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Accumulated evidence of biological clinical trials has shown that long non-coding RNAs
(lncRNAs) are closely related to the occurrence and development of various complex
human diseases. Research works on lncRNA–disease relations will benefit to further
understand the pathogenesis of human complex diseases at the molecular level, but only a
small proportion of lncRNA–disease associations has been confirmed. Considering the
high cost of biological experiments, exploring potential lncRNA–disease associations with
computational approaches has become very urgent. In this study, a model based on
closest node weight graph of the spatial neighborhood (CNWGSN) and edge attention
graph convolutional network (EAGCN), LDA-EAGCN, was developed to uncover potential
lncRNA–disease associations by integrating disease semantic similarity, lncRNA functional
similarity, and known lncRNA–disease associations. Inspired by the great success of the
EAGCN method on the chemical molecule property recognition problem, the prediction of
lncRNA–disease associations could be regarded as a component recognition problem of
lncRNA–disease characteristic graphs. The CNWGSN features of lncRNA–disease
associations combined with known lncRNA–disease associations were introduced to
train EAGCN, and correlation scores of input data were predicted with EAGCN for judging
whether the input lncRNAs would be associated with the input diseases. LDA-EAGCN
achieved a reliable AUC value of 0.9853 in the ten-fold cross-over experiments, which was
the highest among five state-of-the-art models. Furthermore, case studies of renal cancer,
laryngeal carcinoma, and liver cancer were implemented, and most of the top-ranking
lncRNA–disease associations have been proven by recently published experimental
literature works. It can be seen that LDA-EAGCN is an effective model for predicting
potential lncRNA–disease associations. Its source code and experimental data are
available at https://github.com/HGDKMF/LDA-EAGCN.
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INTRODUCTION

Long non-coding RNAs (lncRNAs) are a large and important
class of non-coding RNAs with a molecular length more than 20
nucleotides (Ponting et al., 2009). In recent years, more and more
biological experiments and clinical studies have demonstrated
that lncRNAs participate in almost all the stages of organism life,
from regulating single cell life span to maintaining the
homeostasis stability of the whole organism, which are closely
implicated in the occurrence and development of various
complex human diseases. Many human diseases are caused by
the dysfunctions of lncRNAs or their abnormal expressions that
are reflected in the associations between lncRNAs and diseases
(Kapranov et al., 2007; Mercer et al., 2009; Guttman et al., 2013).
Therefore, the studies of lncRNA–disease associations are helpful
to deeply understand the pathogenesis of complex human
diseases at the molecular level and would be increasingly used
to aid in the prevention, diagnosis, and treatment of diseases
(Wang and Chang, 2011). Due to the high cost of traditional
biological experiments of identifications of lncRNAs, there are
only a relatively limited number of known lncRNA–disease
associations that have been confirmed; thus, identifying
potential lncRNA–disease associations has become a hot topic
through computational models in the fields of human complex
diseases.

Nowadays, many computational models based on integrating
a vast amount of heterogeneous biological data have been
proposed to predict novel lncRNA–disease associations.
Broadly, they can be categorized into two types. The models
in the first category are based on homogeneous or heterogeneous
biological information networks. For example, Liao et al. (2011)
constructed a coding–non-coding gene co-expression network
for predicting probable functions for altogether 340 lncRNAs
based on topological or other network characteristics. Yang et al.
(2014) developed a coding–non-coding gene–disease bipartite
network based on the known associations between diseases and
disease-causing genes, and applied a propagation algorithm
mining 768 potential lncRNA–disease associations in the
constructed network. Sun et al. (2014) proposed a global
network–based model, RWRlncD, which inferred
lncRNA–disease associations with the random walk with a
restart algorithm of the lncRNA functional similarity network.
However, RWRlncD cannot be applied to the diseases which have
no verified association with any lncRNA. Chen et al. (2016)
reported an improved random walk with the restart model,
IRWRLDA, which could be applied to diseases without any
known related lncRNAs through setting the initial probability
vector. Fu et al. (2018) predicted lncRNA–disease associations by
translating row data matrices into low-rank matrices in the
heterogeneous data with matrix tri-factorization for gaining
their intrinsic and shared structure. Ding et al. (2018)
integrated lncRNA–disease–gene information and
lncRNA–disease associations to describe the heterogeneity of
coding–non-coding gene–disease association, and proposed an
lncRNA–disease–gene tripartite graph to predict potential
lncRNA–disease associations. Wang et al. (2019) proposed a
new prediction model based on the internal inclined random

walk with the restart algorithm. A novel method called network
consistency projection was proposed by Xie et al. (2019), based on
integrating a known lncRNA–disease association network, a
lncRNA–disease cosine similarity network, and a lncRNA
expression similarity network, exhibiting good predictive
performance. Xie et al. (2020) developed a new method based
on linear neighborhood similarity and unbalanced bi-random
walk for lncRNA–disease association prediction. After the
preprocessing of the lncRNA–disease association sparse
matrix, an lncRNA–disease network was reconstructed
according to linear neighborhood similarities. Then the
unbalanced double random walk algorithm was used to
calculate the prediction score. However, it is still challenging
to predict potential lncRNA–disease associations accurately in
the absence of the known lncRNA–disease association
information.

