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CCR5 plays a central role in infectious disease, host defense, and cancer progression,
thereby making it an ideal target for therapeutic development. Notably, CCR5 is the major
HIV entry co-receptor, where its surface density correlates with HIV plasma viremia. The
level of CCR5 receptor occupancy (RO) achieved by a CCR5-targeting therapeutic is
therefore a critical predictor of its efficacy. However, current methods to measure CCR5
RO lack sensitivity, resulting in high background and overcalculation. Here, we report on
two independent, flow cytometric methods of calculating CCR5 RO using the anti-CCR5
antibody, Leronlimab. We show that both methods led to comparable CCR5 RO values,
with low background on untreated CCR5+CD4+ T cells and sensitive measurements of
occupancy on both blood and tissue-resident CD4+ T cells that correlated longitudinally
with plasma concentrations in Leronlimab-treated macaques. Using these assays, we
found that Leronlimab stabilized cell surface CCR5, leading to an increase in the levels of
circulating and tissue-resident CCR5+CD4+ T cells in vivo in Leronlimab-treated
macaques. Weekly Leronlimab treatment in a chronically SIV-infected macaque led to
increased CCR5+CD4+ T cells levels and fully suppressed plasma viremia, both
concomitant with full CCR5 RO on peripheral blood CD4+ T cells, demonstrating that
CCR5+CD4+ T cells were protected from viral replication by Leronlimab binding. Finally,
we extended these results to Leronlimab-treated humans and found that weekly 700 mg
Leronlimab led to complete CCR5 RO on peripheral blood CD4+ T cells and a statistically
significant increase in CCR5+CD4+ T cells in peripheral blood. Collectively, these results
establish two RO calculation methods for longitudinal monitoring of anti-CCR5
therapeutic antibody blockade efficacy in both macaques and humans, demonstrate
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that CCR5+CD4+ T cell levels temporarily increase with Leronlimab treatment, and
facilitate future detailed investigations into the immunological impacts of CCR5 inhibition
in multiple pathophysiological processes.
Keywords: CCR5, CD4, HIV, receptor occupancy (RO), flow cytometry, antibody
INTRODUCTION

C-C chemokine receptor type 5 (CCR5) is a G protein-coupled
receptor involved in cell signaling and migration. CCR5 is
primarily expressed in lymphocytes, macrophages, dendritic
cells, and natural killer cells, but can also be found on the
epithelium, endothelium, vascular smooth muscle, and
fibroblasts from multiple organs, as well as neurons, astrocytes,
and microglia in the central nervous system (CNS) (1, 2).
Chemokines CCL3 (MIP-1a), CCL4 (MIP-1b), and CCL5
(RANTES) are the primary CCR5 ligands and are expressed in
sites of inflammation to recruit CCR5+ immune cells; thus, the
number of CCR5+ cells often correlate with the severity of
inflammation (1, 3, 4).

While CCR5 is known for its role in facilitating human
immunodeficiency virus (HIV) infection of CD4+ T cells, it
has a wide range of roles in normal and pathophysiological
processes. In addition to HIV, CCR5 is a critical host receptor for
Dengue virus (5) and Staphylococcus aureus (6) infection.
Furthermore, high expression of CCR5 is associated with
cancer progression and tumorigenesis (7–9), development of
insulin resistance via adipose tissue macrophage recruitment
(10), and suppression of cortical plasticity, learning, and memory
(11–13). Moreover, individuals homozygous for the naturally
occurring CCR5 mutation, CCR5D32, lack cell surface
expression of CCR5 receptors, which has protective effects
against HIV infection (14, 15), asthma (16, 17), severe SARS-
CoV-2 symptoms (18), and development of rheumatoid arthritis
(19), and is associated with improved hepatitis B virus infection
recovery rates (20) and lower incidence of cardiovascular disease
(21, 22). However, CCR5 is critical for viral clearance after
infection by West Nile (23), Japanese encephalitis (24), and
influenza A viruses (25, 26) because of its role in trafficking
immune cells to sites of infection. Exemplifying the complexity
of CCR5, the lack of CCR5 receptors protected against parasitic
Toxoplasma gondii infection (27) while the presence of CCR5
was essential for disease control after infection (28, 29). Because
of the myriad roles played by CCR5, the ability to target CCR5
with therapeutic agents will have a diverse range of applications.

Widely used HIV-specific therapeutics, such as antiretroviral
(ARV) drugs and HIV-specific broadly neutralizing antibodies
(bNAbs), exert their antiviral effects by directly targeting viral
proteins, and thus their efficacy is correlated to plasma
concentration (30–32). However, for immunomodulatory and
antiviral agents that target host receptors, their efficacy relies on
the level of receptor occupancy (RO) achieved. Indeed, in HIV
infection the density of CCR5 on CD4+ T cells correlated closely to
both susceptibility to HIV infection in vitro and plasma viral loads
in HIV-infected individuals (33–35). Additionally, the paucity of
org 2
CCR5+ CD4+ T cells present in natural hosts of simian
immunodeficiency virus (SIV) during infancy protects against
mother-to-offspring transmission during breastfeeding by viremic
mothers (36). Thus, the level of CCR5 occupied by a CCR5-
targeting drug is a critical predictor of its therapeutic efficacy.

Currently, Maraviroc is the only FDA-approved CCR5
antagonist. Maraviroc inhibits CCR5 internalization following
ligand binding, and thus Maraviroc CCR5 RO is indirectly
measured by a MIP-1b internalization assay where CCR5 RO is
defined by the percentage of cell surface CCR5 that is not down-
regulated following treatment with MIP-1b (37). This indirect
method of measuring CCR5 RO results in background RO of
approximately 25% (38), with reports of 120% CCR5 RO in
peripheral blood CD4+ T cells from both Maraviroc-treated and
-untreated rhesus macaques (39). These issues of extremely high
background and overcalculation of CCR5 RO are major limitations
of the MIP-1b internalization assay, especially when CCR5 RO is a
critical parameter in studying CCR5-blocking agents.

