (64.21) <.001 141 (53.01) 45 (76.27) .001

Sublobectomy 479 (57.16) 34 (35.79) 125 (46.99) 14 (23.73)

Recurrence/metastasis, n (%)

Yes 6 (0.72) 6 (6.32) <.001 4 (1.50) 9 (15.25) <.001

No 832 (99.28) 89 (93.68) 262 (98.50) 50 (84.75)

Death, n (%)

Yes 0 (0.00) 3 (3.16) 1 (0.38) 6 (10.17) <.001

No 838 (100.00) 92 (96.84) 265 (99.62) 53 (89.83)

LUL, Left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma;

MIA, minimally invasive adenocarcinoma; MPA, mucin-producing adenocarcinoma of the lung. *Assessed using the ninth edition of the tumor-node-metastasis staging system.
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FIGURE 4. Kaplan-Meier curves (with 95% confidence interval) of relapse-free survival (RFS) and overall survival (OS). According to the Kaplan-Meier

method and log-rank test in the survival analysis, for all patients in the primary cohort, the RFS rate was 98.7% and the OS rate was 99.7%. A, The 5-year

RFS ratewas statistically significantly higher for the STAS-negative group compared to the STAS-positive group (97.2% vs 91.4%;P<.001). B, The 5-year
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predicting the STAS status of clinical-stage T1N0 lung
adenocarcinoma. Both methods achieved satisfactory re-
sults on the testing and external validation cohorts,
indicating their capability to accurately predict the
STAS status in patients with clinical-stage T1N0 lung
adenocarcinoma.

Previous studies that attempted to develop models for the
preoperative noninvasive detection of the CT-based STAS
status of clinical-stage T1N0 lung adenocarcinoma faced
several limitations. Jiang and colleagues28 predicted
STAS using a random forest model, achieving an AUC of
0.75; however, the specificity of their model was relatively
low at 0.59, indicating a high rate of false positives. Chen
and colleagues27 constructed a na€ıve Bayes model using 5
radiomic features to predict STAS in clinical stage I adeno-
carcinomas, but their AUC values were modest, at 0.63 in
JTCVS Open c Volume 21, Number C 297
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FIGURE 5. (continued).
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the internal validation and 0.69 in the external validation.
Another prediction model25 using extreme gradient boost-
ing (XGBoost) exhibited an AUC of 0.77; however, it relied
on a large number of features (n¼ 1874) that were extracted
from a specific non–small cell lung cancer subset. Tao and
colleagues29 reported similar AUC values of 0.76 for their
training group and 0.77 for their validation group using a
traditional radiomic model, which were improved to 0.93
(95% CI, 0.70-0.82) and 0.80 (95% CI, 0.65-0.86), respec-
tively, with a deep-learning 3D convolutional neural
network model. However, that study included patients in
later stages of IB-IV (21.2%-60.5%), in whom STAS pos-
itivity is higher (24.6%-63.3%), potentially making the
prediction easier.
In contrast, our present study focused on lung adenocar-

cinoma at an early stage (1-3 cm in size), which is notori-
ously difficult to predict. Our LDA radiomic model
exhibited impressive AUC values of 0.8944 (95% CI,
0.8241-0.9502) in the testing cohort and 0.7796 (95% CI,
0.7089-0.8448) in the external validation cohort. Further-
more, we constructed a novel 2-stage deep-learning model,
MultiCL, which achieved AUC values of 0.8434 (95% CI,
JTCVS Open c Volume 21, Number C 299
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0.7580-0.9154) in the testing cohort and 0.7686 (95% CI,
0.6991-0.8316) in the external validation cohort. These re-
sults surpass those of previous studies and exhibit remark-
able stability across internal training and internal and
external validation.

Clinically, our MultiCL model offers significant advan-
tages over existing models. The decision curve analysis
revealed that MultiCL confers more benefits to patients
than previous models, suggesting its potential to identify
STAS-positive patients most likely to benefit from
300 JTCVS Open c October 2024
lobectomy accurately. This accuracy enhances surgical
planning and reduces the risk of oncology-ineffective
sublobectomy and recurrence, ultimately improving the
survival rate.

In summary, our proposed models, particularly MultiCL,
demonstrated superior performance in predicting the STAS
status in early-stage lung adenocarcinoma compared to pre-
vious methods. This advancement serves 4 critical clinical
functions: (1) precise preoperative evaluation, (2) enhanced
multidisciplinary team collaboration, (3) improved patient
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communication and education, and (4) support for clinical
research advancements, especially in exploring biomarkers
such as STAS.