Another major type of computational models is based on the
machine learning algorithm, and the main characteristic of them
is to train a classifier based on machine learning algorithms
according to the biological features of lncRNAs and diseases.
Chen and Yan (2013) reported a computational method of
Laplacian regularized least squares for predicting
lncRNA–disease associations (LRLSLDA) in a semi-supervised
learning framework. In 2015, a naive Bayesian classifier–based
model was proposed by Zhao et al. (2015) to predict potential
lncRNA–disease associations. Chen et al. (2015) proposed two
novel lncRNA functional similarity calculation models
(LNCSIM), which were evaluated by introducing similarity
scores into the LRLSLDA model. Lan et al. (2017) integrated a
variety of gene data and trained a classifier with the bagged
support vector machine for their lncRNA–disease association
prediction model. Lu et al. (2018) developed a model called
SIMCLDA to predict the potential lncRNA–disease
associations based on the inductive complement matrix. Guo
et al. (2019) proposed a LDASR model based on collaborative
filtering and machine learning. Xuan et al. (2019) developed a
dual convolutional neural network with attention mechanisms
for predicting disease-related lncRNAs. Zeng et al. (2020)
designed a hybrid computing framework called SDLDA based
on linear and non-linear features of lncRNAs and diseases, and
created fused features for the full connection layer for prediction.
Sheng et al. (2021) constructed a deep learning prediction model,
VADLP, which applied autoencoders for representation learning
of lncRNA and disease features. Wu et al. (2020) adopted graph
autoencoder to predict lncRNA–disease associations on
lncRNA–disease bipartite graph. One of the main limits of
these models based on machine learning methods is lacking
the negative samples during the classifier training. For giving
readers a clear overview, Supplementary File S1 induces the
aforementioned models in a tabular form.

Inspired by the great success of the EAGCN method on the
chemical molecule property recognition problem, the prediction
of lncRNA–disease associations could be regarded as a
component recognition problem in the lncRNA–disease
characteristic graph. In order to fully mine core features of
lncRNA–disease associations in a graph with minimum
redundant features, the structure hidden in the closest node
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weight graph among the spatial neighborhoods of
lncRNA–disease associations (CNWGSN) has been developed
in this study that combined with the biological features of
lncRNAs and diseases. It considered not only the features of
disease–disease, lncRNA–lncRNA, and lncRNA–disease relations
but also the lncRNA–disease features in a multidimensional
space. Moreover, CNWGSN was used to provide a great logic
and mathematical supports for the edge attention graph
convolutional networks (EAGCNs) (Shang et al., 2018) for
summarizing and extracting the internal features between
lncRNAs and diseases. Thus, an lncRNA–disease association
prediction model based on the edge attention graph
convolutional network (LDA-EAGCN) was proposed; the
multiple edge relations in multiple graphs of lncRNAs and
diseases were used to train EAGCN in LDA-EAGCN.
Additionally, to unravel the lack of negative samples for
training the classifier, the network-based random walk with a
restart algorithm was adopted in our study. The low score
samples from lncRNA–disease associations were selected
randomly as negative samples. The 10-fold cross-validations
and numerical experiments illustrate that LDA-EAGCN
outperformed the tested five state-of-the-art models, and the
AUC value of LDA-EAGCN reached 0.9853. Moreover, the
case studies of renal cell carcinoma, laryngeal cancer, and
liver cancer indicated that LDA-EAGCN is capable of
detecting potential lncRNA–disease associations; most of the
top ten predicted lncRNAs of each case study (24 of the 30)
which are most likely to have associations with the diseases
have been proved by recently published experimental literature
works.