Directly measuring CCR5 RO with monoclonal antibodies
also presents challenges as CCR5 expression is a dynamic process
that must be controlled for. Indeed, the frequency of CCR5+ cells
change longitudinally in response to inflammatory and
homeostatic stimuli and can be impacted by the CCR5-
targeting reagent itself (39–43), leading to inaccuracies in
methods that use baseline CCR5 values to calculate CCR5 RO
(44). Not accounting for the ability of CCR5 expression to
change over time in the CCR5 RO calculation for the anti-
CCR5 antibody HGS004 resulted in baseline pre-treatment
CCR5 RO values of 20% in HIV-1 infected participants (45).
Thus, no robust and highly sensitive method for the calculation
of CCR5 RO currently exists.

Here, we report on two sensitive methods to measure CCR5
RO by the anti-CCR5 antibody Leronlimab (PRO-140;
Vyrologix). We demonstrate the sensitivity of this method to
longitudinally quantify CCR5 RO on blood and tissue CD4+ T
cells from Leronlimab-treated macaques and describe increased
levels of CCR5+CD4+ T cells in the blood of both Leronlimab-
treated macaques and humans. Finally, we translate the macaque
CCR5 RO method to Leronlimab-treated, HIV-naïve human
participants, demonstrating the direct use for monitoring CCR5
RO by Leronlimab in human clinical trials.
MATERIALS AND METHODS

Study Approval and Design
(Non-Human Primates)
All animal work occurred at the Oregon National Primate
Research Center (ONPRC), a Category I facility that is fully
November 2021 | Volume 12 | Article 794638
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credited by the American Association for Accreditation of
Laboratory Animal Care (AAALAC), with approved Assurance
(#A3304-01) for the use and care of animals on file with the NIH
Office of Laboratory Animal Welfare. Animal experimental care
plans, protocols, procedures, and administered reagents were
approved by ONPRC Institutional Animal Care and Use
Committee (IACUC). The ONPRC IACUC adhers to the
national guidelines established in the Animal Welfare Act (7
U.S.C. Sections 2131–2159) and the Guide for the Care and Use
of Laboratory Animals (8th Edition) as mandated by the U.S.
Public Health Service Policy.

Macaques (Macaca mulatta and Macaca fascicularis) used in
this study were housed at the Oregon National Primate Research
Center (ONPRC) in Animal Biosafety level (ABSL)-2+ rooms
with autonomously controlled temperature, humidity, and
lighting. At assignment, macaques were free of Cercopithecine
herpesvirus 1, D-type simian retrovirus, simian T-lymphotropic
virus type 1, and Mycobacterium tuberculosis. Macaque
specialists designed and oversaw daily wellness and dietary
enrichment plans. Ketamine HCl (Ketathesia™, Henry Schein
Animal Health) with or without Dexmedetomidine
(Dexmedesed™, Dechra, Overland Park, KS) was used to
sedate macaques for procedures, including subcutaneous (SC)
injections of Leronlimab, venipuncture, tissue biopsy, and viral
challenge, and they were performed by certified veterinarians or
trained animal technicians with veterinarian oversight.

Adult rhesus macaques (n=12) were used in this study, with six
macaques in the single 10 mg/kg SC Leronlimab group and six
macaques in the single 50 mg/kg SC Leronlimab group. All but
one animal in the 10 mg/kg group were female. Baseline biopsies
and whole blood were collected before SC Leronlimab injections.
Blood was collected at eight, 24, 48, and 72 hours post Leronlimab
injection, and then weekly afterwards. Biopsies were collected at
one and four weeks after Leronlimab injection and processed as
described below. This was a non-terminal study and macaques
were returned to the ONPRC colony after study conclusion.

One adult female chronically SIVmac239-infected Mauritian
cynomolgus macaque received weekly doses of 50 mg/kg
Leronlimab subcutaneously for 11 weeks.

Study Approval and Design (Human)
De-identified peripheral blood samples were obtained from
participants in a phase 2, randomized, double blind, placebo-
controlled study to evaluate for the efficacy and safety of
Leronlimab treatment in human participants experiencing
prolonged SARS-CoV-2 symptoms (termed Long-Haulers).
Participants were randomized to receive weekly 700 mg SC
Leronlimab or placebo. Participants of all sexes, over 18 years
of age, and with prior confirmed positive SARS-CoV-2 RT-PCR
test were eligible. Participants experienced at least two clinical
symptoms consistent with a SARS-CoV-2 infection for more
than 12 weeks. The trial took placed at the Arthritis & Rheumatic
Disease Specialties in Aventura, Florida and Center for
Advanced Research & Education (CARE) in Gainesville,
Georgia under the ClinicalTrials.gov identifier (NCT number):
NCT04678830. All participants provided written informed
consent prior to inclusion in study.
Frontiers in Immunology | www.frontiersin.org 3
Tissue Processing
Whole blood, lymph node, and bone marrow samples were
processed as previously described (40). Briefly, peripheral blood
mononuclear cells (PBMCs) were isolated from whole blood by
density gradient centrifugation using Ficoll-Paque PLUS (Cytiva)
and centrifuged at 1,860 x g for 30 minutes. Plasma was saved for
viral nucleic acid and Leronlimab concentration detection. Buffy
coat containing PBMCs was collected and washed with R10
(RPMI 1640 containing 10% fetal bovine serum (FBS)) before
use. Lymph nodes were collected in R10, diced with a scalpel, and
forced through a 70 mm cell strainer to a single cell suspension in
R10. Bone marrow aspirates were collected in R10 and pelleted by
centrifugation at 830 x g for 4 minutes. Cell pellets were
resuspended by shaking in PBS containing 2 mM EDTA, and
then centrifuged at 830 x g for 4 minutes. Cell pellets were then
resuspended in 70% isotonic Percoll (GE Healthcare,
Buckinghamshire, UK) and layered under 37% isotonic Percoll.
Layers were centrifuged at 500 x g for 20 minutes. Mononuclear
cells in the interface were collected into R10.