This study confirms an STAS-positive incidence via post-
operative pathology of approximately 10.18% (95 of 933),
which appears low. This may be attributed to the fact that
adenocarcinoma in situ and minimally invasive adenocarci-
noma accounted for 43.62% (407 of 933) of the total study
population, and no STAS was observed in this group. The
STAS incidence was 18.06% (95 of 526) when focusing
solely on invasive adenocarcinoma. Specifically, the inci-
dence of STAS-positive invasive adenocarcinoma was
approximately 7.60% (13 of 171) for tumor size<1 cm,
15.05% (59 of 392) for tumor size 1 to 2 cm, and
37.10% (23 of 62) for tumor size>2 to 3 cm. STAS occur-
rence is related to the tumor size and pathologic subtype,
particularly the micropapillary or solid component. More-
over, previous studies have highlighted the importance of
considering diverse clinical pathologic factors, such as solid
components,32 STAS positivity,33 and the presence of mi-
cropapillary or solid subtypes,34,35 all of which carry a
risk of occult lymph node metastasis. In this context, the
findings of JCOG studies provide valuable directions for
partial lobectomy. Regarding lymph node dissection strate-
gies, JCOG 08047 suggested that only suspicious lymph no-
des must be examined. In addition, JCOG 08028

recommended selective lymph node dissection to reduce
the risk of recurrence in patients with solid tumors. Never-
theless, our model offers a substantial basis for intraopera-
tive lymph node dissection strategies, especially
considering the risks associated with solid components,
STAS positivity, and the presence of micropapillary or solid
subtypes, all of which may contribute to occult lymph node
metastasis.

Accurate preoperative assessment is crucial, given the
complexities and risks associated with these pathologic fac-
tors. Previous studies have associated STAS positivity with
relevant imaging features, such as the consolidation tumor
ratio,36,37 positive pleural notch sign,38 cystic airspaces,39

solid tumors, tumor size �2 cm, and maximum standard-
ized uptake value �2.5.40 These imaging features may
occur in patients with tumors of 1 to 3 cm. In 1 subject in
our study, the tumor was only 1 cm, but it exhibited such im-
aging features as solid tumor and cystic airspaces, which
were pathologically confirmed as STAS. Unfortunately,
the patient still experienced distant metastasis after surgery
(Online Data Supplement). Given that CT signal evaluation
relies mainly on the experience of radiologists, a certain de-
gree of subjectivity exists. Different inclusion and exclusion
criteria may lead to different conclusions. Therefore, a sta-
ble, reliable, and accurate preoperative CT image prediction
model is needed to avoid the impact of experience dispar-
ities among the doctors reviewing the images on the manual
identification results.
Whether STAS is an in vivo phenomenon or an in vitro
artifact produced after cutting a tumor with a knife remains
controversial.41 Some experts suggest that in such surgeries
as video-assisted thoracoscopic surgery lobectomy, in
which the entire resection specimen, including tumors of
various size, is squeezed through a small-caliber hole in
the rigid chest wall, which may lead to tumor cell detach-
ment around the tumor.42 However, a recent study by Han
and colleagues17 indicated that video-assisted thoraco-
scopic surgery was not associated with STAS. In contrast,
specific biological mechanisms appear to explain this phe-
nomenon. ROS1 rearrangement reduces membrane E-cad-
herin expression in lung adenocarcinoma cells, and the
loss of E-cadherin disrupts cell–cell contact, leading to tu-
mor cell movement and STAS production.43 In addition,
recent studies44 have indicated rearrangement of the
ROS1 (OR, 524.075; 95% CI, 25.622-10,719.626;
P ¼ .000) and ALK (OR, 143.104; 95% CI: 3.746-
5467.253; P ¼ .008) genes were rearranged, which was
significantly associated with STAS. In another study,45

71% of patients with ROS1 rearrangements were diagnosed
with STAS. Takeuchi and colleagues46 believed that ALK
and ROS1 had similar clinicopathologic features in patients
with tissue and gene rearrangements. These factors may
explain why ALK and ROS1 gene rearrangements are signif-
icantly associated with STAS.
Tumor-driver gene mutations are typically identified

postoperatively, however. Although performing preopera-
tive blood biopsies to detect ROS1/ALK and then deter-
mining the surgical method is recommended in these
patients, the cost of such a procedure can represent a heavy
burden. Alternatively, relying on noninvasive imaging for
preoperative identification may offer convenience and
feasibility.
Despite its many advantages, this study has several limi-