MATERIALS AND METHODS

LncRNA–Disease Associations
One dataset that is used in the study is downloaded from the
Lnc2Cancer 3.0 database (Ning et al., 2016); it contains 3919
lncRNA–disease associations involving 198 diseases and 639
lncRNAs. The other dataset is downloaded from the
LncRNADisease v2.0 database (Chen et al., 2013); it includes
2453 lncRNA–disease associations among 378 diseases and 472
lncRNAs. All these associations have been verified by biological
experiments. In addition, a controlled and hierarchical medical
vocabulary is collected from the MeSH vocabulary database
(Nelson et al., 2001) for standardizing these disease names.
MeSH is a biomedical subject vocabulary which has high
authority in the field of medicine. After standardizing all the
datasets and removing duplicated data, finally, 4715
lncRNA–disease associations of 786 lncRNAs and 292 diseases
were obtained.

LncRNA–Disease Correlation Matrix
The numbers of obtained lncRNAs and diseases are
labeled as nl and nd, respectively; then the lncRNA–disease
correlation matrix (LDCM) is constructed, LDCM ∈ Rnlpnd. The
following formula can be used to calculate the value
of LDCM(i, j):

LDCM(i, j) � { 1, li associated with dj

0, otherwise
. (1)

In this way, the abstract correlations between lncRNAs and
diseases are represented by a two-dimensional matrix which is
intuitive, concise, and convenient for subsequent calculations.

Disease Semantic Correlation
In the calculation of the semantic similarity of disease, each
disease name has been represented by the MESH descriptor,
and a directed acyclic graph (DAG) is structured. In the DAG, all
nodes are connected by a direct edge from a more general term to
a more specific term. A semantic similarity algorithm was
proposed based on the hierarchical structure of disease terms
(Wang et al., 2010). It makes full use of the internal branch
structure of diseases, and the calculated disease similarity has
sufficient theoretical support. The semantic similarity algorithm
consists of three main processing steps.

Step 1: The relationship between the disease node d and the
diseases in the branches involving disease d is extracted, which is
named as DAG (d). Using the extracted DAG (d) graph, the
semantic contribution value Dd is calculated according to the
disease branch structure shown in DAG (d). The shortest path
from Td (the set of all ancestor nodes of d including d itself) to
disease d in DAG (d) usually contains less branches and
possesses less disease nodes in the path, which means a
stronger correlation between Td and disease d. The semantic
contribution value will be reduced at each intermediate node
passing through disease d, which has been repeatedly verified by
previous studies. The semantic value Dd(t) of disease d can be
calculated based on the DAG (d):

{ Dd(d) � 1
Dd(t) � max(ΔpDd(t′)|t′ ∈ children of t) if t ≠ d . (2)

The semantic contribution factor for edges linking disease t
with its child disease t′ is defined as Δ, which is set to 0.5 in our
studies. In the DAG (d), when there are multiple paths between
Td and disease d, the shortest path contribution value is treated as
the maximum semantic contribution value.

Step 2: Based on Eq. 2, the semantic value of disease d was
calculated as Eq. 3:

DV(A) � ∑
t∈Td

Dd(t). (3)

Step 3: According to the semantic values of diseases A and B,
the semantic similarity value DS(A, B) of diseases A and B is
calculated as Eq. 4. The common diseases of DAG (a) and
DAG (b) are screened out, and their semantic contributions to
diseases A and B are summed. The proportion of the semantic
contribution value of the sum to the semantic value of diseases A
and B is regarded as the similarity value of diseases A and B.

DS(A, B) � ∑t∈TA ∩ TB
(DA(t) +DB(t))

DV(A) +DV(B) . (4)

Ultimately, the semantic similarity matrix of diseases is gained,
and it is quick to obtain the semantic similarity between arbitrary
two diseases.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8089623

Li et al. LncRNA–Disease Association Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LncRNA Function Correlation
Based on the assumption that lncRNAs with similar functions
may have a good likelihood of associating with similar diseases,
the functional similarities of the lncRNAs can be calculated by the
similarities of the diseases associated with them. Chen et al.
developed novel lncRNA functional similarity calculation
models for lncRNA–disease association prediction (Chen et al.,
2015). In the study, these calculation models were also borrowed.
Lm denotes lncRNA lm, Ln denotes lncRNA ln, and the diseases
associated with Lm are represented by dmi. All the diseases
associated with Lm become a set DTm � {dm1, dm2 . . . , dmm},
and the diseases related to Ln are represented by the set
DTn � {dn1, dn2 . . . , dnn}. The core idea here is to calculate the
functional similarity between Lm and Ln by using the similarity
values of diseases in DTm and DTn. First, the similarity values of
disease dmi in DTm and all diseases inDTn are calculated in turn,
and the maximum similarity value is considered as the minimum
distance of the disease setDTn associated with disease dml and Lm.
Second, the calculation formula for the maximum disease score
S(dml,DTn) is shown in formula Eq. 5. Similarly, the minimum
distance between all diseases in the disease setDTn associated with
Ln and the disease setDTm associated with Lm is obtained. Finally,
the ratio of the maximum disease score of DTm and all diseases
inDTn to the number of elements inDTm and DTn , respectively,
is calculated, and the functional similarity score of Lm and Ln,
SCORE(Lm, Ln), is shown in formula Eq. 6:

S(dml, DTn) � MAX
1≤ i≤ n (S(dml, dni)), (5)

SCORE(Lm, Ln) �
∑1≤ i≤mS(dmi, DTn) + ∑1≤ j≤ nS(dti, DTm)

m + n
.