CCR5 RO Assay
Equation 1 Flow Staining
Equation1measured forLeronlimab-occupiedCCR5byusinganti-
IgG4 FITC in comparison to total CCR5 measured by ex vivo
incubation with a saturating concentration of Leronlimab (5 mg/
mL). Three staining tubes were used, with one tube serving as the
fluorescenceminus one (FMO) control (Supplemental Table 1). A
minimumof50mLofwhole bloodor3x105mononuclear cellswere
used per staining tube. Cells were washed twice with 1mL of PBS by
centrifuging at 830 x g for 4 minutes, then supernatants were
aspirated to leave ~100mL, and finally cell pellets were resuspended
byvortex.Next, 5mg/mLof parental, unconjugated Leronlimabwas
added to tube 3 according to Supplemental Table 1 and incubated
for 30 minutes at room temperature in the dark. Cells were washed
oncewith PBS, and then anti-IgG4FITCwas added to tubes 2 and 3
and incubated for 30 minutes at room temperature in the dark.
Afterwards, cells were washed once with PBS + 10% FBS and once
withPBS.Anti-CCR5APCwasadded to tubes2 and3,while surface
antibodies (CD3, CD4, CD8, CD45, CD95, and CD28) and amine-
reactive dye (cell viability) were added to all tubes. A description of
antibodies used can be found in Supplemental Table 2. Cells were
incubated for 30 minutes at room temperature in the dark. For
whole blood samples, 1 mL of 1X FACS Lysing solution (BD
Biosciences) was added to each tube to lyse red blood cells for 8
minutes, and then immediately centrifuged andwashed three times
with PBS + 10% FBS. Cells were stored at 4°C prior to running on
BD™ LSR II flow cytometer (BD Biosciences). For mononuclear
cells, cells werewashed twicewith PBS and thenfixed by adding 100
mL of 2% paraformaldehyde (PFA) and incubating for at least 10
minutes before running on BD™ LSR II flow cytometer (BD
Biosciences). Flow analysis was done using FlowJo 10.4, where
cells were progressively gated on singlets (FSC-H vs. FSC-A), live,
CD45+, CD3+, CD4+/CD8-, and CCR5+ cell populations, as
described in Supplemental Figure 1. Staining tube 1 served as the
FMOcontrol to assistwith gatingondesired cell populations, tube 2
stained for the frequency of Leronlimab-occupied CCR5+CD4+ T
cells, and tube 3 was saturated with Leronlimab ex vivo to measure
November 2021 | Volume 12 | Article 794638
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for the total frequency of CCR5+CD4+ T cells. The equation to
calculate CCR5 RO using equation 1 is as follows:

%RO =
% IgG4 (tube 2)
% IgG4 (tube 3)

� 100%

Equation 2 Flow Staining
Equation 2 measured for unoccupied CCR5 by using Leronlimab
that was conjugated to Pacific Blue (termed Leronlimab-PB).
Three staining tubes were required, with two tubes serving as the
FMO controls (Supplemental Table 1). Similar to equation 1, a
minimum of 50 mL whole blood or 3 x 105 mononuclear cells
were used per staining tube. Cells were washed two times with
PBS and anti-IgG4 FITC was added to tube C following
Supplemental Table 1 and incubated for 30 minutes at room
temperature in the dark. Because anti-IgG4 FITC could interact
with downstream Leronlimab-PB, leading to false positive
staining of anti-IgG4 FITC, cells were washed once with PBS +
10% FBS and at least three times with PBS. Afterward, anti-
CCR5 APC was added to tubes B and C, Leronlimab-PB was
added to tube C, surface antibodies (CD3, CD4, CD8, CD45,
CD16, and CD14) and amine-reactive dye were added to all
tubes (Supplemental Table 2). Cells were incubated for 30
minutes at room temperature in the dark. Afterward, whole
blood or mononuclear cells were lysed with 1X FACS Lysing
solution or fixed with 2% PFA, respectively, as described in the
staining for equation 1. Samples were collected on a BD™ LSR II
flow cytometer (BD Biosciences) and analyzed with FlowJo 10.4,
where cells were progressively gated on CD45+, singlets (FSC-H
vs. FSC-A), live, CD3+, CD4+/CD8-, and CCR5+ cell
populations (Supplemental Figure 1). Here, staining tube A
served as a FMO control to assist with gating on desired cell
populations, and tube B served as a FMO control to assist with
gating on IgG4+ and Leronlimab-PB+ cell populations. Tube C
stained for cells with unoccupied CCR5 (Leronlimab-PB) and
occupied CCR5 (anti-IgG4 FITC), with the total frequency of
CCR5+CD4+ T cells represented by the sum of IgG4+ and
Leronlimab-PB+ cell frequencies. The equation to calculate
CCR5 RO using equation 2 is as follows:

%RO =
%IgG4 (tube C)

%IgG4 (tube C) + %Leronlimab–PB (tube C)
� 100%

Lastly, the percentage of CCR5+CD4+ T cells was determined
with tube B because it was free from ex vivo incubation of
unconjugated Leronlimab or conjugated Leronlimab-PB, which,
described later in the Results session, was found to stabilize and
increase CCR5 expression on CD4+ T cells.