tations. First, this was a retrospective study, and although
external validation was performed, further prospective
studies are necessary for model validation. Second, our
cohort comprised only patients with clinical-stage T1N0
adenocarcinoma, limiting the generalizability of our find-
ings to other pathologic subtypes of lung cancer. The
main drawback of deep-learning technology in medical im-
aging analysis is its black-box nature, which limits the inter-
pretability. Addressing this opacity in future work is
essential. Furthermore, there were no statistically signifi-
cant differences in the RFS between STAS-positive and
STAS-negative patients in our validation cohort. We believe
that this is primarily attributed to the limited sample size of
the validation cohort and the early stage of the disease,
which prevented sufficient observation of relapsed patients,
potentially obscuring statistically significant variations.
Nonetheless, these limitations have minimal impact on
the utility of the proposed model. The widespread use of
medical imaging in clinical settings provides ample
JTCVS Open c Volume 21, Number C 301
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opportunities to enhance cancer treatment decision support
cost-effectively.
CONCLUSIONS
In summary, CT-based imaging models (radiomics and

DNNs) offer considerable potential for predicting the
STAS status in patients with clinical-stage T1N0 lung adeno-
carcinoma. These models can provide valuable decision sup-
port to surgeons, aiding the formulation of surgical strategies
before surgery and ultimately improving patient prognosis.
Conflict of Interest Statement
The authors reported no conflicts of interest.
The Journal policy requires editors and reviewers to

disclose conflicts of interest and to decline handling or re-
viewing manuscripts for which they may have a conflict
of interest. The editors and reviewers of this article have
no conflicts of interest.

This work was supported by the Extreme Smart Analysis plat-
form (https://www.xsmartanalysis.com/).
References
1. Rami-Porta R, Nishimura KK, Giroux DJ, et al. The International Association for

the Study of Lung Cancer Lung Cancer Staging Project: proposals for revision of

the TNM stage groups in the forthcoming (ninth) edition of the TNM classifica-

tion for lung cancer. J Thorac Oncol. 2024;19(7):1007-1027.

2. Fick CN, Dunne EG, Vanstraelen S, et al. High-risk features associated with

recurrence in stage I lung adenocarcinoma. J Thorac Cardiovasc Surg. May

22, 2024 [Epub ahead of print].

3. Wang C, Wu Y, Shao J, Liu D, Li W. Clinicopathological variables influencing

overall survival, recurrence and post-recurrence survival in resected stage I

non–small-cell lung cancer. BMC Cancer. 2020;20(1):150.

4. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organi-

zation classification of lung tumors: impact of genetic, clinical and radiologic ad-

vances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243-1260.

5. Chen S, Ye T, Yang S, et al. Prognostic implication of tumor spread through air

spaces in patients with pathologic N0 lung adenocarcinoma. Lung Cancer. 2022;

164:33-38.

6. Yanagawa N, Shiono S, Endo M, Ogata SY. Tumor spread through air spaces is a

useful predictor of recurrence and prognosis in stage I lung squamous cell carci-

noma, but not in stage II and III. Lung Cancer. 2018;120:14-21.

7. Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar

resection for ground-glass opacity dominant peripheral lung cancer. J Thorac

Cardiovasc Surg. 2022;163(1):289-301.e2.

8. Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-

sized peripheral non–small-cell lung cancer (JCOG0802/WJOG4607L): a multi-

centre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet.

2022;399(10335):1607-1617.

9. Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant

lung cancer with a tumour diameter of 3 cm or less including ground-glass opac-

ity (JCOG1211): a multicentre, single-arm, confirmatory, phase 3 trial. Lancet

Respir Med. 2023;11(6):540-549.

10. Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral

stage IA non–small-cell lung cancer. N Engl J Med. 2023;388(6):489-498.

11. Kadota K, Nitadori JI, Sima CS, et al. Tumor spread through air spaces is an

important pattern of invasion and impacts the frequency and location of recur-

rences after limited resection for small stage I lung adenocarcinomas. J Thorac

Oncol. 2015;10(5):806-814.

12. Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes

than sublobar resection in spread through air spaces (STAS)-positive T1 lung

adenocarcinoma: a propensity score-matched analysis. J Thorac Oncol. 2019;

14(1):87-98.
302 JTCVS Open c October 2024
13. Huang L, Tang L, Dai L, Shi Y. The prognostic significance of tumor spread

through air space in stage I lung adenocarcinoma. Thorac Cancer. 2022;13(7):

997-1005.

14. Li J,Wang Y, Li J, Cao S, Che G.Meta-analysis of lobectomy and sublobar resec-

tion for stage I non–small cell lung cancer with spread through air spaces. Clin

Lung Cancer. 2022;23(3):208-213.

15. Shiono S, Yanagawa N. Spread through air spaces is a predictive factor of recur-

rence and a prognostic factor in stage I lung adenocarcinoma. Interact Cardio-

vasc Thorac Surg. 2016;23(4):567-572.