(6)

The specific values of disease semantic similarity matrices and
lncRNA similarity matrices are offered in Supplementary Files
S2, S3, respectively.

Negative Samples
In order to better train the LDA-EAGCN model, the random walk
with restart (RWRH) algorithmwas used to generate negative samples
for training the prediction model based on heterogeneous networks
in the study by Li andPatra (2010). Thismodel sorts the possibilities of
all associations according to the network structures and screens
lncRNA–disease pairs with low correlation scores as negative samples.

The RWRH algorithm mainly consists of three steps. First, the
method begins by generating the lncRNA nodes and disease nodes,
and the heterogeneous network of their associations or similarities.
Second, a seed node is selected as the starting node of the ergodic.
Third, it is to construct the transition matrix to bridge every jump
of the ergodic. Finally, negative samples in proportion to positive
samples are randomly generated from lncRNA–disease pairs with
low association probabilities; the detailed prediction results are
provided in Supplementary File S4.

Edge Attention Graph Convolution
Networks
A convolutional neural network (CNN) is a kind of deep neural
network which is widely used in biomedical relation detection. A

graphical convolution neural network (GCN) is generalization of
CNN to work with arbitrarily structured graphs. The edge
attention–based multi-relational graph convolutional network
(EAGCN) (Shang et al., 2018) is a novel model which
accurately excavates multiple edge relations and extracts node
features in multiple graphs.

The flowchart of EAGCN is shown in Figure 1. It consists of
four layers and three fully linked layers; each layer contains five
blocks, and there are Conv2d convolution and GraphCov_base
convolution based on graph convolution in each block. It was
applied originally to deep learning in the chemical direction
researches and directly learned the molecular properties of
compounds from the molecular graphs.

In our study, the prediction of lncRNA–disease associations
was treated as a binary classification problem of the component
recognition based on the lncRNA–disease characteristic graph.
The structural information of lncRNA–disease associations is
substituted into a convolutional neural network for training the
classifier of our predicting model.

LDA-EAGCN Model
Although high-dimensional features of lncRNA–disease
association have not been clearly captured and cannot be
directly detected by the extractions of multilayered deep
learning methods, the internal logic and rules of high-
dimensional features of lncRNA–disease association would be
used to predict the unknown relationships between lncRNAs and
diseases. In order to introduce the EAGCN algorithm into
LncRNA–disease association prediction, the graphs of
lncRNA–disease association pairs were first constructed. For
fully excavating internal logic features and decreasing
functional redundancy of lncRNA–disease association, the
structure of the closest node weight graph of the spatial
neighborhood of lncRNA–disease (CNWGSN) was
subsequently proposed. It combined with the biological
features of lncRNAs and diseases, and can provide great logic
and mathematical support for EAGCN to learn and summarize
the internal relationship between lncRNAs and diseases.
CNWGSN takes into account not only the features of
disease–disease relationship, lncRNA–lncRNA relationship,
and known lncRNA–disease associations between diseases and
lncRNAs but also the known features of lncRNAs and diseases in
a multidimensional feature space.

Based on the above, a novel model, LDA-EAGCN, which
comprises the following three main steps was proposed.

Step 1: Structure the adjacency matrix of lncRNA–disease
associations and calculate the diseases–diseases semantic
correlation matrix DDCM ∈ Rdnpdn and the lncRNA–lncRNA
functional correlation matrix LLCM ∈ Rlnpln.