Combined Equations 1 and 2 Flow Staining
In the clinically-adapted CCR5 RO assay, changes were made to
1) fluorophore conjugates to adjust for the higher-wattage lasers
used in FACSymphony A5 (BD Biosciences), a machine that
allowed for easier detection of rare events, 2) the FACSymphony
A5’s lack of a 651nm (green) laser and expanded 488nm (blue)
laser, 3) antibody clones to improve species reactivity to macaque
and human samples, and 4) combine both CCR5 RO equations
Frontiers in Immunology | www.frontiersin.org 4
into one staining panel to minimize the number of cells required
for staining. Here, four staining tubes were required, with two
tubes serving as FMO controls (Supplemental Table 1). At least
50 mL of whole blood or 3 x 105 PBMC samples were placed into
each staining tube and samples were washed two times with PBS.
Next, 5 mg/mL of the parental, unconjugated Leronlimab was
added to tube H4 (Supplemental Table 1) and incubated for 30
minutes at 2-8°C in the dark. Afterward, tubes H1 and H2 were
washed once with 3 mL cold PBS while tubes H3 and H4 were
washed with 1 mL cold PBS with 10%mouse serum (Equitech) in
order to minimize nonspecific binding of anti-human IgG4
FITC. Cells in tubes H3 and H4 were then incubated with 100
mL of cold mouse serum and incubated for 60 minutes at 2-8°C
followed by another wash of 1 mL cold PBS with 10% mouse
serum. Anti-IgG4 FITC and 100 mL of cold mouse serum were
then added to tubes H3 and H4 and incubated for 30 minutes at
2-8°C in the dark. Next, cells were washed once with DPBS and
0.1% BSA and then at least three times with PBS. Anti-CCR5
APC was added to tubes H2, H3, and H4, Leronlimab-PB was
added to tube H3, surface antibodies (CD3, CD4, CD8a, CD45,
CD16, CD14, CD28, and CD95), and amine-reactive dye (cell
viability) were added to all tubes (Supplemental Table 3). Cells
were incubated for 30 minutes at room temperature in the dark.
Finally, whole blood or PBMC samples were lysed with 1X FACS
Lysing solution, incubated for 10 minutes in the dark, and then
immediately washed once with DPBS and 0.1% BSA. Cells were
then permeabilized with 0.5 mL 1.5X FACS Lysing solution and
0.05% Tween-20, incubated for 10 minutes in the dark, and then
washed twice with DPBS and 0.1% BSA. Samples were run using
the FACSymphony A5 (BD Biosciences) and analyzed with
FlowJo 10.4. Cells were progressively gated on CD45+, singlets
(FSC-H vs. FSC-A), live, CD3+, CD4+/CD8-, and CCR5+ cell
populations (Supplemental Figure 1). Here, tube H1 and H2
served as FMO controls to assist with gating on cell populations,
tube H3 stained for the frequency of Leronlimab-occupied CCR5
with anti-IgG4 FITC and Leronlimab-unoccupied CCR5 with
Leronlimab-PB, and tube H4 was saturated with Leronlimab ex
vivo to measure for the total frequency of CCR5+CD4+ T cells.
The equations to calculate CCR5 RO are as follow:

%RO =
%IgG4 (tube H3)
%IgG4 (tube H4)

� 100% Equation 1

%RO =
% IgG4 (tube H3)

% IgG4 (tube H3) + % Leronlimab–PB (tube H3)
� 100%

Equation 2
In Vitro CCR5 Ligand Binding and Staining
PBMCs were incubated with or without 5 mg/mL of Leronlimab
for 30 minutes at 37°C. Next, cells were incubated at 37°C for an
additional 30 minutes with no additional ligand or 50 nM of one
of the following CCR5 ligands: MIP-1a, MIP-1b, or RANTES.
Afterwards, cells were stained with CCR5 (clone 3A9), CD3,
CD4, and CD8 cell surface receptors and amine-reactive dye.
Samples were collected using the BD™ LSR II flow cytometer
November 2021 | Volume 12 | Article 794638
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and analyzed with FlowJo 10.4 by gating on live, CD3+, CD4+/
CD8-, singlet, and CCR5+ cell populations. Data was presented
as normalized %CCR5+ for each treatment condition that was
normalized to frequency observed in Leronlimab-untreated,
ligand-free cells from each respective donor.
Measurement of Leronlimab
Concentration in Plasma
Enzyme-linked immunosorbent assay (ELISA) was used to detect
for Leronlimab levels in plasma samples, as previously described
(40). Briefly, plates were coated with 1.5 mg/mL PA22 (CytoDyn,
Frontiers in Immunology | www.frontiersin.org 5
Vancouver, WA) in carbonate-bicarbonate buffer (ThermoFisher)
overnight at 4°C. Plates were washed three times with PBS-T (PBS
with 0.1% Tween-20) and blocked for at least two hours in room
temperature with Blocking Buffer (PBS with 0.4% Tween-20 and
10% bovine serum albumin (Fisher Scientific). Standard curve
generated with serial dilutions of Leronlimab and samples were
plated onto blocked plates and incubated for 30 minutes at room
temperature. Plates were washed three times with PBS containing
0.5 M NaCl, and then incubated with 20,000-fold diluted mouse
anti-human IgG4 pFc’-horseradish peroxidase (Southern Biotech)
in Blocking Buffer for 30 minutes at room temperature. Finally,
plates were washed three times with PBS-T and 3,3’,5,5’-
A

B

FIGURE 1 | Leronlimab increases cell surface CCR5 expression that is resistant to internalization. PBMC from humans (n=2; triangles) and rhesus macaques (n=2;
circles) were incubated without (left, red) or with (right, blue) 5 mg/mL Leronlimab for 30 minutes at 37°C, then with either no treatment or 50nM of one the following
CCR5 ligands: MIP-1a, MIP-1b, or RANTES, for an additional 30 minutes. After incubation, cells were stained for CCR5 (clone 3A9) and CD3, CD4, and CD8
surface markers. Cells were gated within live, CD3+, CD4+/CD8-, singlet populations. (A) Representative flow plots. (B) Graphs show normalized frequencies of
CCR5+ of CD4+ T cells to frequency observed with untreated cells (no Leronlimab, no CCR5 ligands) from the respective donor.
November 2021 | Volume 12 | Article 794638
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A

B

D

C

FIGURE 2 | CCR5 receptor occupancy assay overview. (A) Flow cytometry diagram showing the interactions between anti-CCR5, Leronlimab, Leronlimab-PacBlu
(PB), and anti-human IgG4 for the two equations using a CCR5 unoccupied (top) and fully occupied (bottom) scenario. (B) Equations for calculating CCR5 RO.
(C) Representative flow cytometry plots displaying the different components needed to calculate for the two equations using a rhesus macaque that received a single
50 mg/kg SC Leronlimab injection. Equation 1 used %IgG4+ events within CD45+, singlet, live, CD3+, CD4+/CD8-, and CCR5+ events. Equation 2 used %IgG4+
and Leronlimab-PB+ events within CD45+, singlet, live, CD3+, CD4+/CD8-, and CCR5+ events. Table on the right shows the calculated CCR5 RO calculated by the
two equations at study weeks 0, 4, and 14 post single Leronlimab injection. (D) Left Y-axis is for CCR5 RO by Leronlimab on peripheral blood CD4+CCR5+ T cells
calculated by equation 1 (solid blue circle) and equation 2 (open blue square). Right Y-axis is for the longitudinal plasma concentration (solid black triangle) in blood
samples from the treated macaque.
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 7946386