16. Dai C, Xie H, Su H, et al. Tumor spread through air spaces affects the recurrence

and overall survival in patients with lung adenocarcinoma>2 to 3 cm. J Thorac

Oncol. 2017;12(7):1052-1060.

17. Han YB, Kim H, Mino-Kenudson M, et al. Tumor spread through air spaces

(STAS): prognostic significance of grading in non–small cell lung cancer. Mod

Pathol. 2021;34(3):549-561.

18. Chae M, Jeon JH, Chung JH, et al. Prognostic significance of tumor spread

through air spaces in patients with stage IA part-solid lung adenocarcinoma after

sublobar resection. Lung Cancer. 2021;152:21-26.

19. Ren Y, Xie H, Dai C, et al. Prognostic impact of tumor spread through air spaces

in sublobar resection for 1A lung adenocarcinoma patients. Ann Surg Oncol.

2019;26(6):1901-1908.

20. Villalba JA, Shih AR, Sayo TMS, et al. Accuracy and reproducibility of intrao-

perative assessment on tumor spread through air spaces in stage 1 lung adenocar-

cinomas. J Thorac Oncol. 2021;16(4):619-629.

21. Lee G, Bak SH, Lee HY. CT Radiomics in thoracic oncology: technique and clin-

ical applications. Nucl Med Mol Imaging. 2018;52(2):91-98.

22. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between med-

ical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):

749-762.

23. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. 2016;278(2):563-577.

24. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more in-

formation from medical images using advanced feature analysis. Eur J Cancer.

2012;48(4):441-446.

25. Onozato Y, Nakajima T, Yokota H, et al. Radiomics is feasible for prediction of

spread through air spaces in patients with nonsmall cell lung cancer. Sci Rep.

2021;11(1):13526.

26. Zhuo Y, FengM, Yang S, et al. Radiomics nomograms of tumors and peritumoral

regions for the preoperative prediction of spread through air spaces in lung

adenocarcinoma. Transl Oncol. 2020;13(10):100820.

27. Chen D, She Y, Wang T, et al. Radiomics-based prediction for tumour spread

through air spaces in stage I lung adenocarcinoma using machine learning. Eur

J Cardiothorac Surg. 2020;58(1):51-58.

28. Jiang C, Luo Y, Yuan J, et al. CT-based radiomics andmachine learning to predict

spread through air space in lung adenocarcinoma. Eur Radiol. 2020;30(7):

4050-4057.

29. Tao J, Liang C, Yin K, et al. 3D convolutional neural network model from

contrast-enhanced CT to predict spread through air spaces in non–small cell

lung cancer. Diagn Interv Imaging. 2022;103(11):535-544.

30. Wang Y, Lyu D, Zhang D, et al. Nomogram based on clinical characteristics and

radiological features for the preoperative prediction of spread through air spaces

in patients with clinical stage IA non–small cell lung cancer: a multicenter study.

Diagn Interv Radiol. 2023;29(6):771-785.

31. Moreira AL, Ocampo PSS, Xia Y, et al. A grading system for invasive pul-

monary adenocarcinoma: a proposal from the International Association for

the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;

15(10):1599-1610.

32. Seok Y, Yang HC, Kim TJ, et al. Frequency of lymph node metastasis according

to the size of tumors in resected pulmonary adenocarcinomawith a size of 30 mm

or smaller. J Thorac Oncol. 2014;9(6):818-824.

33. Vaghjiani RG, Takahashi Y, Eguchi T, et al. Tumor spread through air spaces is a

predictor of occult lymph node metastasis in clinical stage IA lung adenocarci-

noma. J Thorac Oncol. 2020;15(5):792-802.

34. Wang L, Jiang W, Zhan C, et al. Lymph node metastasis in clinical stage IA pe-

ripheral lung cancer. Lung Cancer. 2015;90(1):41-46.

35. Yeh YC, Kadota K, Nitadori J, et al. International Association for the Study of

Lung Cancer/American Thoracic Society/European Respiratory Society classifi-

cation predicts occult lymph node metastasis in clinically mediastinal node-

negative lung adenocarcinoma. Eur J Cardiothorac Surg. 2016;49(1):e9-e15.