Step 2: Structure the closest node weight graph of the
spatial neighborhood of lncRNA–disease (CNWGSN) of
lncRNA–disease associations. It contains two classes of nodes,
lncRNA li and disease di, which are from the lncRNA–disease
correlations (LDC). M top-ranking disease nodes,
Di � {di1, . . . , dii . . . , diM}, are most closely related with the
disease semantics of Di in the disease–disease semantic
correlation matrix (DDSCM), and N top-ranking lncRNA
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nodes, Li � {li1, . . . , lii . . . , liN}, are also most closely related with
the function similarities of lncRNA i in LLCM. In the
topological sense, the closest lncRNA node weight graph
(CLNWG) of lncRNA i is constructed according to the
LLCM. The M top-ranking lncRNA nodes closely related to
lncRNA i are screened out to establish nodes. The weights
of CLNWG are taken as the correlation values of the LLCM.
In the same way, the N top-ranking disease nodes closely
related to disease i are screened out to establish nodes.
The weights of disease i in CLNWG are adopted as the
correlation value of the DDSCM. Then the closest node
weight graph of Li and Di and the spatial neighborhood
features are integrated into the CNWGSN features of lncRNA i
and disease i.

The edges of CNWGSN features graph are divided into four
categories. The predicted edges which need to be predicted
between the input lncRNAs and the disease
sCore att ∈ R(N+M)p(N+M)p2, the spatial neighborhood edges
that are the association are known between diseases and
lncRNAs Nomal att ∈ R(N+M)p(N+M)p2, the lncRNA edges
that carry lncRNA function correlation
dd att ∈ R(N+M)p(N+M)p2, and the disease edges that have
disease semantic correlation ll att ∈ R(N+M)p(N+M)p2. The
calculating formulas of four kinds of edges are shown as follows.

Coreatt(i,j) � { (1, 1) (i � 0 ∩ j � N) ∪ (i � M ∩ j � 0)
(0, 0) otherwise

,

(7)

Nomal att(i,j)�{(1,1) (di(i−N) associate to lj)∪ (li(i−M) associate to dj)
(0,0) otherwise

,

(8)

dd att(i, j) � {(1, S(di−N, dj−N)) i>N ∪ j>N
(0, 0) otherwise

, (9)

ll att(i, j) � {(1, SCORE(li, lj)) i<N ∪ j<N
(0, 0) otherwise

. (10)

Step 3: The features are extracted from lncRNA–disease
associations with CNWGSN, and they are treated as the
training samples of EAGCN. In parallel, the constructing
negative samples of lncRNA–disease associations are
introduced into the training, which helps to improve the
prediction accuracy of correlation scores. The flowchart of
LDA-EAGCN is shown in Figure 2.

RESULTS

Implementation Details of LDA-EAGCN
After specification naming and redundancy removal, all 4715
known lncRNA–disease associations were labeled as positive
samples, and an equal number of negative samples with the
RWRH method was constructed. These samples are included as
the data of prediction performance self-assessment of the LDA-
EAGCNmodel. During the training, the optimized parameters of
the EAGCN model are adopted for avoiding the problems of
overfitting and poor generalization ability, such as the packet loss
rate dr � 0.3 and the learning rate α � 0.01 (for more details, see
Supplementary File S5).

Evaluation Methods and Metrics
To ensure the reliability of the predictive results, a 10-fold
cross-validation experiment is employed to evaluate the LDA-
EAGCN model, and the total data are divided into 10 parts
equally. This 10-fold cross-validation would be cycled 10 times
to guarantee each data part is used as a validation set one time.
Then a total of 10 training sessions are conducted, and the
average model performance is regarded as the final result. The

FIGURE 1 | Flowchart of EAGCN method.
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ROC curve is used to evaluate the performance of the LDA-
EAGCN model, and it can describe the relationship between
the true positive rate (TPR) and false positive rate (FPR) under
different thresholds. The larger the area value of AUC under
the ROC curve, the better the prediction performance. In the
10-fold cross-validation of the LDA-EAGCN model, the
average AUC value reached 0.9854 (Figure 3). We also did
a 5-fold cross-validation experiment, and the average AUC
value reached 0.9885 (Figure 4).

To confirm whether the experimental results of LDA-EAGCN
are over fitted, one-tenth of the samples was further separated as
an independent dataset, and remaining examples were used for
training the classifier in the LDA-EAGCN. The ROC curves of the
training set, the testing set, and the validation set are shown in

Figure 5. The AUC value of LDA-EAGCN achieved 0.9843 on
the validation set, which demonstrated that the excellent
performance of 10-fold cross-validations was not generated by
overfitting.

In addition, in order to comprehensively evaluate LDA-
EAGCN, some metrics, such as accuracy (ACC), sensitivity
(SEN), specificity (SPEC), precision (PREC), and Matthews
correlation coefficient (MCC), were particularly added. More
details of these metrics can be seen in Tables 1–3.