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chang et al. Leronlimab Increased CCR5+CD4+ T Cells
Tetramethylbenzidine (TMB) substrate (Southern Biotech) was
added to develop the plates for two minutes, after which, 1 N
H2SO4 was added to stop the reaction. Developed plates were read
on Synergy HTX Multi-Mode Microplate Reader (BioTek) using
the Gen5 v3.10 software to read two absorbance wavelengths: 650
nm for the developing reaction and 450 nm for the developed
reaction. Plasma concentration for each sample (mg/mL) was
determined using the generated standard curve, with an assay
limit of detection of 0.0226 mg/mL.

Viral Nucleic Acid Detection
SIV nucleic acid detection assays were performed by members of
the ONPRC Molecular Virology Core. Detection of SIV nucleic
acids was performed as previously described (40, 46, 47). Briefly,
Frontiers in Immunology | www.frontiersin.org 7
viral nucleic acids from 300 mL of plasma were extracted using
LEV Viral Nucleic Acid Kit and the Maxwell 16 instrument
(Promega, Madison, WI) following manufacturer’s protocols.
RT-qPCR reaction was performed to quantify SIV viral RNA in
the plasma. The reaction used the total extracted RNA, 900 nM
of SGAG21 forward primer (GTCTGCGTCATPTGGTG
CATTC), 900 nM of SGAG22 reverse primer (CACTAGKTG
TCTCTGCACTATPTGTTTTG), and 250 nM of pSGAG23
probe (5′-6-carboxyfluorescein [FAM]-CTTCPTCAGT
KTGTTTCACTTTCTCTTCTGCG-black hole quencher
[BHQ1]-3′) for a final reaction volume of 30 mL. Standard
curve was created by using in vitro transcribed SIVgag RNA
that was serially diluted in 5 ng/mL yeast tRNA (Sigma R5636).
Applied Biosystems QuantStudio 6 Flex instrument (Life
A

B

D

E F

C

FIGURE 3 | CCR5+CD4+ T cell frequencies increase with CCR5 RO. Leronlimab-naïve, SIV-naïve, rhesus macaques received a single 10 mg/kg (n=6; red; left) or
50 mg/kg (n=6; blue; right) SC Leronlimab. (A) Longitudinal Leronlimab concentration in plasma. (B) Longitudinal CCR5 RO by Leronlimab on peripheral blood CD4
+CCR5+ T cells. (C, D) Peripheral blood CCR5+CD4+ T cell frequency for (C) longitudinal weekly timepoints, separated by treatment group and (D) hourly
timepoints for both treatment groups within the first week post Leronlimab. (E, F) Axillary lymph node and bone marrow (E) CCR5 RO by Leronlimab and (F) %
CCR5 on tissue-resident CD4+ T cells. (B, E) Solid symbol represents CCR5 RO calculated from equation 1 while open symbol represents CCR5 RO calculated
from equation 2. P-values in panels (D, F) generated by Wilcoxon signed-ranked test; ns, not significant, *p < 0.05; **p < 0.01; ***p = 0.0005.
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Technologies) was used to run the RT-qPCR reactions at the
following setting: 50°C for 5 min; 95°C for 20 s; [95°C for 3 s,
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60°C for 30 s] × 45 cycles. The limit of quantification for this
assay is 50 copies/mL.

Statistical Analysis
Wilcoxon signed-rank test was used to analyze %CCR5+CD4+
T cells between baseline and Leronlimab treatment timepoints in
macaques. Two-way repeated measures analysis of variance
(ANOVA) with Sidak’s correction for multiple comparisons
was used to compare the %CCR5+CD4+ T cells between
Leronlimab-treated and placebo human participants. Analysis
was performed using GraphPad Prism Version 8.31 (332).
RESULTS

Development of the Leronlimab CCR5
Receptor Occupancy Assay
Rhesus macaques are vitally important pre-clinical models used
to validate potential prophylactic and therapeutic modalities as
they share similar immune systems with humans. Indeed, CCR5
sequence, structure, and function are highly conserved between
the two species (48). Previously, we demonstrated that
Leronlimab specifically binds the same CCR5 epitope on the
surface of human and rhesus macaque leukocytes (40).
Therefore, to facilitate both pre-clinical macaque and clinical
human studies, we analyzed the effect of Leronlimab on CCR5
expression on CD4+ T cells from both species.

First, we examined the impact of treatment with a saturating
concentration of 5 mg/mL Leronlimab on surface CCR5 levels of
primary human and macaque CD4+ T cells in vitro. Similar to
Maraviroc, Leronlimab stabilized cell surface CCR5 and directly
increased the frequency of CCR5+CD4+ T cells from humans
and rhesus macaques (Figure 1A). Next, we explored if
Leronlimab-occupied CCR5 was resistant to internalization
following treatment with CCR5 ligands, a phenomenon that
forms the basis for the MIP-1b internalization Maraviroc CCR5
RO assay (37, 38). In samples without Leronlimab, we observed
CCR5 internalization in response to MIP-1a, MIP-1b, and
RANTES (Figure 1B). Following treatment with Leronlimab,
we found increased frequencies of CCR5+CD4+ T cells where
CCR5 was resistant to internalization following treatment with
all three CCR5 ligands, indicating that Leronlimab both
stabilized surface CCR5 expression and prevented its
internalization. Thus, it is critical to account for this
Leronlimab-induced increase in surface CCR5 levels for CCR5
RO measurements.