36. Kim SK, Kim TJ, ChungMJ, et al. Lung adenocarcinoma: CT features associated

with spread through air spaces. Radiology. 2018;289(3):831-840.

https://www.xsmartanalysis.com/
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref1
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref1
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref1
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref1
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref2
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref2
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref2
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref3
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref3
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref3
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref4
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref4
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref4
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref5
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref5
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref5
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref6
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref6
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref6
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref7
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref7
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref7
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref8
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref8
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref8
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref8
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref9
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref9
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref9
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref9
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref10
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref10
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref11
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref11
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref11
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref11
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref12
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref12
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref12
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref12
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref13
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref13
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref13
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref14
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref14
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref14
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref15
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref15
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref15
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref16
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref16
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref16
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref16
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref17
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref17
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref17
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref18
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref18
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref18
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref19
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref19
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref19
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref20
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref20
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref20
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref21
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref21
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref22
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref22
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref22
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref23
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref23
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref24
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref24
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref24
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref25
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref25
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref25
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref26
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref26
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref26
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref27
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref27
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref27
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref28
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref28
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref28
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref29
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref29
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref29
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref30
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref30
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref30
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref30
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref31
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref31
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref31
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref31
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref32
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref32
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref32
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref33
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref33
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref33
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref34
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref34
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref35
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref35
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref35
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref35
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref36
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref36


Dou et al Thoracic: Lung Cancer
37. De Margerie-Mellon C, Onken A, Heidinger BH, VanderLaan PA,

Bankier AA. CT Manifestations of tumor spread through airspaces in pulmo-

nary adenocarcinomas presenting as subsolid nodules. J Thorac Imaging.

2018;33(6):402-408.

38. Toyokawa G, Yamada Y, Tagawa T, et al. Computed tomography features of re-

sected lung adenocarcinomas with spread through air spaces. J Thorac Cardio-

vasc Surg. 2018;156(4):1670-1676.e4.

39. Qi L, Xue K, Cai Y, Lu J, Li X, Li M. Predictors of CT morphologic features to

identify spread through air spaces preoperatively in small-sized lung adenocarci-

noma. Front Oncol. 2021;10:548430.

40. Tasnim S, Raja S, Mukhopadhyay S, et al. Preoperative predictors of spread

through air spaces in lung cancer. J Thorac Cardiovasc Surg. November 23,

2023 [Epub ahead of print].

41. Thunnissen E, Blaauwgeers HJ, De Cuba EM, Yick CY, Flieder DB. Ex vivo ar-

tifacts and histopathologic pitfalls in the lung. Arch Pathol Lab Med. 2016;

140(3):212-220.
42. Warth A. Spread through air spaces (STAS): a comprehensive update. Transl

Lung Cancer Res. 2017;6(5):501-507.

43. Jin Y, Sun PL, Park SY, et al. Frequent aerogenous spread with decreased E-cad-

herin expression of ROS1-rearranged lung cancer predicts poor disease-free sur-

vival. Lung Cancer. 2015;89(3):343-349.

44. Nurmamat A, Liwei Z, Yi H, et al. Analysis of risk factors of spread through air

spaces in stage IA lung adenocarcinoma.Chin J Exp Surg. 2022;39(11):2220-2223.

45. Lee JS, Kim EK, KimM, Shim HS. Genetic and clinicopathologic characteristics

of lung adenocarcinoma with tumor spread through air spaces. Lung Cancer.

2018;123:121-126.

46. Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung can-

cer. Nat Med. 2012;18(3):378-381.

Key Words: clinical-stage T1N0 lung adenocarcinoma,
deep neural network, radiomics, spread through air spaces
JTCVS Open c Volume 21, Number C 303

http://refhub.elsevier.com/S2666-2736(24)00222-5/sref37
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref37
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref37
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref37
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref38
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref38
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref38
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref39
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref39
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref39
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref40
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref40
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref40
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref41
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref41
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref41
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref42
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref42
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref43
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref43
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref43
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref44
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref44
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref45
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref45
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref45
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref46
http://refhub.elsevier.com/S2666-2736(24)00222-5/sref46

	Improving prediction accuracy of spread through air spaces in clinical-stage T1N0 lung adenocarcinoma using computed tomogr ...
	Materials and Methods
	Patient Selection
	Histopathologic Evaluation and Clinical Characteristics
	CT Acquisition and Segmentation
	Data Preprocessing and Splitting
	STAS Status Prediction with Radiomics and DNNs
	Statistical Analysis

	Results
	Patient Baseline Characteristics
	Predictive Performance of Radiomic Models for STAS Status
	Predictive Performance of DNN-Based Models for STAS Status
	Clinical Application

	Discussion
	Conclusions
	Conflict of Interest Statement

	References