In order to prove that each association network has an impact
on the performance of the model, each associated network was
deleted in turn to build the subgraphs, and the performance of the
model was calculated. The results demonstrated that our model
achieved the best performance when all associated networks were

FIGURE 2 | Flowchart of LDA-EAGCN. (A) Construction and calculation of lncRNA–disease correlation matrix (LDCM), disease–disease semantic correlation
matrix (DDSCM), and lncRNA–lncRNA function correlation matrix; (B) constructing the closest lncRNA node weight graph (CLNWG) of the lncRNA and disease in
lncRNA–disease correlations (LDCs); (C) training edge attention graph convolution networks (EAGCN); (D) predicting correlation scores of input data with EAGCN.
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used for calculation. The detailed results can be seen in
Supplementary File S6.

Comparison With Other Models
In our study, the LDA-EAGCN model was compared with other
five state-of-the-art models for lncRNA–disease association
prediction including LDA-LNSUBRW (Xie et al., 2020),
LDASR (Guo et al., 2019), NCPHLDA (Xie et al., 2019),
SDLDA (Zeng et al., 2020), and TPGLDA (Ding et al., 2018).
The LDA-LNSUBRW model is an lncRNA–disease association
prediction method based on linear neighborhood similarity and
unbalanced double random walk; the LDASR model obtains feature
vectors by integrating lncRNAGaussian interaction spectrum kernel
similarity, disease semantic similarity, and Gaussian interaction

spectrum kernel similarity, and finally uses the rotating forest
algorithm for predicting lncRNA–disease associations;
NCPHLDA integrates the lncRNA cosine similarity network,

FIGURE 3 | ROC curves of LDA-EAGCN in different situations of 10-fold
cross-validations.

FIGURE 4 | ROC curves of LDA-EAGCN in different situations of 5-fold
cross-validation.

FIGURE 5 | ROC curves of independent testing.

TABLE 1 | Results of 10-fold cross-validation.

ACC SEN SPEC PREC MCC AUC

1 0.9562 0.9503 0.9618 0.9603 0.9123 0.9911
2 0.9307 1 0.87 0.8707 0.8704 0.9835
3 0.949 0.9489 0.9491 0.9449 0.8979 0.9881
4 0.948 0.9724 0.9255 0.9234 0.8972 0.9886
5 0.9541 0.9706 0.9386 0.9371 0.9088 0.9895
6 0.9582 0.9341 0.9791 0.9748 0.9164 0.9922
7 0.9317 0.934 0.9295 0.9242 0.8633 0.9802
8 0.9602 0.958 0.9624 0.96 0.9204 0.9818
9 0.9317 1 0.8694 0.8748 0.8721 0.9898
10 0.9256 0.9278 0.9234 0.9221 0.8512 0.9811
Mean 0.9445 0.9596 0.9309 0.9292 0.891 0.9853

TABLE 2 | Results of 5-fold cross-validation.

ACC SEN SPEC PREC MCC AUC

1 0.9734 0.9826 0.9647 0.9638 0.9470 0.994
2 0.9734 0.9762 0.9708 0.9699 0.9469 0.997
3 0.9532 1.0000 0.9072 0.9139 0.9105 0.989
4 0.9447 1.0000 0.8882 0.9015 0.8948 0.987
5 0.9554 0.9594 0.9514 0.9513 0.9108 0.994
Mean 0.9600 0.9897 0.9364 0.9401 0.9220 0.989

TABLE 3 | Results of independent testing.

ACC SEN SPEC PREC MCC AUC

Validation 0.9352 1.0000 0.8713 0.8829 0.8780 0.9843
Train 0.9734 0.9826 0.9647 0.9638 0.9470 0.9946
Test 0.9307 1.0000 0.8700 0.8707 0.8704 0.9837
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disease cosine similarity network, and known lncRNA–disease
association network, and predicts by network consensus
projection; SDLDA is a hybrid computing framework, which uses
singular value decomposition and deep learning to extract linear and
non-linear features of lncRNAs and diseases, respectively, and then
combines linear and non-linear features training; TPGLDA is a
novel lncRNA–disease association prediction method based on
lncRNA–disease triad, which combines gene–disease association
and lncRNA–disease association. Each model in comparison was
trained with the same training set and tested with the same test set in
the cross-validation.

The ROC and PR curves of all the models in comparison are
given inFigures 6, 7. TheAUCvalues under ROC curve of the LDA-
EAGCNmodel are 0.1141, 0.0317, 0.0966, 0.0468, and 0.0815 higher
than those of the SDLDA model, LDASR model, LDA-LNSUBRW

model, TPGLDAmodel, andNCPHLDAmodel, respectively, which
reaches 0.9853. The AUPR values of the LDA-EAGCN model are
0.5047, 0.0407, 0.641, 0.3813, and 0.6618 higher than those of the
SDLDA model, LDASR model, LDA-LNSUBRW model, TPGLDA
model, and NCPHLDA model, respectively, which reaches 0.9820.
The overview of data involved in each comparison model is
exhibited in Supplementary File S7.