To measure CCR5 RO, we designed Leronlimab CCR5 RO
assays based on methods previously established for RO
measurements of anti-PD-1 antibodies in clinical trials (49,
50). The Leronlimab CCR5 RO assays consist of the three
following critical components: 1) the CCR5-specific antibody
clone 3A9 that does not compete with nor sterically hinder
Leronlimab binding of CCR5 to track overall CCR5 expression,
2) the anti-human IgG4 antibody clone HP6025, which binds to
the humanized IgG4 Fc of Leronlimab and 3) Pacific Blue-
labeled Leronlimab (termed Leronlimab-PB), which binds to
A

B

D

C

FIGURE 4 | Leronlimab treatment of an SIVmac239-infected macaque. A
cynomolgus macaque (n=1; 36484) was chronically infected with SIVmac239
prior to receiving weekly 50 mg/kg SC Leronlimab. (A) Longitudinal Leronlimab
concentration in plasma. (B) Longitudinal CCR5 RO by Leronlimab on
peripheral CD4+CCR5+ T cells. (C) Longitudinal peripheral blood CCR5+CD4+
T cell frequency. (D) Longitudinal SIV RNA copies per mL plasma. Vertical
dashed lines represent each SC Leronlimab injection.
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free CCR5 receptors not occupied by Leronlimab (Figure 2A).
To measure the percentage of CCR5 RO on the surface of CD4+
T cells, two different methods were used as described in detail in
the Materials and Methods section. CCR5 RO equation 1
measures Leronlimab-bound receptor by using the anti-human
IgG4 antibody to measure Leronlimab-occupied CCR5 receptor
directly (Figure 2A). CCR5 RO equation 2 measures unoccupied
CCR5 receptors by using Pacific Blue-conjugated Leronlimab. In
both methods, CCR5 staining with the 3A9 antibody is used to
account for weekly variations in CCR5 expression prior to
calculation of CCR5 RO (Supplemental Figure 1). CCR5 RO
for Equation 1 is defined by the percentage of cells CCR5+
(measured by clone 3A9) and Leronlimab+ (measured by anti-
human IgG4) divided by the percentage of cells CCR5+ and
Leronlimab+ following incubation with 5 mg/mL, a saturating
concentration of unlabeled Leronlimab (Figures 2B, C).

%RO =
% IgG4

% IgG4 (ex vivo saturating  Leronlimab)
� 100% (Equation 1)
CCR5 RO for Equation 2 is defined as the percentage of cells
CCR5+ (measured by clone 3A9) and Leronlimab+ (measured
by anti-human IgG4) divided by the percentage of cells CCR5+
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and Leronlimab+ (measured by the sum of anti-human IgG4 and
Leronlimab-PB) cells following incubation with 5 mg/mL
Leronlimab-PB.

%RO =
% IgG4

% IgG4 + Leronlimab–PB
� 100% (Equation 2)

Next, we tested the Leronlimab CCR5 RO assay using
longitudinal peripheral blood samples from a rhesus macaque
that received a single 50 mg/kg subcutaneous (SC) dose of
Leronlimab. Representative flow cytometric plots and
calculated CCR5 RO values using the two equations at three
different study weeks are shown to demonstrate how the RO
values are calculated (Figure 2C). We observed no CCR5 RO on
peripheral blood CD4+ T cells immediately prior to Leronlimab
dosing, followed by 100% CCR5 RO within eight hours following
the SC injection (Figure 2D). CCR5 RO was then maintained at
approximately 100% until the Leronlimab plasma concentration
fell below 5 mg/mL at approximately six weeks post injection.
Following this, CCR5 RO continually decreased to baseline level
following complete washout of Leronlimab from plasma.
Importantly, both RO methods yielded similar CCR5 RO
measurements throughout the study and correlated with the
Leronlimab plasma concentration. These results demonstrate the
sensitivity and reproducibility of the CCR5 RO assay for
monitoring Leronlimab RO ex vivo.

Leronlimab Treatment Increases
CCR5+CD4+ T Cell Counts in Healthy
Rhesus Macaques
To further verify that CCR5 RO calculated by equation 1 and
equation 2 were robust methods to longitudinally track
Leronlimab CCR5 RO over time in blood and tissue, as well as
to monitor the impact of CCR5 RO on CCR5+CD4+ T cell levels,
we treated 12 rhesus macaques with a single 10 mg/kg or 50 mg/kg
A B

C

FIGURE 5 | CCR5 RO assay on human samples. Blood samples were collected from human participants in ClinicalTrials.gov Identifier: NCT04678830 at study
weeks 0, 4, and 8 post Leronlimab initiation. Leronlimab-treated (n=4; blue) participants received weekly 700 mg SC Leronlimab, while controls were untreated (n=4;
black). (A) Representative flow cytometry plots showing the different components required to calculate CCR5 RO for equation 1 and 2. Table on the right shows the
calculated RO at study weeks 0, 4, and 8. (B) Longitudinal CCR5 RO by Leronlimab on peripheral blood CD4+ T cells calculated with equation 1 (solid blue) and
equation 2 (open blue). (C) Longitudinal CCR5+CD4+ frequency in peripheral blood. Vertical dashed line represents each SC Leronlimab injection. P-values in panel
(C) calculated by two-way repeated measures ANOVA with Sidak’s correction for multiple comparisons; ns, not significant; *p < 0.05.
TABLE 1 | Calculated CCR5 RO by Leronlimab on peripheral blood CD4+ T
cells from Leronlimab-treated or untreated humans and macaques.

Leronlimab condition Species Mean % CCR5 RO (SD, N)

Equation 1 Equation 2

Untreated Human 1.02% (0.62, 8) 0.65% (0.52, 8)
Macaque 0.38% (0.41, 12) 0.08% (1.06, 12)

Treated Human 98.39% (2.47,4) 99.73% (0.57, 4)
Macaque 100.83% (4.33, 12) 99.84% (0.59, 12)
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SC Leronlimab injection (n=6 per group). As expected,
Leronlimab plasma levels peaked at lower levels and washed out
more rapidly in macaques who received 10 mg/kg versus 50 mg/kg
(Figure 3A). In both groups, however, Leronlimab treatment
yielded full CCR5 RO on peripheral blood CD4+ T cells by
eight hours post injection, and maintained >90% CCR5 RO
for an average of 12.8 days and 32.6 days for the 10 mg/kg and
50 mg/kg groups, respectively (Figure 3B).

CCR5 antagonists impact expression of cell surface CCR5 and
thus modulate the levels CCR5+CD4+ T cells circulating in vivo.
Maraviroc treatment increased CCR5 expression on peripheral
blood T cells in both humans and macaques, but the effect on
CCR5 expression on tissue-resident T cells is unclear (42, 43, 51).
In contrast, longitudinal treatment of macaques with the anti-
CCR5 antibody HGS101 did not increase CCR5 expression, but
rather decreased levels of CCR5+CD4+ T cells in both peripheral
blood and lymph nodes (41). Therefore, we next sought to assess
the impact of Leronlimab on CCR5+CD4+ T cells levels in both
peripheral blood and within tissues. Following administration of
Leronlimab at either dose we observed an increase in the
frequencies of CCR5+CD4+ T cells circulating within
peripheral blood that tracked with CCR5 RO (Figure 3C). In
line with the rapid stabilization of CCR5 in vitro shown in
Figure 1, statistically significant increases in peripheral blood
CCR5+CD4+ T cell frequencies were found as early as eight
hours post injection and maintained at every timepoint
examined throughout the first week post inject ion
(Figure 3D). Next, we examined the impact of Leronlimab on
CCR5+CD4+ T cells from lymph node and bone marrow
biopsies. Similar to peripheral blood results, we found no
CCR5 RO on lymph node and bone marrow CD4+ T cells
prior to Leronlimab injection, followed by high levels of CCR5
RO on CD4+ T cells from these tissues at one week post injection
(Figure 3E). Reflective of plasma concentration and peripheral
blood CCR5 RO results, levels of CCR5 RO by Leronlimab on
tissue CD4+ T cells were very low at four weeks post injection in
the 10 mg/kg treated group, while significant, but variable CCR5
RO levels remained on tissue CD4+ T cells from the 50 mg/kg
treated group (Figure 3E). In line with these CCR5 RO values,
we observed a statistically significant increase in frequencies of
tissue CCR5+CD4+ T cells at one week post Leronlimab
injection, concomitant with high levels of CCR5 RO on CD4+
T cells in those tissues (Figure 3F). Upon loss of CCR5 RO at
week four post Leronlimab injection, the levels of CCR5+CD4+
T cells decreased and were no longer statistically different from
pre-injection levels. These observations demonstrate that
Leronlimab treatment increases CCR5+CD4+ T cell
frequencies in both the peripheral blood and within lymphoid
tissues, and that this phenomenon depends upon the degree of
Leronlimab occupancy of CCR5.

Leronlimab Treatment Suppresses
SIVmac239 Replication Despite Increasing
CCR5+CD4+ T Cell Levels
The observed increase in CCR5+CD4+ T cells in Leronlimab-
treated macaques raised the possibility that Leronlimab could
Frontiers in Immunology | www.frontiersin.org 10
inadvertently exacerbate ongoing SIV infection by providing
additional susceptible targets for viral replication. To study the
impact of Leronlimab on CD4+ T cell dynamics and viral
replication in an ongoing SIV infection, we treated a
chronically SIVmac239-infected Mauritian cynomolgus
macaque with weekly 50 mg/kg SC Leronlimab injections for
11 weeks.

Similar to a single 50 mg/kg injection, complete CCR5 RO on
peripheral blood CD4+ T cells was observed one week after the
first dose and subsequently maintained for weeks after the final
dose. However, compared to a single 50 mg/kg injection,
repeated weekly 50 mg/kg injections for 11 weeks resulted in a
longer duration of plasma Leronlimab, where complete
Leronlimab plasma wash out and loss of CCR5 RO occurred
at study weeks 32 and 36 post first dose, respectively
(Figures 4A, B). As expected, based on our results above in
SIV-naïve macaques, the frequency of CCR5+CD4+ T cells
circulating in peripheral blood tracked with CCR5 RO, where
it immediately increased after the first injection, began to decline
with Leronlimab plasma washout, and returned to baseline level
with loss of CCR5 RO (Figure 4C). Importantly, the increased
frequencies of CCR5+CD4+ T cell targets did not exacerbate SIV
replication. Instead, Leronlimab potently and completely
suppressed SIV replication for approximately 20 weeks, during
the time period where both full CCR5 RO and increased CCR5
+CD4+ T cells were present in the blood (Figure 4D). As the
Leronlimab plasma concentration declined and CCR5 RO was
lost on CD4+ T cells, viral rebound occurred. SIVmac239 plasma
viremia ultimately returned to pre-Leronlimab levels after
complete loss of CCR5 RO. Therefore, the Leronlimab-induced
increase in CCR5+CD4+ T cell targets did not exacerbate
ongoing SIV replication; rather, the binding of Leronlimab to
the CCR5 co-receptor used for viral entry protected these cells
from infection and greatly diminished ongoing SIV replication,
resulting in minimal plasma viremia during the period of
complete CCR5 RO.