Negative Sample Comparison
In order to examine the reliability of the negative samples used in the
experiments, the RWRHnegative samples, in terms of the associations
that have lower scores in the RWRH algorithm, are compared with
those randomly selected unknown lncRNA–disease associations. In
10-fold cross-validation, the AUC values of RWRH negative samples
and randomly selected negative samples are 0.9853 and 0.9632,
respectively (Figure 8). These experiments indicate the reliability of
the method for generating negative samples in LDA-EAGCN.

TABLE 4 | Case study results of kidney neoplasms.

Rank LncRNA Evidence (PMID)

1 CDKN2B-AS1 31040073
2 DUXAP8 30317248
3 HOTAIRM1 31862408
4 MIAT 30041179
5 SNHG16 Without evidence
6 NEAT1 30622287
7 SNHG12 32641718
8 SNHG5 Without evidence
9 SOX9 28118628
10 TUG1 30132963

TABLE 5 | Case study results of laryngeal cancer.

Rank LncRNA Evidence (PMID)

1 CDKN2B-AS1 31960744
2 GAS5 33641529
3 PVT1 30304557
4 CCAT1 28631575
5 H19 26872375
6 HULC Without evidence
7 MALAT1 31792655, 31837057
8 MEG3 31328388, 30915750
9 NEAT1 26822763, 31364125
10 SNHG7 Without evidence

TABLE 6 | Case study results of liver cancer.

Rank LncRNA Evidence (PMID)

1 BANCR 26758762
2 NEAT1 32168951
3 CYTOR 32918630
4 MIR100HG Without evidence
5 AFAP1-AS1 29057544
6 CCAT1 30773676
7 LINC-PINT Without evidence
8 CASC2 31301261
9 HOXA-AS2 27855366
10 LINC00473 31562977

FIGURE 6 | ROC curves of all the models in comparison.

FIGURE 7 | PR curves of all the models in comparison.
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Case Studies
In order to further demonstrate the predictive ability of the LDA-
EAGCN model, case studies were performed over kidney cancer,
laryngeal cancer, and liver cancer. First, 4715 pairs of known
lncRNA–disease associations and the equivalent generated
negative samples were adopted for model training. Then the
weight graph of the closest nodes in the spatial contextual of
these three diseases and lncRNAs with the unknown associations
related with the three diseases are generated, respectively, which are
used as the input of LDA-EAGCN. The predictive correlation scores
of unknown lncRNA–disease associations between the interested
diseases and their unknown lncRNAs are gained. Finally, the
predictive correlation scores are sorted in a descending order,
and the top 10 lncRNAs with the highest scores of these three
diseases are document mined. Among the top ten lncRNAs
corresponding to renal cell carcinoma, laryngeal cancer, and liver
cancer, eight lncRNAs associated with each disease are supported by
recent biological experiments’ literature works, which indicate the
LDA-EAGCNmodel has good performance in predicting unknown
relationships. The scores of each lncRNA–disease pair in the
experimental data are available in Supplementary File S8.

Kidney neoplasm is a cancer that originates from kidney
tissues, which is one of the ten most common cancers, and
renal cell carcinoma composes the vast majority of kidney
cancer cases (Linehan and Rathmell, 2012). Despite expending
high efforts to study kidney neoplasms in biogenetics, there are
still great doubts about the occurrence of kidney neoplasms. In
order to confirm the validity of the model, LDA-EAGCN was
implemented to predict potential kidney neoplasm–related
lncRNAs. As a result, eight out of top ten potential lncRNAs
related with kidney neoplasms have been validated by recent
biological experiments’ literature works (Table 4), which were
ranked 1st, 2nd, 3rd, 4th, 6th, 7th, 9th, and 10th in the prediction
results, respectively. For example, recent studies have found that
CDKN2B-AS1 can be used as a biomarker for poor prognosis of
kidney neoplasms (Angenard et al., 2019), DUXAP8 enhances the
progression of kidney neoplasms by downregulating miR-126

(Huang et al., 2018), and HOTAIRM1 is downregulated in kidney
neoplasms and inhibits hypoxia (Hamilton et al., 2020).