Measurement of CCR5 RO in Leronlimab-
Treated, HIV-Free Human Participants
Currently, Leronlimab is undergoing testing in clinical trials for
both HIV and HIV-unrelated indications. With the successful
demonstration of the CCR5 RO assay in non-human primate
models, we next sought to extend the pre-clinical CCR5 RO
technique for clinical applications. While the majority of the
antibodies utilized in the macaque-specific assay are human-
specific antibodies that cross react with the macaque orthologue,
we adapted and refined the antibody clones utilized for optimal
staining on human cells (Supplemental Table 2). To determine
the performance of the clinical-grade CCR5 RO assay, we obtained
blinded clinical samples from eight participants enrolled in a
phase 2, two-arm, randomized, double blind, placebo-
controlled study on the effects of Leronlimab treatment in long
COVID-19 (ClinicalTrials.gov Identifier: NCT04678830).
Enrolled participants were randomized to receive either weekly
700 mg SC Leronlimab injections or placebo throughout an eight-
week study period, with a total of three clinical visits at weeks 0, 4,
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and 8 after the first Leronlimab initiation. As in our pre-clinical
study models, the two equations calculated comparable CCR5 RO
percentages from all three clinical visits in Leronlimab-treated
human participants (Figure 5A). Furthermore, the CCR5 RO
assay correctly identified individuals treated with Leronlimab
versus placebo following unblinding, as treated individuals
presented at baseline with no CCR5 RO, but then achieved full
CCR5 RO on peripheral blood CD4+ T cells at the two follow-up
clinical visits, while placebo-treated participants never presented
with CCR5 RO (Figure 5B). In line with the preclinical macaque
results, we observed increased frequencies of circulating
CCR5+CD4+ T cells following Leronlimab dosing. After
Leronlimab initiation, frequencies of CCR5+CD4+ T cells
circulating in the peripheral blood in Leronlimab-treated
participants were statistically higher than in untreated
participants (Figure 5C). Thus, the longitudinal CD4+ T cell
CCR5 RO in Leronlimab-treated participants and lack of
measurable CCR5 RO in Leronlimab-untreated participants
demonstrates the robustness and sensitivity of the clinical CCR5
RO assay. Indeed, in bothmacaques and humans, CCR5 RO in the
absence or presence of saturating plasma concentrations of
Leronlimab was approximately 1% and 99%, respectively
(Table 1). Cumulatively, these results establish precise methods
to measure CCR5 RO in a pre-clinical nonhuman primate species
and in human participants in clinical trials, and demonstrate that
Leronlimab CCR5 RO induces increased frequencies of
CCR5+CD4+ T cells.
DISCUSSION

Here, we created and validated two different methods of
calculating CCR5 RO by the anti-CCR5 antibody Leronlimab.
The methods generated comparable longitudinally CCR5 RO
percentages in rhesus macaques that received a single 10 mg/kg
or 50 mg/kg SC Leronlimab injection. Additionally, both
methods were highly sensitive, with baseline values of 1% and
fully saturated values of 99% when tested in human and non-
human primates. These results are in contrast to the commonly
used MIP-1b internalization assay utilized for Maraviroc, which
is associated with background levels of approximately 25% in
human samples (38) and yields values in excess of 100% in
maraviroc-treated and -untreated rhesus macaques (39). Higher
RO percentages calculated by the MIP-1b internalization assay
may be due to fluctuating CCR5 frequencies or incomplete CCR5
internalization upon MIP-1b binding. In contrast, our methods
did not depend on receptor internalization and all mathematical
components used were gated on CCR5+ cells, compensating for
any fluctuation in CCR5 frequency and allowing for precise
calculation of RO. Finally, the pre-clinical Leronlimab CCR5 RO
assay was extended into human participants, demonstrating the
ability to longitudinally and robustly monitor CCR5 RO.

Similar to maraviroc, we found that Leronlimab stabilized
surface CCR5 molecules and prevented its internalization
following ligand binding. Indeed, this shared feature of both
drugs likely explains their shared ability to increase frequencies
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of CCR5+CD4+ T cells in both humans and macaques. Because
CCR5+CD4+ T cells are target cells for HIV/SIV infection,
increasing the frequencies of susceptible cells could raise
concerns of increased HIV/SIV replication. However, we found
that weekly Leronlimab treatment in a chronically SIVmac239-
infected macaque fully suppressed plasma viremia for over 20
weeks despite a rise in the CCR5+CD4+ T cell frequency
immediately after the first Leronlimab injection. Both
suppression of viral replication and increased CCR5+CD4+ T
cell levels were temporally associated with full CCR5 RO on
peripheral blood CD4+ T cells, underscoring the need to
measure CCR5 RO in studies utilizing CCR5-blocking agents.

Because CCR5 is involved in multiple pathophysiologic
processes, Leronlimab is being explored in clinical trials for
both HIV and non-HIV indications. In HIV-positive
participants, Leronlimab suppressed plasma viremia after a
single 5 or 10 mg/kg SC Leronlimab injection, while
Leronlimab monotherapy contributed to the maintenance of
viral suppression for over six years (52–55). Moreover, the
only two cases of HIV cure occurred after hematopoietic stem
cell transplantation (HSCT) with donor cells homozygous for
CCR5D32 (56, 57), while similar studies using donor cells that
were wild-type CCR5 or heterozygous CCR5D32 led to eventual
viral rebound (58). For this reason, there is intense focus on
genetically disrupting ccr5 to abolish cell surface CCR5
expression in HIV-positive individuals (59, 60). However,
CCR5 has many protective roles, making it difficult to predict
the long-term biological effects or consequences of permanently
disrupting ccr5 expression in humans. A logical approach to
reproduce the phenotypic protection seen in homozygous
CCR5D32 individuals is to instead use CCR5-blocking
pharmacologic agents such as Leronlimab. Moreover, the
therapeutic use of Leronlimab extends beyond HIV treatment
due to its diverse roles. CCR5 is expressed in over 95% of triple-
negative breast cancers (61) and influences breast cancer
progression (9). In a murine model, Leronlimab prevented and
reduced breast cancer metastasis suggesting a role for
Leronlimab in the treatment of neoplasia (62). As CCR5 is
central in inflammatory immune responses, it is currently
being studied as a therapeutic for severe and critical SARS-
CoV-2 infections (44, 63–65) and graft-versus-host disease
(GVHD), where Leronlimab treatment reduced xeno-GVHD
after HSCT of human cells to mice (66). Finally, Leronlimab is
currently in phase 1 and 2 clinical studies to treat metastatic
colorectal cancer, nonalcoholic Steatohepatitis, and long COVID
after SARS-CoV-2 infection, demonstrating the diverse
applicability of this safe and effective CCR5-targeting agent.

The appeal of monoclonal antibody-based therapeutic agents
is growing due to their longer half-life and promising safety
profile, and this is reflected in the dramatic rise in FDA approvals
and commercial use of antibody treatments in recent years (67,
68). The CCR5 RO assays described here will be an important
study measurement for any CCR5 antibody-based agent, and can
be modified for any antibody-based agents that have a clearly
defined cell surface protein target. In the case of the anti-CCR5
antibody Leronlimab, the ability to accurately measure CCR5 RO
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will advance both pre-clinical and clinical studies, furthering our
understanding of the immunological impacts of CCR5 for
multiple pathophysiologic processes.
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