Laryngeal neoplasm is a commonmalignant tumor that accounts
for 4.5% of systemic malignancies, and it is also the second largest
malignant tumor of head and neck malignant tumors (Obid et al.,
2019). The loss of laryngeal function will greatly affect language
expression and swallowing function with some special senses.
Therefore, it is imperative to identify novel lncRNAs for early
diagnosis, prognosis, and treatment of laryngeal neoplasms.
Accumulating evidence has demonstrated that lncRNAs have
played critical roles in the development and progression of
laryngeal neoplasms (Xiang et al., 2019; Zhang G et al., 2019; Li
et al., 2020). LDA-EAGCN was further implemented to identify
lncRNAs associated with laryngeal neoplasms. As a result, eight out
of top ten potential lncRNAs related with laryngeal neoplasms have
also been validated by recent biological experiments’ literature works
(Table 5), which were ranked 1st, 2nd, 3rd, 4th, 5th, 7th, 8th, and 9th
in the prediction results, respectively. For example, CDKN2B-AS1
regulates the cell cycle of laryngeal neoplasms (F. Liu et al., 2020),
PVT1 regulates miR-519d-3p to promote the development of
laryngeal neoplasms (Zheng et al., 2019), and CCAT1 regulates
the progression of laryngeal neoplasms (Zhang and Hu, 2017)
through different ways. Notably, the model predicts that lncRNA
GAS5, which scored second, inhibits proliferation and metastasis of
laryngeal neoplasms by regulating the PI3K/AKT/mTOR signaling
pathway, according to a recent study in 2020 (Liu et al., 2021).

Liver neoplasm is a common malignant cancer globally, and it
is the second leading cause of cancer death worldwide (Yamashita
and Kaneko, 2016). Liver neoplasms are a special kind of cancer,
and their occurrence and development rate often depend on the
host, disease, and environmental factors and their complex
interactions. Numerous experimental results prove that the
development and progression of liver neoplasms are closely
related to the mutations and dysregulations of some lncRNAs
(Wang et al., 2017; Zhang Z et al., 2019; Zhang et al., 2020). LDA-
EAGCN is applied to liver neoplasms for potentially related
lncRNA prediction. By mining recent biological experiments’
literature works, eight out of top ten potential lncRNAs related
with liver neoplasms are validated (Table 6), which were ranked
1st, 2nd, 3rd, 5th, 6th, 8th, 9th, and 10th in the prediction results,
respectively. For example, BANCR can be used as a potential
therapeutic target for liver neoplasms (Zhou and Gao, 2016),
NEAT1 is necessary for liver neoplasm marker CD44 expression
(Koyama et al., 2020), and LINC00473 promotes the progression
of liver cancer by acting as microRNA-195 ceRNA and increasing
HMGA2 expression (Mo et al., 2019).

DISCUSSION

In this study, a model based on close node weight graph of the
spatial neighborhood and edge attention graph convolutional
networks was proposed to predict disease-related lncRNAs by
multisource data. Inspired by the great success of the EAGCN
method on the chemical molecule property recognition problem,
the prediction of lncRNA–disease associations could be regarded
as a component recognition problem of the lncRNA–disease

FIGURE 8 | ROC curves of Negative sample comparison.
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characteristic graph. The CNWGSN features of lncRNA–disease
associations combined with known lncRNA–disease associations
have been introduced to train the EAGCN method, and the
correlation scores of input data were predicted with EAGCN for
judging whether the input lncRNAs are associated with the input
diseases.

In order to excavate core features of lncRNA–diseases relationship
in a graph and remove redundancy, the closest node weight graph
of the spatial neighborhoods (CNWGSNs) of lncRNA–disease
associations was constructed. It not only considers the features of
disease–disease relationship, lncRNA–lncRNA relationship, and the
association between disease and lncRNA but also considers the
features of lncRNA and disease in a multidimensional space. In
addition, CNWGSN can also provide a great logic and mathematical
support for EAGCN to learn and summarize the internal relationship
between lncRNA and disease. Then the features of lncRNA–disease
are trained into the edge attention-based multi-relational graph
convolutional networks (EAGCNs), which accurately learn
multiple edge relations in multiple graphs. For solving the
problem of missing negative samples, the RWRH algorithm is
adopted to randomly select lncRNA–disease pairs with low
correlation scores as negative samples.

Our model LDA-EAGCN gets better performance in the 10-
fold cross-over test, and the mean AUC of it reached 0.9853,
which is higher than that of other five state-of-the-art models. As
for the experiments of case studies, in the top ten lncRNAs of
kidney cancer, laryngeal cancer, and liver cancer, 24 of all 30
lncRNAs were verified to be associated with the diseases.

Although the model can achieve good results, there is still room
for improvement. At present, the model only uses lncRNA–disease
data, and more types of biological data and more elaborately
designed fusion methods can be applied in the future.
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